
acmqueue | march-april 2017 49

A
s detailed in Site Reliability Engineering: How
Google Runs Production Systems1 (hereafter
referred to as the SRE book), Google products
and services seek high-velocity feature
development while maintaining aggressive

SLOs (service-level objectives) for availability and
responsiveness. An SLO says that the service should
almost always be up, and the service should almost always
be fast; SLOs also provide precise numbers to define what
“almost always” means for a particular service. SLOs are
based on the following observation:

BY BEN TREYNOR, MIKE DAHLIN, VIVEK RAU, BETSY BEYER

1 of 19 TEXT
ONLY

The Calculus
of Service
Availability

web services

You’re only as
available as
the sum of your
dependencies

acmqueue | march-april 2017 50

The vast majority of software services and systems
should aim for almost-perfect reliability rather than
perfect reliability—that is, 99.999 or 99.99 percent
rather than 100 percent—because users cannot tell
the difference between a service being 100 percent
available and less than “perfectly” available. There
are many other systems in the path between user
and service (laptop, home WiFi, ISP, the power grid,...),
and those systems collectively are far less than
100 percent available. Thus, the marginal difference
between 99.99 percent and 100 percent gets lost in
the noise of other unavailability, and the user receives
no benefit from the enormous effort required to add
that last fractional percent of availability. Notable
exceptions to this rule include antilock brake control
systems and pacemakers!
For a detailed discussion of how SLOs relate to

SLIs (service-level indicators) and SLAs (service-level
agreements), see the “Service Level Objectives” chapter
in the SRE book. That chapter also details how to choose
metrics that are meaningful for a particular service or
system, which in turn drives the choice of an appropriate
SLO for that service.

This article expands upon the topic of SLOs to focus
on service dependencies. Specifically, we look at how the
availability of critical dependencies informs the availability
of a service, and how to design in order to mitigate and
minimize critical dependencies.

Most services offered by Google aim to offer 99.99
percent (sometimes referred to as the “four 9s”)

2 of 19web services

acmqueue | march-april 2017 51

availability to users. Some services contractually commit
to a lower figure externally but set a 99.99 percent
target internally. This more stringent target accounts for
situations in which users become unhappy with service
performance well before a contract violation occurs,
as the number one aim of an SRE team is to keep users
happy. For many services, a 99.99 percent internal target
represents the sweet spot that balances cost, complexity,
and availability. For some services, notably global cloud
services, the internal target is 99.999 percent.

99.99 PERCENT AVAILABILITY:
OBSERVATIONS AND IMPLICATIONS
Let’s examine a few key observations and implications of
designing and operating a 99.99 percent service and then
move to a practical application.

Observation 1: Sources of outages
Outages originate from two main sources: problems with
the service itself and problems with the service’s critical
dependencies. A critical dependency is one that, if it
malfunctions, causes a corresponding malfunction in the
service.

Observation 2: The mathematics of availability
Availability is a function of the frequency and the duration
of outages. It is measured through:
3Outage frequency, or the inverse: MTTF (mean time to
failure).
3Duration, using MTTR (mean time to repair). Duration is
defined as it is experienced by users: lasting from the start

3 of 19web services

acmqueue | march-april 2017 52

of a malfunction until normal behavior resumes.
Thus, availability is mathematically defined as MTTF/

(MTTF+MTTR), using appropriate units.

Implication 1: Rule of the extra 9
A service cannot be more available than the intersection
of all its critical dependencies. If your service aims to
offer 99.99 percent availability, then all of your critical
dependencies must be significantly more than 99.99
percent available.

Internally at Google, we use the following rule of thumb:
critical dependencies must offer one additional 9 relative
to your service—in the example case, 99.999 percent
availability—because any service will have several critical
dependencies, as well as its own idiosyncratic problems.
This is called the “rule of the extra 9.”

If you have a critical dependency that does not offer
enough 9s (a relatively common challenge!), you must
employ mitigation to increase the effective availability of
your dependency (e.g., via a capacity cache, failing open,
graceful degradation in the face of errors, and so on).

Implication 2: The math vis-à-vis frequency, detection
time, and recovery time
A service cannot be more available than its incident
frequency multiplied by its detection and recovery time.
For example, three complete outages per year that last
20 minutes each result in a total of 60 minutes of outages.
Even if the service worked perfectly the rest of the year,
99.99 percent availability (no more than 53 minutes of
downtime per year) would not be feasible.

4 of 19web services

acmqueue | march-april 2017 53

This implication is just math, but it is often overlooked,
and can be very inconvenient.

Corollary to implications 1 and 2
If your service is relied upon for an availability level you
cannot deliver, you should make energetic efforts to
correct the situation—either by increasing the availability
level of your service or by adding mitigation as described
earlier. Reducing expectations (i.e., the published
availability) is also an option, and often it is the correct
choice: make it clear to the dependent service that it
should either reengineer its system to compensate for
your service’s availability or reduce its own target. If you
do not correct or address the discrepancy, an outage will
inevitably force the need to correct it.

PRACTICAL APPLICATION
Let’s consider an example service with a target availability
of 99.99 percent and work through the requirements for
both its dependencies and its outage responses.

The numbers
Suppose your 99.99 percent available service has the
following characteristics:
3One major outage and three minor outages of its own
per year. Note that these numbers sound high, but a 99.99
percent availability target implies a 20- to 30-minute
widespread outage and several short partial outages per
year. (The math makes two assumptions: that a failure of a
single shard is not considered a failure of the entire system
from an SLO perspective, and that the overall availability

5 of 19web services

acmqueue | march-april 2017 54

is computed with a weighted sum of regional/shard
availability.)
3Five critical dependencies on other, independent 99.999
percent services.
3Five independent shards, which cannot fail over to one
another.
3All changes are rolled out progressively, one shard at a
time.

The availability math plays out as follows.
Dependency requirements

3The total budget for outages for the year is 0.01 percent
of 525,600 minutes/year, or 53 minutes (based on a 365-
day year, which is the worst-case scenario).
3The budget allocated to outages of critical dependencies
is five independent critical dependencies, with a budget
of 0.001 percent each = 0.005 percent; 0.005 percent of
525,600 minutes/year, or 26 minutes.
3The remaining budget for outages caused by your service,
accounting for outages of critical dependencies, is 53 - 26 =
27 minutes.

Outage response requirements
3Expected number of outages: 4 (1 full outage, 3 outages
affecting a single shard only)
3Aggregate impact of expected outages: (1 x 100 percent)
+ (3 x 20 percent) = 1.6
3Time available to detect and recover from an outage:
27/1.6 = 17 minutes
3Monitoring time allotted to detect and alert for an
outage: 2 minutes
3Time allotted for an on-call responder to start

6 of 19web services

acmqueue | march-april 2017 55

investigating an alert: 5 minutes. (On-call means that
a technical person is carrying a pager that receives an
alert when the service is having an outage, based on a
monitoring system that tracks and reports SLO violations.
Many Google services are supported by an SRE on-call
rotation that fields urgent issues.)
3Remaining time for an effective mitigation: 10 minutes

Implication: Levers to make a service more available
It’s worth looking closely at the numbers just presented
because they highlight a fundamental point: there are
three main levers to make a service more reliable.
3Reduce the frequency of outages—via rollout policy,
testing, design reviews, etc.
3Reduce the scope of the average outage—via sharding,
geographic isolation, graceful degradation, or customer
isolation.
3Reduce the time to recover—via monitoring, one-button
safe actions (for example, rollback or adding emergency
capacity), operational readiness practice, etc.

You can trade among these three levers to make
implementation easier. For example, if a 17-minute MTTR is
difficult to achieve, instead focus your efforts on reducing
the scope of the average outage. Strategies for minimizing
and mitigating critical dependencies are discussed in more
depth later in this article.

CLARIFYING THE “RULE OF THE EXTRA 9” FOR
NESTED DEPENDENCIES
A casual reader might infer that each additional link in
a dependency chain calls for an additional 9, such that

7 of 19web services

acmqueue | march-april 2017 56

second-order dependencies need two extra 9s, third-order
dependencies need three extra 9s, and so on.

This inference is incorrect. It is based on a naive model
of a dependency hierarchy as a tree with constant fan-
out at each level. In such a model, as shown in figure 1,
there are 10 unique first-order dependencies, 100 unique
second-order dependencies, 1,000 unique third-order
dependencies, and so on, leading to a total of 1,111 unique
services even if the architecture is limited to four layers.
A highly available service ecosystem with that many
independent critical dependencies is clearly unrealistic.

A critical dependency can by itself cause a failure of
the entire service (or service shard) no matter where
it appears in the dependency tree. Therefore, if a given
component X appears as a dependency of several first-order
dependencies of a service, X should be counted only once
because its failure will ultimately cause the service to fail no
matter how many intervening services are also affected.

The correct rule is as follows:
3If a service has N unique critical dependencies, then

8 of 19

example

first order

second order

FIGURE 1: Dependency hierarchy: Incorrect model

web services

acmqueue | march-april 2017 57

each one contributes 1/N to the dependency-induced
unavailability of the top-level service, regardless of its
depth in the dependency hierarchy.
3Each dependency should be counted only once, even if
it appears multiple times in the dependency hierarchy
(in other words, count only unique dependencies). For
example, when counting dependencies of Service A in
figure 2, count Service B only once toward the total N.

For example, consider a hypothetical Service A, which
has an error budget of 0.01 percent. The service owners
are willing to spend half that budget on their own bugs and
losses, and half on critical dependencies. If the service has
N such dependencies, each dependency receives 1/Nth of
the remaining error budget. Typical services often have
about 5 to 10 critical dependencies, and therefore each
one can fail only one-tenth or one-twentieth as much as
Service A. Hence, as a rule of thumb, a service’s critical

9 of 19

service A

service B

service C

service B

FIGURE 2: multiple Dependencies in dependency hierarchy

web services

acmqueue | march-april 2017 58

dependencies must have one extra 9 of availability.

ERROR BUDGETS
The concept of error budgets is covered quite thoroughly
in the SRE book,1 but bears mentioning here. Google SRE
uses error budgets to balance reliability and the pace
of innovation. This budget defines the acceptable level
of failure for a service over some period of time (often a
month). An error budget is simply 1 minus a service’s SLO,
so the previously discussed 99.99 percent available service
has a 0.01 percent “budget” for unavailability. As long as
the service hasn’t spent its error budget for the month, the
development team is free (within reason) to launch new
features, updates, and so on.

If the error budget is spent, the service freezes changes
(except for urgent security fixes and changes addressing
what caused the violation in the first place) until either
the service earns back room in the budget, or the month
resets. Many services at Google use sliding windows
for SLOs, so the error budget grows back gradually. For
mature services with an SLO greater than 99.99 percent, a
quarterly rather than monthly budget reset is appropriate,
because the amount of allowable downtime is small.

Error budgets eliminate the structural tension that might
otherwise develop between SRE and product-development
teams by giving them a common, data-driven mechanism for
assessing launch risk. They also give both SRE and product-
development teams a common goal of developing practices
and technology that allow faster innovation and more
launches without “blowing the budget.”

10 of 19web services

acmqueue | march-april 2017 59

STRATEGIES FOR MINIMIZING AND MITIGATING
CRITICAL DEPENDENCIES
Thus far, this article has established what might be called
the “golden rule of component reliability.” This simply
means that any critical component must be 10 times
as reliable as the overall system’s target, so that its
contribution to system unreliability is noise. It follows that
in an ideal world, the aim is to make as many components
as possible noncritical. Doing so means that the

components can adhere to a lower reliability
standard, gaining freedom to innovate and
take risks.

The most basic and obvious strategy to
reduce critical dependencies is to eliminate
SPOFs (single points of failure) whenever
possible. The larger system should be able
to operate acceptably without any given
component that’s not a critical dependency
or SPOF.

In reality, you likely can’t get rid of all
critical dependencies, but you can follow
some best practices around system design
to optimize reliability. While doing so isn’t
always possible, it’s easier and more effective
to achieve system reliability if you plan for
reliability during the design and planning
phases, rather than after the system is live
and impacting actual users.

Conduct architecture/design reviews
When you are contemplating a new system

Definitions
	 Some of the terms
	 and concepts used
throughout this article may not
be familiar to readers who don’t
specialize in operations.
Capacity cache: A cache that
serves precomputed results for
API calls or queries to a service,
generating cost savings in
terms of compute/IO resource
needs by reducing the volume
of client traffic hitting the
underlying service.
Unlike the more typical
performance/latency cache, a
capacity cache is considered
critical to service operation.
A drop in the cache hit rate
or cache ratio below the SLO

3

11 of 19web services

acmqueue | march-april 2017 60

or service, or refactoring or improving an
existing system or service, an architecture
or design review can identify shared
infrastructure and internal vs. external
dependencies.

Shared infrastructure
If your service is using shared
infrastructure—for example, an underlying
database service used by multiple user-
visible products—think about whether or not
that infrastructure is being used correctly.
Be explicit in identifying the owners of shared
infrastructure as additional stakeholders.
Also, beware of overloading your
dependencies—coordinate launches carefully
with the owners of these dependencies.

Internal vs. external dependencies
Sometimes a product or service depends
on factors beyond company control—for
example, code libraries, or services or
data provided by third parties. Identifying
these factors allows you to mitigate the
unpredictability they entail.

Engage in thoughtful system planning
and design
Design your system with the following
principles in mind.

Redundancy and isolation
You can seek to mitigate your reliance upon
a critical dependency by designing that

is considered a capacity loss.
Some capacity caches may even
sacrifice performance (e.g.,
redirecting to remote sites) or
freshness (e.g., CDNs) in order
to meet hit rate SLOs.
Customer isolation: Isolating
customers from each other
may be advantageous so
that the behavior of one
customer doesn’t impact other
customers. For example, you
might isolate customers from
one another based on their
global traffic. When a given
customer sends a surge of
traffic beyond what they’re
provisioned for, you can
start throttling or rejecting
this excess traffic without
impacting traffic from other
customers.
Failing safe/failing open/failing
closed: Strategies for gracefully
tolerating the failure of a
dependency. The “safe” strategy
depends on context: failing
open may be the safe strategy
in some scenarios, while failing
closed may be the safe strategy
in others.

3

12 of 19web services

acmqueue | march-april 2017 61

dependency to have multiple independent
instances. For example, if storing data in one
instance provides 99.9 percent availability
for that data, then storing three copies in
three widely distributed instances provides
a theoretical availability level of 1 - 0.013, or
nine 9s, if instance failures are independent
with zero correlation.

In the real world, the correlation is never
zero (consider network backbone failures
that affect many cells concurrently), so the
actual availability will be nowhere close
to nine 9s but is much higher than three
9s. Also note that if a system or service is
“widely distributed,” geographic separation
is not always a good proxy for uncorrelated
failures. You may be better off using more
than one system in nearby locations than the
same system in distant locations.

Similarly, sending an RPC (remote
procedure call) to one pool of servers in one
cluster may provide 99.9 percent availability
for results, but sending three concurrent
RPCs to three different server pools and
accepting the first response that arrives helps
increase availability to well over three 9s
(see above). This strategy can also reduce tail
latency if the server pools are approximately
equidistant from the RPC sender. (Since
there’s a high cost to sending three RPCs
concurrently, Google often stages the timing

Failing open: When the trigger
normally required to authorize
an action fails, failing open
means to let some action
happen, rather than making a
decision. For example, a building
exit door that normally requires
badge verification “fails
open” to let you exit without
verification during a power
failure.
Failing closed is the opposite
of falling open. For example,
a bank vault door denies all
attempts to unlock it if its
badge reader cannot contact
the access-control database.
Failing safe means whatever
behavior is required to prevent
the system from falling into an
unsafe mode when expected
functionality suddenly doesn’t
work. For example, a given
system might be able to fail
open for a while by serving
cached data, but then fail closed
when that data becomes stale
(perhaps because past a certain
point, the data is no longer
useful).
Failover: A strategy that

3

13 of 19web services

acmqueue | march-april 2017 62

of these calls strategically: most of our
systems wait a fraction of the allotted time
before sending the second RPC, and a bit more
time before sending the third RPC.)

Failover and fallback
Pursue software rollouts and migrations
that fail safe and are automatically isolated
should a problem arise. The basic principle
at work here is that by the time you bring
a human online to trigger a failover, you’ve
likely already exceeded your error budget.

Where concurrency/voting is not possible,
automate failover and fallback. Again, if
the issue needs a human to check what the
problem is, the chances of meeting your SLO
are slim.

Asynchronicity
Design dependencies to be asynchronous
rather than synchronous where possible so
that they don’t accidentally become critical.
If a service waits for an RPC response from
one of its noncritical dependencies and this
dependency has a spike in latency, the spike
will unnecessarily hurt the latency of the
parent service. By making the RPC call to
a noncritical dependency asynchronous,
you can decouple the latency of the parent
service from the latency of the dependency.
While asynchronicity may complicate code
and infrastructure, this tradeoff will be
worthwhile.

3

handles failure of a system
component or service instance
by automatically routing
incoming requests to a different
instance. For example, you
might route database queries
to a replica database, or route
service requests to a replicated
server pool in another
datacenter.
Fallback: A mechanism that
allows a tool or system to
use an alternative source for
serving results when a given
component is unavailable. For
example, a system might fall
back to using an in-memory
cache of previous results. While
the results may be slightly
stale, this behavior is better
than outright failure. This type
of fallback is an example of
graceful degradation.
Geographic isolation: You
can build additional reliability
into your service by isolating
particular geographic zones
to have no dependencies on
each other. For example, if you
separate North America and
Australia into separate serving

14 of 19web services

acmqueue | march-april 2017 63

Capacity planning
Make sure that every dependency is
correctly provisioned. When in doubt,
overprovision if the cost is acceptable.

Configuration
When possible, standardize configuration of
your dependencies to limit inconsistencies
among subsystems and avoid one-off failure/
error modes.

Detection and troubleshooting
Make detecting, troubleshooting, and
diagnosing issues as simple as possible.
Effective monitoring is a crucial component
of being able to detect issues in a timely
fashion. Diagnosing a system with deeply
nested dependencies is difficult. Always have
an answer for mitigating failures that doesn’t
require an operator to investigate deeply.

Fast and reliable rollback
Introducing humans into a mitigation plan
substantially increases the risk of missing a
tight SLO. Build systems that are easy, fast,
and reliable to roll back. As your system
matures and you gain confidence in your
monitoring to detect problems, you can
lower MTTR by engineering the system to
automatically trigger safe rollbacks.

Systematically examine all possible
failure modes
Examine each component and dependency

3

zones, an outage that occurs in
Australia because of a traffic
overload won’t also take out
your service in North America.
Note that geographic isolation
does come at increased cost:
isolating these geographic
zones also means that Australia
cannot borrow spare capacity in
North America.
Graceful degradation: A
service should be “elastic”
and not fail catastrophically
under overload conditions and
spikes—that is, you should make
your applications do something
reasonable even if not all is
right. It is better to give users
limited functionality than an
error page.
Integration testing: The phase
in software testing in which
individual software modules
are combined and tested as
a group to verify that they
function correctly together.
These “parts” may be code
modules, individual applications,
client and server applications
on a network, etc. Integration
testing is usually performed

15 of 19web services

acmqueue | march-april 2017 64

and identify the impact of its failure. Ask
yourself the following questions:
3Can the service continue serving in
degraded mode if one of its dependencies
fails? In other words, design for graceful
degradation.
3How do you deal with unavailability of a
dependency in different scenarios? Upon
startup of the service? During runtime?

Conduct thorough testing
Design and implement a robust testing
environment that ensures each dependency
has its own test coverage, with tests that
specifically address use cases that other
parts of the environment expect. Here are
a few recommended strategies for such
testing:
3Use integration testing to perform fault
injection—verify that your system can survive
failure of any of its dependencies.
3Conduct disaster testing to identify
weaknesses or hidden/unexpected
dependencies. Document follow-up actions
to rectify the flaws you uncover.
3Don’t just load test. Deliberately overload
your system to see how it degrades. One
way or another, your system’s response to
overload will be tested; better to perform
these tests yourself than to leave load
testing to your users.

3

after unit testing and before
final validation testing.
Operational readiness practice:
Exercises designed to ensure
that the team supporting a
service knows how to respond
effectively when an issue
arises, and that the service
is resilient to disruption. For
example, Google performs
disaster-recovery test drills
continuously to make sure that
its services deliver continuous
uptime even if a large-scale
disaster occurs.
Rollout policy: A set of
principles applied during a
service rollout (a deployment
of any sort of software
component or configuration)
to reduce the scope of an
outage in the early stages of
the rollout. For example, a
rollout policy might specify that
rollouts occur progressively,
on a 5/20/100 percent timeline,
so that a rollout proceeds to
a larger portion of customers
only when it passes the first
milestone without problems.
Most problems will manifest

3

16 of 19web services

acmqueue | march-april 2017 65

Plan for the future
Expect changes that come with scale: a
service that begins as a relatively simple
binary on a single machine may grow to have
many obvious and nonobvious dependencies
when deployed at a larger scale. Every
order of magnitude in scale will reveal new
bottlenecks—not just for your service, but
for your dependencies as well. Consider what
happens if your dependencies cannot scale as
fast as you need them to.

Also be aware that system dependencies
evolve over time and that your list of
dependencies may very well grow over time.
When it comes to infrastructure, Google’s
typical design guideline is to build a system
that will scale to 10 times the initial target
load without significant design changes.

CONCLUSION
While readers are likely familiar with
some or many of the concepts this article
covers, assembling this information and
putting it into concrete terms may make the
concepts easier to understand and teach. Its
recommendations are uncomfortable but not
unattainable. A number of Google services
have consistently delivered better than four
9s of availability, not by superhuman effort
or intelligence, but by thorough application
of principles and best practices collected and

3

when the service is exposed to
a small number of customers,
allowing you to minimize the
scope of the damage. Note
that for a rollout policy to be
effective in minimizing damage,
you must have a mechanism in
place for rapid rollback.
Rollback: This is the ability to
revert a set of changes that
have been previously rolled out
(fully or not) to a given service
or system. For example, you can
revert configuration changes,
run a previous version of a binary
that’s known to be good, etc.
Sharding: Splitting a data
structure or service into shards
is a management strategy
based on the principle that
systems built for a single
machine’s worth of resources
don’t scale. Therefore, you can
distribute resources such as
CPU, memory, disk, file handles,
and so on across multiple
machines to create smaller,
faster, more easily managed
parts of a larger whole.
Tail latency: When setting a
target for the latency (response

17 of 19web services

acmqueue | march-april 2017 66

refined over the years (see the SRE book’s
Appendix B: A Collection of Best Practices
for Production Services).

Acknowledgments
Thank you to Ben Lutch, Dave Rensin, Miki
Habryn, Randall Bosetti, and Patrick Bernier
for their input.

References
1. Beyer, B., Jones, C., Petoff, J., Murphy, N. R.
2016. Site Reliability Engineering: How Google
Runs Production Systems. O’Reilly Media;
https://landing.google.com/sre/book.html.

Benjamin Treynor Sloss started programming
at age six and joined Oracle as a software

engineer at age 17. He was a software engineer at Oracle
and Versant, then worked in engineering management at
E.piphany, SEVEN, and finally Google (2003-present). His
current team of approximately 4,200 at Google is responsible
for Site Reliability Engineering, networking, and data centers
worldwide.

Mike Dahlin is a distinguished engineer at Google, where he
has worked on Google’s Cloud Platform since 2013. Prior to
joining Google, he was a professor of computer science at
the University of Texas at Austin, where his research interests
included Internet- and large-scale services, fault tolerance,
operating systems, distributed systems, and storage systems.
He is an ACM Fellow and IEEE Fellow.

time) of a service, it is tempting
to measure the average
latency. The problem with this
approach is that an average
that looks acceptable can
hide a “long tail” of very large
outliers, where some users may
experience terrible response
times. Therefore, the SRE best
practice is to measure and set
targets for 95th- and/or 99th-
percentile latency, with the goal
of reducing this tail latency, not
just average latency.	

3

18 of 19web services

https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html

acmqueue | march-april 2017 67

Vivek Rau is an SRE manager at Google and a founding
member of the Launch Coordination Engineering sub-
team of SRE. Prior to joining Google, he worked at Citicorp

Software, Versant, and E.piphany.
He currently manages various
SRE teams tasked with tracking
and improving the reliability of
Google’s Cloud Platform.

Betsy Beyer is a technical writer
for Google, specializing in Site
Reliability Engineering. She has
previously written documentation
for Google’s Data Center and
Hardware Operations Teams in
Mountain View and across its
globally distributed data centers.
She was formerly a lecturer on
technical writing at Stanford
University.
Copyright © 2017 held by owner/author.

Publication rights licensed to ACM.

Related articles

3 There’s Just No Getting Around It:
You’re Building a Distributed System
Mark Cavage
Building a distributed system requires a
methodical approach to requirements.
http://queue.acm.org/detail.cfm?id=2482856

3 Eventual Consistency Today: Limitations,
Extensions, and Beyond
Peter Bailis and Ali Ghodsi, UC Berkeley
How can applications be built on eventually
consistent infrastructure given no
guarantee of safety?
http://queue.acm.org/detail.cfm?id=2462076

3 A Conversation with Wayne Rosing
David J. Brown
How the Web changes the way developers
build and release software.
http://queue.acm.org/detail.cfm?id=945162

19 of 19

CONTENTS2

web services

http://queue.acm.org/detail.cfm?id=2482856
http://queue.acm.org/detail.cfm?id=2462076
http://queue.acm.org/detail.cfm?id=945162

