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A
s detailed in Site Reliability Engineering: How 
Google Runs Production Systems1 (hereafter 
referred to as the SRE book), Google products 
and services seek high-velocity feature 
development while maintaining aggressive 

SLOs (service-level objectives) for availability and 
responsiveness. An SLO says that the service should 
almost always be up, and the service should almost always 
be fast; SLOs also provide precise numbers to define what 
“almost always” means for a particular service. SLOs are 
based on the following observation:
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The vast majority of software services and systems 
should aim for almost-perfect reliability rather than 
perfect reliability—that is, 99.999 or 99.99 percent 
rather than 100 percent—because users cannot tell 
the difference between a service being 100 percent 
available and less than “perfectly” available. There 
are many other systems in the path between user 
and service (laptop, home WiFi, ISP, the power grid,...), 
and those systems collectively are far less than 
100 percent available. Thus, the marginal difference 
between 99.99 percent and 100 percent gets lost in 
the noise of other unavailability, and the user receives 
no benefit from the enormous effort required to add 
that last fractional percent of availability. Notable 
exceptions to this rule include antilock brake control 
systems and pacemakers!
For a detailed discussion of how SLOs relate to 

SLIs (service-level indicators) and SLAs (service-level 
agreements), see the “Service Level Objectives” chapter 
in the SRE book. That chapter also details how to choose 
metrics that are meaningful for a particular service or 
system, which in turn drives the choice of an appropriate 
SLO for that service. 

This article expands upon the topic of SLOs to focus 
on service dependencies. Specifically, we look at how the 
availability of critical dependencies informs the availability 
of a service, and how to design in order to mitigate and 
minimize critical dependencies. 

Most services offered by Google aim to offer 99.99 
percent (sometimes referred to as the “four 9s”) 
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availability to users. Some services contractually commit 
to a lower figure externally but set a 99.99 percent 
target internally. This more stringent target accounts for 
situations in which users become unhappy with service 
performance well before a contract violation occurs, 
as the number one aim of an SRE team is to keep users 
happy. For many services, a 99.99 percent internal target 
represents the sweet spot that balances cost, complexity, 
and availability. For some services, notably global cloud 
services, the internal target is 99.999 percent.

99.99 PERCENT AVAILABILITY:  
OBSERVATIONS AND IMPLICATIONS
Let’s examine a few key observations and implications of 
designing and operating a 99.99 percent service and then 
move to a practical application.

Observation 1: Sources of outages
Outages originate from two main sources: problems with 
the service itself and problems with the service’s critical 
dependencies. A critical dependency is one that, if it 
malfunctions, causes a corresponding malfunction in the 
service.

Observation 2: The mathematics of availability
Availability is a function of the frequency and the duration 
of outages. It is measured through:
3Outage frequency, or the inverse: MTTF (mean time to 
failure).
3Duration, using MTTR (mean time to repair). Duration is 
defined as it is experienced by users: lasting from the start 
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of a malfunction until normal behavior resumes.
Thus, availability is mathematically defined as MTTF/

(MTTF+MTTR), using appropriate units.

Implication 1: Rule of the extra 9
A service cannot be more available than the intersection 
of all its critical dependencies. If your service aims to 
offer 99.99 percent availability, then all of your critical 
dependencies must be significantly more than 99.99 
percent available. 

Internally at Google, we use the following rule of thumb: 
critical dependencies must offer one additional 9 relative 
to your service—in the example case, 99.999 percent 
availability—because any service will have several critical 
dependencies, as well as its own idiosyncratic problems. 
This is called the “rule of the extra 9.” 

If you have a critical dependency that does not offer 
enough 9s (a relatively common challenge!), you must 
employ mitigation to increase the effective availability of 
your dependency (e.g., via a capacity cache, failing open, 
graceful degradation in the face of errors, and so on).

Implication 2: The math vis-à-vis frequency, detection 
time, and recovery time 
A service cannot be more available than its incident 
frequency multiplied by its detection and recovery time. 
For example, three complete outages per year that last 
20 minutes each result in a total of 60 minutes of outages. 
Even if the service worked perfectly the rest of the year, 
99.99 percent availability (no more than 53 minutes of 
downtime per year) would not be feasible.
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This implication is just math, but it is often overlooked, 
and can be very inconvenient.

Corollary to implications 1 and 2
If your service is relied upon for an availability level you 
cannot deliver, you should make energetic efforts to 
correct the situation—either by increasing the availability 
level of your service or by adding mitigation as described 
earlier. Reducing expectations (i.e., the published 
availability) is also an option, and often it is the correct 
choice: make it clear to the dependent service that it 
should either reengineer its system to compensate for 
your service’s availability or reduce its own target. If you 
do not correct or address the discrepancy, an outage will 
inevitably force the need to correct it.

PRACTICAL APPLICATION
Let’s consider an example service with a target availability 
of 99.99 percent and work through the requirements for 
both its dependencies and its outage responses.

The numbers
Suppose your 99.99 percent available service has the 
following characteristics:
3One major outage and three minor outages of its own 
per year. Note that these numbers sound high, but a 99.99 
percent availability target implies a 20- to 30-minute 
widespread outage and several short partial outages per 
year. (The math makes two assumptions: that a failure of a 
single shard is not considered a failure of the entire system 
from an SLO perspective, and that the overall availability 
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is computed with a weighted sum of regional/shard 
availability.)
3Five critical dependencies on other, independent 99.999 
percent services.
3Five independent shards, which cannot fail over to one 
another.
3All changes are rolled out progressively, one shard at a 
time.

The availability math plays out as follows.
Dependency requirements

3The total budget for outages for the year is 0.01 percent 
of 525,600 minutes/year, or 53 minutes (based on a 365-
day year, which is the worst-case scenario).
3The budget allocated to outages of critical dependencies 
is five independent critical dependencies, with a budget 
of 0.001 percent each = 0.005 percent; 0.005 percent of 
525,600 minutes/year, or 26 minutes.
3The remaining budget for outages caused by your service, 
accounting for outages of critical dependencies, is 53 - 26 = 
27 minutes.

Outage response requirements
3Expected number of outages: 4 (1 full outage, 3 outages 
affecting a single shard only)
3Aggregate impact of expected outages: (1 x 100 percent) 
+ (3 x 20 percent) = 1.6
3Time available to detect and recover from an outage: 
27/1.6 = 17 minutes
3Monitoring time allotted to detect and alert for an 
outage: 2 minutes
3Time allotted for an on-call responder to start 
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investigating an alert: 5 minutes. (On-call means that 
a technical person is carrying a pager that receives an 
alert when the service is having an outage, based on a 
monitoring system that tracks and reports SLO violations. 
Many Google services are supported by an SRE on-call 
rotation that fields urgent issues.)
3Remaining time for an effective mitigation: 10 minutes

Implication: Levers to make a service more available
It’s worth looking closely at the numbers just presented 
because they highlight a fundamental point: there are 
three main levers to make a service more reliable.
3Reduce the frequency of outages—via rollout policy, 
testing, design reviews, etc.
3Reduce the scope of the average outage—via sharding, 
geographic isolation, graceful degradation, or customer 
isolation.
3Reduce the time to recover—via monitoring, one-button 
safe actions (for example, rollback or adding emergency 
capacity), operational readiness practice, etc.

You can trade among these three levers to make 
implementation easier. For example, if a 17-minute MTTR is 
difficult to achieve, instead focus your efforts on reducing 
the scope of the average outage. Strategies for minimizing 
and mitigating critical dependencies are discussed in more 
depth later in this article. 

CLARIFYING THE “RULE OF THE EXTRA 9” FOR  
NESTED DEPENDENCIES
A casual reader might infer that each additional link in 
a dependency chain calls for an additional 9, such that 
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second-order dependencies need two extra 9s, third-order 
dependencies need three extra 9s, and so on. 

This inference is incorrect. It is based on a naive model 
of a dependency hierarchy as a tree with constant fan-
out at each level. In such a model, as shown in figure 1, 
there are 10 unique first-order dependencies, 100 unique 
second-order dependencies, 1,000 unique third-order 
dependencies, and so on, leading to a total of 1,111 unique 
services even if the architecture is limited to four layers. 
A highly available service ecosystem with that many 
independent critical dependencies is clearly unrealistic. 

A critical dependency can by itself cause a failure of 
the entire service (or service shard) no matter where 
it appears in the dependency tree. Therefore, if a given 
component X appears as a dependency of several first-order 
dependencies of a service, X should be counted only once 
because its failure will ultimately cause the service to fail no 
matter how many intervening services are also affected.

The correct rule is as follows:
3If a service has N unique critical dependencies, then 
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each one contributes 1/N to the dependency-induced 
unavailability of the top-level service, regardless of its 
depth in the dependency hierarchy.
3Each dependency should be counted only once, even if 
it appears multiple times in the dependency hierarchy 
(in other words, count only unique dependencies). For 
example, when counting dependencies of Service A in 
figure 2, count Service B only once toward the total N.

For example, consider a hypothetical Service A, which 
has an error budget of 0.01 percent. The service owners 
are willing to spend half that budget on their own bugs and 
losses, and half on critical dependencies. If the service has 
N such dependencies, each dependency receives 1/Nth of 
the remaining error budget. Typical services often have 
about 5 to 10 critical dependencies, and therefore each 
one can fail only one-tenth or one-twentieth as much as 
Service A. Hence, as a rule of thumb, a service’s critical 
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dependencies must have one extra 9 of availability.

ERROR BUDGETS
The concept of error budgets is covered quite thoroughly 
in the SRE book,1 but bears mentioning here. Google SRE 
uses error budgets to balance reliability and the pace 
of innovation. This budget defines the acceptable level 
of failure for a service over some period of time (often a 
month). An error budget is simply 1 minus a service’s SLO, 
so the previously discussed 99.99 percent available service 
has a 0.01 percent “budget” for unavailability. As long as 
the service hasn’t spent its error budget for the month, the 
development team is free (within reason) to launch new 
features, updates, and so on.

If the error budget is spent, the service freezes changes 
(except for urgent security fixes and changes addressing 
what caused the violation in the first place) until either 
the service earns back room in the budget, or the month 
resets. Many services at Google use sliding windows 
for SLOs, so the error budget grows back gradually. For 
mature services with an SLO greater than 99.99 percent, a 
quarterly rather than monthly budget reset is appropriate, 
because the amount of allowable downtime is small.

Error budgets eliminate the structural tension that might 
otherwise develop between SRE and product-development 
teams by giving them a common, data-driven mechanism for 
assessing launch risk. They also give both SRE and product-
development teams a common goal of developing practices 
and technology that allow faster innovation and more 
launches without “blowing the budget.”
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STRATEGIES FOR MINIMIZING AND MITIGATING
CRITICAL DEPENDENCIES
Thus far, this article has established what might be called 
the “golden rule of component reliability.” This simply 
means that any critical component must be 10 times 
as reliable as the overall system’s target, so that its 
contribution to system unreliability is noise. It follows that 
in an ideal world, the aim is to make as many components 
as possible noncritical. Doing so means that the 

components can adhere to a lower reliability 
standard, gaining freedom to innovate and 
take risks. 

The most basic and obvious strategy to 
reduce critical dependencies is to eliminate 
SPOFs (single points of failure) whenever 
possible. The larger system should be able 
to operate acceptably without any given 
component that’s not a critical dependency 
or SPOF. 

In reality, you likely can’t get rid of all 
critical dependencies, but you can follow 
some best practices around system design 
to optimize reliability. While doing so isn’t 
always possible, it’s easier and more effective 
to achieve system reliability if you plan for 
reliability during the design and planning 
phases, rather than after the system is live 
and impacting actual users.

Conduct architecture/design reviews
When you are contemplating a new system 

Definitions 
	 Some of the terms
	 and concepts used 
throughout this article may not 
be familiar to readers who don’t 
specialize in operations. 
Capacity cache: A cache that 
serves precomputed results for 
API calls or queries to a service, 
generating cost savings in 
terms of compute/IO resource 
needs by reducing the volume 
of client traffic hitting the 
underlying service.  
Unlike the more typical 
performance/latency cache, a 
capacity cache is considered 
critical to service operation. 
A drop in the cache hit rate 
or cache ratio below the SLO 

3
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or service, or refactoring or improving an 
existing system or service, an architecture 
or design review can identify shared 
infrastructure and internal vs. external 
dependencies.

Shared infrastructure
If your service is using shared 
infrastructure—for example, an underlying 
database service used by multiple user-
visible products—think about whether or not 
that infrastructure is being used correctly. 
Be explicit in identifying the owners of shared 
infrastructure as additional stakeholders. 
Also, beware of overloading your 
dependencies—coordinate launches carefully 
with the owners of these dependencies.

Internal vs. external dependencies
Sometimes a product or service depends 
on factors beyond company control—for 
example, code libraries, or services or 
data provided by third parties. Identifying 
these factors allows you to mitigate the 
unpredictability they entail.

Engage in thoughtful system planning  
and design
Design your system with the following 
principles in mind.

Redundancy and isolation
You can seek to mitigate your reliance upon 
a critical dependency by designing that 

is considered a capacity loss. 
Some capacity caches may even 
sacrifice performance (e.g., 
redirecting to remote sites) or 
freshness (e.g., CDNs) in order 
to meet hit rate SLOs.
Customer isolation: Isolating 
customers from each other 
may be advantageous so 
that the behavior of one 
customer doesn’t impact other 
customers. For example, you 
might isolate customers from 
one another based on their 
global traffic. When a given 
customer sends a surge of 
traffic beyond what they’re 
provisioned for, you can 
start throttling or rejecting 
this excess traffic without 
impacting traffic from other 
customers.
Failing safe/failing open/failing 
closed: Strategies for gracefully 
tolerating the failure of a 
dependency. The “safe” strategy 
depends on context: failing 
open may be the safe strategy 
in some scenarios, while failing 
closed may be the safe strategy 
in others.

3
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dependency to have multiple independent 
instances. For example, if storing data in one 
instance provides 99.9 percent availability 
for that data, then storing three copies in 
three widely distributed instances provides 
a theoretical availability level of 1 - 0.013, or 
nine 9s, if instance failures are independent 
with zero correlation. 

In the real world, the correlation is never 
zero (consider network backbone failures 
that affect many cells concurrently), so the 
actual availability will be nowhere close 
to nine 9s but is much higher than three 
9s. Also note that if a system or service is 
“widely distributed,” geographic separation 
is not always a good proxy for uncorrelated 
failures. You may be better off using more 
than one system in nearby locations than the 
same system in distant locations.

Similarly, sending an RPC (remote 
procedure call) to one pool of servers in one 
cluster may provide 99.9 percent availability 
for results, but sending three concurrent 
RPCs to three different server pools and 
accepting the first response that arrives helps 
increase availability to well over three 9s 
(see above). This strategy can also reduce tail 
latency if the server pools are approximately 
equidistant from the RPC sender. (Since 
there’s a high cost to sending three RPCs 
concurrently, Google often stages the timing 

Failing open: When the trigger 
normally required to authorize 
an action fails, failing open 
means to let some action 
happen, rather than making a 
decision. For example, a building 
exit door that normally requires 
badge verification “fails 
open” to let you exit without 
verification during a power 
failure.
Failing closed is the opposite 
of falling open. For example, 
a bank vault door denies all 
attempts to unlock it if its 
badge reader cannot contact 
the access-control database.
Failing safe means whatever 
behavior is required to prevent 
the system from falling into an 
unsafe mode when expected 
functionality suddenly doesn’t 
work. For example, a given 
system might be able to fail 
open for a while by serving 
cached data, but then fail closed 
when that data becomes stale 
(perhaps because past a certain 
point, the data is no longer 
useful).
Failover: A strategy that 

3
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of these calls strategically: most of our 
systems wait a fraction of the allotted time 
before sending the second RPC, and a bit more 
time before sending the third RPC.)

Failover and fallback
Pursue software rollouts and migrations 
that fail safe and are automatically isolated 
should a problem arise. The basic principle 
at work here is that by the time you bring 
a human online to trigger a failover, you’ve 
likely already exceeded your error budget.

Where concurrency/voting is not possible, 
automate failover and fallback. Again, if 
the issue needs a human to check what the 
problem is, the chances of meeting your SLO 
are slim.

Asynchronicity
Design dependencies to be asynchronous 
rather than synchronous where possible so 
that they don’t accidentally become critical. 
If a service waits for an RPC response from 
one of its noncritical dependencies and this 
dependency has a spike in latency, the spike 
will unnecessarily hurt the latency of the 
parent service. By making the RPC call to 
a noncritical dependency asynchronous, 
you can decouple the latency of the parent 
service from the latency of the dependency. 
While asynchronicity may complicate code 
and infrastructure, this tradeoff will be 
worthwhile.

3

handles failure of a system 
component or service instance 
by automatically routing 
incoming requests to a different 
instance. For example, you 
might route database queries 
to a replica database, or route 
service requests to a replicated 
server pool in another 
datacenter.
Fallback: A mechanism that 
allows a tool or system to 
use an alternative source for 
serving results when a given 
component is unavailable. For 
example, a system might fall 
back to using an in-memory 
cache of previous results. While 
the results may be slightly 
stale, this behavior is better 
than outright failure. This type 
of fallback is an example of 
graceful degradation.
Geographic isolation: You 
can build additional reliability 
into your service by isolating 
particular geographic zones 
to have no dependencies on 
each other. For example, if you 
separate North America and 
Australia into separate serving 
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Capacity planning
Make sure that every dependency is 
correctly provisioned. When in doubt, 
overprovision if the cost is acceptable.

Configuration
When possible, standardize configuration of 
your dependencies to limit inconsistencies 
among subsystems and avoid one-off failure/
error modes.

Detection and troubleshooting
Make detecting, troubleshooting, and 
diagnosing issues as simple as possible. 
Effective monitoring is a crucial component 
of being able to detect issues in a timely 
fashion. Diagnosing a system with deeply 
nested dependencies is difficult. Always have 
an answer for mitigating failures that doesn’t 
require an operator to investigate deeply.

Fast and reliable rollback
Introducing humans into a mitigation plan 
substantially increases the risk of missing a 
tight SLO. Build systems that are easy, fast, 
and reliable to roll back. As your system 
matures and you gain confidence in your 
monitoring to detect problems, you can 
lower MTTR by engineering the system to 
automatically trigger safe rollbacks.

Systematically examine all possible  
failure modes
Examine each component and dependency 

3

zones, an outage that occurs in 
Australia because of a traffic 
overload won’t also take out 
your service in North America. 
Note that geographic isolation 
does come at increased cost: 
isolating these geographic 
zones also means that Australia 
cannot borrow spare capacity in 
North America.
Graceful degradation: A 
service should be “elastic” 
and not fail catastrophically 
under overload conditions and 
spikes—that is, you should make 
your applications do something 
reasonable even if not all is 
right. It is better to give users 
limited functionality than an 
error page.
Integration testing: The phase 
in software testing in which 
individual software modules 
are combined and tested as 
a group to verify that they 
function correctly together. 
These “parts” may be code 
modules, individual applications, 
client and server applications 
on a network, etc. Integration 
testing is usually performed 
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and identify the impact of its failure. Ask 
yourself the following questions:
3Can the service continue serving in 
degraded mode if one of its dependencies 
fails? In other words, design for graceful 
degradation.
3How do you deal with unavailability of a 
dependency in different scenarios? Upon 
startup of the service? During runtime?

Conduct thorough testing
Design and implement a robust testing 
environment that ensures each dependency 
has its own test coverage, with tests that 
specifically address use cases that other 
parts of the environment expect. Here are 
a few recommended strategies for such 
testing:
3Use integration testing to perform fault 
injection—verify that your system can survive 
failure of any of its dependencies.
3Conduct disaster testing to identify 
weaknesses or hidden/unexpected 
dependencies. Document follow-up actions 
to rectify the flaws you uncover.
3Don’t just load test. Deliberately overload 
your system to see how it degrades. One 
way or another, your system’s response to 
overload will be tested; better to perform 
these tests yourself than to leave load 
testing to your users.

3

after unit testing and before 
final validation testing.
Operational readiness practice: 
Exercises designed to ensure 
that the team supporting a 
service knows how to respond 
effectively when an issue 
arises, and that the service 
is resilient to disruption. For 
example, Google performs 
disaster-recovery test drills 
continuously to make sure that 
its services deliver continuous 
uptime even if a large-scale 
disaster occurs. 
Rollout policy: A set of 
principles applied during a 
service rollout (a deployment 
of any sort of software 
component or configuration) 
to reduce the scope of an 
outage in the early stages of 
the rollout. For example, a 
rollout policy might specify that 
rollouts occur progressively, 
on a 5/20/100 percent timeline, 
so that a rollout proceeds to 
a larger portion of customers 
only when it passes the first 
milestone without problems. 
Most problems will manifest 

3
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Plan for the future
Expect changes that come with scale: a 
service that begins as a relatively simple 
binary on a single machine may grow to have 
many obvious and nonobvious dependencies 
when deployed at a larger scale. Every 
order of magnitude in scale will reveal new 
bottlenecks—not just for your service, but 
for your dependencies as well. Consider what 
happens if your dependencies cannot scale as 
fast as you need them to.

Also be aware that system dependencies 
evolve over time and that your list of 
dependencies may very well grow over time. 
When it comes to infrastructure, Google’s 
typical design guideline is to build a system 
that will scale to 10 times the initial target 
load without significant design changes.

CONCLUSION
While readers are likely familiar with 
some or many of the concepts this article 
covers, assembling this information and 
putting it into concrete terms may make the 
concepts easier to understand and teach. Its 
recommendations are uncomfortable but not 
unattainable. A number of Google services 
have consistently delivered better than four 
9s of availability, not by superhuman effort 
or intelligence, but by thorough application 
of principles and best practices collected and 

3

when the service is exposed to 
a small number of customers, 
allowing you to minimize the 
scope of the damage. Note 
that for a rollout policy to be 
effective in minimizing damage, 
you must have a mechanism in 
place for rapid rollback.
Rollback: This is the ability to 
revert a set of changes that 
have been previously rolled out 
(fully or not) to a given service 
or system. For example, you can 
revert configuration changes, 
run a previous version of a binary 
that’s known to be good, etc. 
Sharding: Splitting a data 
structure or service into shards 
is a management strategy 
based on the principle that 
systems built for a single 
machine’s worth of resources 
don’t scale. Therefore, you can 
distribute resources such as 
CPU, memory, disk, file handles, 
and so on across multiple 
machines to create smaller, 
faster, more easily managed 
parts of a larger whole.
Tail latency: When setting a 
target for the latency (response 
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refined over the years (see the SRE book’s 
Appendix B: A Collection of Best Practices 
for Production Services).
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