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 Abstract 

 Over the years, the mobile devices landscape has grown to 
 hundreds of OEMs and tens of thousands of device models. This 
 landscape has made it difficult to develop quality mobile 
 applications that are user-friendly, stable, and performant.  To 
 accelerate mobile development and to help developers build better 
 performing, more stable apps,  Google built a large  Mobile Device 
 Farm that allows developers to test their mobile applications. In 
 this document we share lessons learned while building the Mobile 
 Device Farm, including pitfalls and successes, to help the mobile 
 development community leverage our experience and build better 
 mobile apps. While we describe both Android and iOS, we 
 primarily focus on the Android Open Source Project (AOSP) 
 because it is highly diverse and dynamic.  We've scaled  from 10s 
 of devices to 10s of thousands, and from hundreds of tests a day 
 to millions. 
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 Introduction 
 Building usable, stable, and performant mobile applications is becoming increasingly difficult. 
 Currently, there are more than 50K Android device models (Fig. 1) produced by 5K OEMs, 
 which are using 750 distinct systems on a chip. These devices have different form factors, 
 screen sizes, and resolutions. 
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 Fig. 1 - Top 10 Android models 2H2021 by AppBrain users (Source:  AppBrain  ,  Nov 2021  ) 

 To distinguish themselves in the market, each original equipment manufacturer (OEM) 
 customizes user interface elements and introduces their own libraries to control device behavior, 
 like operating system (OS) and app updates (Fig 2). 

https://www.appbrain.com/stats/top-android-phones
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 Fig. 2 -  Market share per Android phone manufacturer 2H2021 by AppBrain users (  Source: 
 AppBrain  ,  Nov 2021  ) 

 Android itself has a long tail of OS versions (Fig 3). The number of Android device models, 
 distinct systems on a chip, and long tail of Android versions make the mobile landscape diverse 
 and difficult to understand. The customization and diversity of Android helps Google serve 3 
 billion mobile users and a huge variety of needs, but the complexity of the Android ecosystem 
 also makes it hard to build quality applications for user devices. 

 Fig. 3 - Android versions distribution 2H2021 (Source  :  Android Studio) 

 App developers face a difficult choice. They can test mobile apps on a limited number of devices 
 and hope that their apps work on the untested devices, or they can test on many devices to 
 cover most of their user base at great expense. Most developers try to find the middle ground, 
 striking a balance between coverage and cost. 

 To scale internal mobile development and to help external developers build better mobile apps 
 through improvements to AOSP, Google built the Mobile Device Farm. In this document, we 
 discuss our journey to improving the mobile development landscape, including achievements 
 like building electromagnetic pulse-resistant racks and improving AOSP to better integrate 
 Android devices into testing frameworks. 

https://www.appbrain.com/stats/top-manufacturers
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 Architecture overview 
 There are several different architectures for testing mobile applications on physical devices, the 
 most typical of which is illustrated in Fig. 4. In this common architecture, a testing framework like 
 Appium or EarlGrey is run on a host machine. The mobile device is connected to the host over a 
 USB cable. The USB cable provides the power to the device and enables data communication 
 between the host machine and the device to drive the test. To gain access to the internet, the 
 mobile device is connected to a Wi-Fi Access Point, which in turn is connected to the internet. 

 Fig. 4 - Typical mobile test architecture. 

 This typical mobile test architecture is a simple design, which many real-world implementations 
 augment with additional components. The host machine is usually connected to multiple 
 devices. Since the host machine's primary role is to bridge I/O and coordinate the tests, a single 
 low-power host machine can usually support many simultaneous tests. An external multiport 
 USB hub facilitates this connection between a host machine and its mobile devices. The hub 
 passes USB data but must also provide sufficient power to charge all connected devices. As the 
 number of devices increases, more Wi-Fi access points must be deployed to spread the Wi-Fi 
 traffic across the devices. However, as the number of devices and access points grows, so does 
 Wi-Fi interference. To reduce interference, it is necessary to segment the devices and access 
 points in  Faraday Cages  . 

 We will look at each of these architecture components and their complexity in this document. 

 Our journey 
 In 2015, the earliest version of the Google Device Farm had fewer than 1,000 devices 
 connected to pre-built 30-port USB hubs and consumer-grade access points. As the number of 
 devices increased, we found that devices were unable to remain connected to the Wi-Fi due to 
 radio channel saturation. That first scaling bottleneck was the beginning of a multi-year journey 
 to build a lab with tens of thousands of devices capable of running over one million tests a day. 
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 To fundamentally improve our Wi-Fi design, we brought the network engineering team on board 
 to build a reliable enterprise Wi-Fi network. This network was the first production Ultra 
 High-Density (UHD) Wi-Fi network at Google built on Aruba Access Points with 24x7 NOC 
 (Network Operations Center). For more information, see  Wi-Fi Network  . 

 After implementing the production Wi-Fi network, we grew the Mobile Device Farm almost 3x 
 before the next scaling bottleneck became evident. Unfortunately, even with the high-quality 
 Wi-Fi network, we had so many devices in the data center that devices started experiencing 
 issues with Wi-Fi interference between devices. We had a choice to expand to more locations, 
 which wouldn't be scalable in the long term, or to control Wi-Fi interference. between devices. 
 We chose to control Wi-Fi interference. 

 Fig. 5 - Unshielded device rack. 

 The best-known method for containing Radio Frequencies (RF) in an enclosed space is 
 Faraday Cages. Unfortunately, Faraday Cages, which are often spec’d to federal standards and 
 are used to shield equipment from electromagnetic pulse, are expensive and bulky. Moreover, 
 we didn’t require the complete isolation that Faraday Cages provide. Instead, we only needed a 
 degree of RF signal attenuation sufficient to prevent devices in adjacent racks from significantly 
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 interfering with Wi-Fi. We also needed the rack to fit the standard data center rack footprint, 
 while ensuring sufficient air flow for cooling capability at a reasonable price. We weren't able to 
 find a solution available on the market, so we decided to design and build it ourselves. For more 
 information, see  Electromagnetic pulse-resistant rack  . 

 Working with the Google Technical Infrastructure Platforms team and external vendors, we built 
 the electromagnetic pulse-resistant rack to sufficiently attenuate RF signals, and we placed 
 three access points (APs) in each rack. This approach isolated Wi-Fi and other RF signals, like 
 Bluetooth and cellular signals within each rack, eliminating network scaling limitations and 
 allowing us to direct our attention to resolving other challenges, like device power needs. 

 As we have observed over the years, mobile devices are becoming increasingly power hungry. 
 Devices are typically connected to USB hubs, which supply power. Device power needs 
 increase the requirements for the USB hubs to deliver adequate power to each individual 
 device. If a device runs a CPU/GPU-intensive application, the device might draw too much 
 power from an individual USB port. Power consumption increases with each new device 
 connected to the hub. If a device doesn't receive consistent, sufficient power, eventually the 
 internal device battery drains and the device goes offline. We tried, but could not find, any USB 
 hubs that met our needs. We then decided to build a custom hub to our specifications in 
 partnership with the Google Technical Infrastructure Platforms team and external vendors. For 
 more information, see  USB hubs  . 

 When mobile devices are used for production testing, they are connected to a USB hub, which 
 continuously provides power to the device. Continuous charging causes the battery to always 
 remain 100% charged, which eventually leads to overcharge and battery swelling. Overheating 
 is another cause of battery swelling. App tests on devices are typically run continuously, which is 
 not a typical consumer workload. Continuous tests cause devices to overheat, which in turn 
 causes the batteries to swell. We discuss this in  Extend device life and prevent fire hazards  . 

 Another issue is  t  he software environment on the device.  Device stability and reliability are just 
 as essential as the reliable and performant infrastructure. Consider, for example, that device 
 storage needs to be cleaned after each use to support repeatable tests and to ensure that the 
 artifacts do not cross-contaminate tests or leak information. Mobile devices are consumer-grade 
 and aren't designed to be used for a production-grade Continuous Integration/Continuous 
 Deployment (CI/CD) workload. These constraints created several challenges, which we discuss 
 in  AOSP  . 

 This is the list of the challenges and our solutions so far: 

 Problem  Solution 
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 Radio Frequency (Wi-Fi,  Bluetooth  ,...) 
 interference between thousands of devices 
 and Access Points 

 - Ultra High Density (UHD) Wi-Fi network 
 - Electromagnetic pulse-resistant rack 

 USB hubs powering a device don’t have 
 enough power and data connectivity stability 

 - Custom, high-power USB hub on the latest 
 Infineon USB chip 

 Device overcharging and overheating cause 
 the battery to swell, creating a fire hazard 

 - Visual device inspection and audit 
 - Heat sinks attracted to the devices 
 - Charging device battery to max 80% 

 Reliably clean up devices (erase all data, 
 packages, and artifacts) between test runs 

   - Factory-resetting devices with the Test 
 Harness Mode 
 - Custom device re-imaging tools 
 - Deleting data and packages 

 Android Debug Bridge (  adb) stability and 
 reliability 

 - System  adb  watchdog 

 The infrastructure for mobile device testing is continuously evolving to achieve better reliability 
 and total cost of ownership (TCO). We plan to implement several new features to further 
 improve the AOSP, which we will share in future publications. 

 Wi-Fi network 
 A stable and well-performing Wi-Fi network is a key component of any mobile device farm 
 because it is the main way in which mobile devices communicate and access the internet. There 
 are other ways to enable internet access for devices, like reverse tethering, but the known 
 alternatives didn't meet our requirements. For example, you can  reverse tether  internet traffic 
 from a device through the USB connection to the host machine, and from the host machine to 
 the internet. By sending all traffic through a reverse tether, we can eliminate the Wi-Fi 
 connection entirely and increase internet connection stability. While reverse tethering can be 
 used for a subset of applications, it has drawbacks that are outside the scope of this document. 

 To address the need for a stable, well-performing Wi-Fi network, we partnered with Google 
 Enterprise Network (GEN) Wi-Fi experts to build an Ultra High-Density (UHD) production Wi-Fi 
 network. As opposed to a traditional high-density Wi-Fi network where humans use mobile and 
 computing devices in large venues, an ultra high-density Wi-Fi network does not assume human 
 interaction. UHD Wi-Fi networks are also effective because Wi-Fi clients operate in a much 
 smaller space, with racked shelves in data centers. 

 The 802.11 standard supports the use of different RF ranges, including, but not limited to, 2.4 
 GHz, 5 GHz, and 6 GHz. The UHD Wi-Fi network was designed using 802.11ac-capable 
 wireless access points to support 802.11n and 802.11ac mobile devices. These devices could 
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 also be dual-band-capable (2.4GHz/5GHz) or single-band-capable, typically operating only on 
 2.4 GHz. 

 One of the biggest challenges of building UHD Wi-Fi networks is radio frequency (RF) spectrum 
 availability, which can vary based on country-specific regulations. As illustrated in Fig. 6, the 
 2.4-GHz spectrum allows for three non-overlapping 22 MHz-wide channels, while the 5-GHz 
 spectrum supports up to 24 non-overlapping, 20 MHz-wide channels. The re-use of channels 
 within the same RF space results in  co-channel interference  (CCI)  and the eventual 
 performance degradation of a Wi-Fi network due to contention in the RF medium. For more 
 information, see section 17.3.10.6 CCA requirements in the  802.11-2020 standard  (4). 
 Therefore, in an ideal situation, Wi-Fi networks should be implemented with little to no channel 
 re-use. 

 Fig. 6 - 2.4- and 5-GHz channels. Source:  @KeithPParsons  (WLAN Pros)  . 

 Mobile device farm deployments consist of many racks housing mobile devices in close 
 proximity to each other. In such tight spaces, it is unavoidable to re-use channels in the 2.4-GHz 
 and 5-GHz range. Channels are becoming even more saturated, especially in countries where 
 part of the spectrum cannot be used. For example, the UNII-3 band is  not available for use in 
 Japan  . 

https://en.wikipedia.org/wiki/Co-channel_interference
https://standards.ieee.org/standard/802_11-2016.html
https://twitter.com/keithrparsons/status/956766980429660161
https://en.wikipedia.org/wiki/List_of_WLAN_channels#5_GHz_(802.11a/h/j/n/ac/ax)
https://en.wikipedia.org/wiki/List_of_WLAN_channels#5_GHz_(802.11a/h/j/n/ac/ax)
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 Today, as seen in Fig. 7, UHD Wi-Fi deployments with a rack include 3 802.11ac dual-radio 
 access points installed inside the back door of the rack. 

 Fig. 7 - UHD Access Points mounting 

 Given the proximity of APs within a rack and the proximity of the racks to each other, APs are 
 installed with 25dB RF attenuators and omni-directional dipole antennas to reduce the signal 
 strength to the optimal range. Each set of three APs per rack has its 2.4-GHz radios configured 
 on a static non-overlapping channel (1, 6, or 11).  To further reduce the potential of  adjacent 
 channel interference  , the 5-GHz radios on a rack’s  APs are configured using 20-MHz channels 
 with at least ~80 MHz separation. Fig. 8 illustrates an example of this approach. 

http://revolutionwifi.blogspot.com/2014/08/80211ac-adjacent-channel-interference.html
http://revolutionwifi.blogspot.com/2014/08/80211ac-adjacent-channel-interference.html
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 Fig. 8 - 20 MHz / 40 MHz / 80 MHz Spectral Mask 

 An example of UHD AP deployment and a static channel plan is shown in Fig. 9. 

 Fig. 9 - Sample AP deployment and channel plan 

 Currently, we are working to support both  Wi-Fi 6  and  Wi-Fi 6E  mobile devices using the 
 vendor-neutral  OpenConfig architecture  . This architecture  will allow not only for higher 
 performance, but it will also support expanded RF spectrum availability in the 6-GHz band and 
 richer streaming telemetry data that can help validate network design and performance. 

 Electromagnetic pulse-resistant rack 
 In the early stages of development, our Mobile Device Farm had all devices and Wi-Fi access 
 points deployed in the open racks (Fig. 5). In this scenario, the devices could see and talk to 
 each other. 

https://en.wikipedia.org/wiki/Wi-Fi_6
https://www.wi-fi.org/download.php?file=/sites/default/files/private/Wi-Fi_6E_Highlights_202101.pdf
https://openconfig.net/
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 We partnered with the Google Technical Infrastructure Platforms team to better understand how 
 to achieve our goal to get –82-dBm RF attenuation between racks, with minimal cost. As per 
 section 17.3.10.6 of the  IEEE-802.11-2016 standard  ,  our goal was to reduce sensitivity of the 
 Wi-Fi devices. This goal proved adequate to prevent devices and APs on the adjacent rack from 
 interfering with each other. Over the course of six months, we built several prototypes to 
 measure the effectiveness of different designs and to understand the constraints. 

 To design a shielded rack with high shielding performance, we considered the following: 

 Consideration  Description 

 Mechanical structure design  No slot/seams on the main frame of the rack 
 except for doors, perforation panel, and cable 
 penetration. 

 Perforation design  Should be based on the shielding 
 performance: Honeycomb or other perforation 
 panel and the size of the perforation cells. 

 The gasket design for the doors and other 
 areas 

 The gasket thickness and the compression 
 ratio should be carefully designed to meet the 
 functional requirement. Gasket selection is 
 important for the shielding performance, 
 especially for the doors. 

 Cable penetration design  The RF field should not be leaked out or 
 coupled in through the cables. The power 
 filters should be added for power cables to 
 attenuate the RF field coupled by a power 
 cable. For signaling cables, optical fiber 
 should be used and the penetration structure 
 should be a waveguide opening instead of a 
 planar opening, to prevent RF leaks. 
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 Fig. 10 - Shielded racks experiments 

 We tested each design in the  anechoic chamber  (Fig.  11) and used the data to guide our 
 decisions. Surprisingly, it was incredibly difficult to sufficiently attenuate RF in the rack. In 
 particular, all parts of the rack had to have excellent electrical contact and shouldn't have any 
 dielectrics, like paint, in between them. Dielectrics can easily conduct RF signals regardless of 
 how tightly the parts are connected. The radio waves can travel on the surface of the paint or 
 other dielectric and penetrate inside the rack, compromising RF-shielding. 

https://en.wikipedia.org/wiki/Anechoic_chamber


 Mobile application on-device testing at Google scale 

 Fig. 11 - Testing the rack in the anechoic chamber. 

 In Fig. 11, we give an example to show the difficulty in preventing RF signals from penetrating 
 the rack. Figs. 12 and 13 show  Wi-Fi channel numbers  for the 2.4-GHz  band on the X-axis, and 
 the RF signal strength in decibels per milliwatt (dBm) on the Y-axis. The RF signal strength is 
 measured inside the rack, while the RF radiation source is located outside. 

 Fig. 12 shows nearly ideal RF attenuation inside the rack, which is mostly below -90 dBm. This 
 attenuation met our objective, because the Wi-Fi APs and devices sensitivity threshold is –82 
 dBm. 

 Fig. 12 - Very good RF attenuation. The X-axis represents channel numbers for the 2.4-GHz 
 Wi-Fi band. The Y-axis represents the signal strength in dBm. 

https://en.wikipedia.org/wiki/List_of_WLAN_channels#5_GHz_.28802.11a.2Fh.2Fj.2Fn.2Fac.29
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 Fig. 13 shows RF signal strength inside the same rack with a single copper wire going into the 
 rack. The RF signal easily penetrates the rack over a single copper wire, compromising RF 
 shielding. 

 Fig. 13 - RF signal leaking into the rack over a single copper wire. The X-axis represents 
 channel numbers for the 2.4-GHz Wi-Fi band. The Y-axis represents the signal strength in dBm. 

 After the initial rack design, we tested it in the anechoic chamber for RF leaks to iterate and 
 continue improving the design. Fig. 14 shows where we added copper tape to prevent the 
 leakage of 5-GHz Wi-Fi signal coming from the gasket of the door on the latch side. Copper 
 tape in that area improved the shielding by ~10 dB. 
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 Fig. 14 - The leakage for 5 GHz is coming from the gasket of the door on the latch side. Copper 
 tape in that area improved the shielding by ~10 dB. 

 After many experiments and failed attempts, we developed the final design and manufactured 
 the rack for data center deployment, as shown in Fig. 15. 
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 Fig. 15 - Electromagnetic pulse-resistant rack deployed in the Google production data centers. 

 To further build on our success, we worked with a second vendor to design an alternative rack, 
 which is  commercially available  . 

 USB hubs 
 As we observed, mobile devices are becoming more power hungry. In the typical test setup, 
 various devices are connected to a single USB hub, which provides data connection and power 
 to the devices. 

 As our Mobile Device Farm evolved, we started looking for more powerful, high bandwidth and 
 better RF-shielded USB hubs. The need for RF-shielding USB hubs is not a widely known issue 
 and would benefit from further clarification. USB 3.0 operates on the same frequency as 
 2.4-GHz ISM band Wi-Fi, Bluetooth, and some other wireless device protocols, and it creates 
 massive radio interference between the devices. For more information, see  USB 3.0* Radio 
 Frequency Interference Impact on 2.4-GHz Wireless Devices  . Fig. 16 shows a massive RF leak 
 from the USB 3.0 connector, which is right in the middle of the 2.4-GHz Wi-Fi band. 

https://www.delltechnologies.com/en-us/blog/dell-emc-radio-frequency-shielding-mobile-app-development/#tab0=0&tab1=0
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 Fig. 16 - Massive USB 3.0 RF leak in the middle of the 2.4-GHz ISM band. The X-axis 
 represents channel numbers for the 2.4-GHz Wi-Fi band. The Y-axis represents the signal 

 strength in dB. 

 We needed to find a new USB hub that had sufficient RF shielding to prevent RF leakage from 
 the USB ports. We combined the RF shielding requirement with the rest of our requirements for 
 the USB hub: 

 ●  40 USB ports per hub 
 ●  15 W per port 
 ●  BC 1.1, 1.2 ( Back Compatible) 
 ●  USB 2.0, 3.0, 3.2 Gen x2, 4.2 
 ●  Apple 1A/2.1A 
 ●  USB Power Delivery (PD) Rev. 1 Profile 1 (5V 2A ) 
 ●  USB 3.1 Rev 1 data support 
 ●  10Gbps uplink 

 We did not find a market solution that satisfied these requirements. Once again, we partnered 
 with the Google Technical Infrastructure Platforms team and two external partners to design and 
 build the prototype, including custom firmware. We focused on USB hub manageability, RF 
 shielding, and data center safety. Recently, we completed the development of our new, 
 advanced USB Hub, which is being rolled out to our infrastructure. 

 We are continuously looking for alternative, commercially available solutions. Since we started 
 the project, there are new USB Hubs emerging on the market, but none of these product 
 offerings fully satisfy our requirements. 
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 Extend device life and prevent fire hazards 

 Battery-swelling solution 
 When mobile devices are used for production testing they are connected to a USB hub, which 
 continuously provides power to the device. Continuous charging causes the battery to always 
 remain 100% charged, which can eventually lead to overcharge and battery swelling. For more 
 information, see  Insight into the gassing problem  of Li-ion batteries  . 

 Swelling can damage the lithium-ion battery, causing it to overheat and burst into flames. Our 
 Mobile Device Farm runs tens of thousands of devices in production, and the thermal runaway 
 event of even a single device has the potential to cause a catastrophic fire hazard. 

 Fig. 17 - Visual inspection of the devices with swollen batteries, and a mobile device with 
 swollen battery. 

 To prevent fire risk due to swollen batteries, we implemented the following procedural, 
 mechanical, and software measures: 

 ●  We inspect all devices weekly and destroy all devices with swollen batteries. 
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 ●  We position devices with sufficient gaps between them to create adequate separation to 
 prevent a fire from jumping to adjacent devices. 

 ●  We ensure that our racks are rated to contain lithium-ion thermal runaway inside the 
 rack, which prevents fire from spreading to other racks in the data center in a worst-case 
 scenario. 

 Heat solution 
 Overheating is another cause of battery swelling. App tests on devices are typically run 
 continually, which is not a typical consumer workload. Continuous tests cause devices to 
 overheat, which in turn causes the batteries to swell. We continuously monitor device 
 temperature and prevent tests from running if the internal device temperature exceeds 45°C. 

 We’ve also started experimenting with high heat-conductive ceramic heat sinks attached to 
 mobile devices for more efficient heat dissipation. We use ceramic heat sinks instead of copper 
 or aluminum to prevent the heat sinks from interfering with RF signals, like Wi-Fi and Bluetooth. 
 So far, we've observed promising results. 

 Android Open Source Project (AOSP) 
 We've worked with our Android platform colleagues on AOSP features, including: 

 ●  Reliably reset the device to the known initial state. 
 ●  Remove any artifacts from previous tests from the device. 
 ●  Keep the device-host machine connection available at all times, even after the devices 

 reset. 
 ●  Prevent any setup wizard dialogs after the device reset. 

 Device resets and cleanup 
 The key to reliably and consistently running tests on physical devices is the ability to reset the 
 devices to a known initial state by removing data, configuration, or artifacts left over from 
 previous tests. The ability to reset the devices to a known initial state is essential for test 
 repeatability and to prevent data leaks between the tests. 

 Over the years, we implemented several solutions to reset devices, including device flashing 
 and device cleanup, which we discuss in  Solutions  for device resetting  . 

 When resetting a device, we have a few requirements. First, data must be cleaned up between 
 tests. Our device lab runs as a multi-tenant environment, so it is essential to wipe out all data. 

 Our second requirement is that there is no setup wizard. Setup wizards vary between OEMs, 
 increasing navigation complexity. To support a seamless device reset, we sought to skip the 
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 setup wizard and other first-time setup screens that occur when factory-resetting the device, like 
 keyboard dialogs that appear when a user first sets up a device. 

 Our third and most critical requirement is that we must retain the ability to control the device 
 over USB. If we lose  adb  access to the device, we  have to manually re-authorize access to the 
 device. Considering that we have thousands of devices, manual reauthorization would require 
 considerable effort. The conclusion is that we must be able to access the device using  adb  or 
 fastboot  . 

 adb  lets us interact with a device as a standard end  user, giving us our sole way of executing 
 tests on a device.  adb  operates on keys stored on  a connected computer, which creates an 
 RSA public/private key pair and uses the key pairs to authorize the device each time it 
 connects. Typically, USB debugging requires the user to authorize the connection in an 
 on-screen dialog. When the connection is authorized, a public key corresponding to the host is 
 stored on the device. It is essential to retain this key between device resets or else the  adb 
 connection is lost. 

 fastboot  is the command-line utility for interacting  with the Android bootloader. Its functionality 
 includes installation of images, wiping data, and reboot. Most features of  fastboot  , however, 
 require an unlocked bootloader. Many OEMs and carriers do not let users unlock their 
 bootloaders. We primarily use  fastboot  to install  new images and to reboot devices that fall 
 into  fastboot  for some reason. 

 Our last requirement is that there is no human interaction with a device. If a device falls into a 
 bad state, we need to be able to fix the issue programmatically. Sending a human to find a 
 phone in a data center and to click a button doesn’t scale well. 

 Solutions for device resetting 

 Mobile Device Lab started implementation of the device resetting solutions by building two 
 methods to reset devices, device flashing, and device cleanup. 

 Device flashing works by creating a golden snapshot of the device and restoring it after each 
 test. A snapshot is created by a binary backup of the data for each partition on the device. 
 Device flashing requires that we are able to unlock the bootloader and install a custom recovery 
 image. A recovery image is the part of the operating system that does the factory reset and has 
 access to all files on the device. A custom recovery image is typically made by the Android 
 community for popular devices  with unlocked bootloaders,  or by unlocking the bootloader. A 
 custom recovery image gives us root access to all files on the device and the ability to back up 
 and restore files. 

https://source.android.com/setup/build/running
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 However, finding a device that has an unlockable bootloader and a custom recovery image is 
 hard, and it is getting harder as Android’s security improves. Device flashing was a great 
 solution for a time, and for Google devices that have unlockable bootloaders, but device flashing 
 takes significant research and can be difficult to implement. 

 In response to device flashing limitations, we created a tool called  device cleanup  . We 
 attempted to wipe all apps’ data, delete all  /sdcard  files, and reset all settings except for the 
 ones we could change without root access. However, the device cleanup process left artifacts 
 behind, and attempting to erase data from the device while it was running did not always work, 
 so we concluded that this approach was not reliable. 

 We needed a method for resetting devices that worked as reliably as device flashing, with the 
 flexibility of device cleanup. Our first thought was, “How can we build in some functionality like 
 device flashing?” However, making OEMs standardize on a solution for recovery images would 
 be challenging, and there are security implications to forcing all app data to be backed up. 

   We wanted the simplest solution that would solve our needs. We did not want to mandate that 
 each OEM use  fastboot  or our recovery image, or even  that OEMs support our features from 
 a recovery image. 

 Test Harness Mode  implementation was the next logical  step in our evolution, a reset method 
 that is built into all Android Q and newer devices. 

 Test Harness Mode reset works entirely on pre-existing features that are mandated on all 
 Android devices. To leverage Test Harness Mode, OEMs only need to correctly implement the 
 Android  Compatibility Definition Document  (CDD) requirements.  Test Harness Mode piggybacks 
 on the Factory Reset Protection method of persisting data between factory resets to store the 
 adb  keys (the persistent data block). Test Harness  Mode also uses a standard factory reset to 
 wipe data from the device. 

 When a device is booted up immediately after a Test Harness Mode reset, the  testharness 
 system service reads persistent data starting before the factory reset.  testharness  uses the 
 persistent data to set up the device, bypassing the setup wizard and writing the  adb  keys to the 
 path where  adb  looks for them. 

 ADB stability 
 We also worked with the  adb  team to add a  watchdog  for the  adb  connection. If the device does 
 not have an active  adb  connection for ten minutes  – for example, if the device had an issue 
 loading USB drivers – the device automatically kicks itself back into the bootloader. The 
 watchdog lets us restore the connectivity to the device and interact with it using  fastboot  . 

https://source.android.com/compatibility/cts/harness
https://source.android.com/compatibility/cdd
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 We have plans to make the AOSP more usable to groups running device labs, and we will 
 continue to share these enhancements in the future. 

 Battery charge management 
 When the device is continuously connected to the power supply or is too hot, the device 
 eventually causes battery degradation and swelling. It also reduces battery life and can 
 potentially create a fire hazard. 

 Android implemented a new way of battery management, called Battery Defender, to improve 
 battery life. When a device is too hot for a period of time or is continuously connected to the 
 power for more than a specified length of time, Battery Defender limits the battery charge to 
 80% of capacity. The introduction of Battery Defender is expected to increase battery life and 
 reduce the possibility of battery swelling. 

 Conclusion 
 Mobile Device Farm went a long way towards making mobile device testing both scalable and 
 reliable. We scaled the Mobile Device Farm to hundreds of thousands of devices from top 
 OEMs, and we currently run many millions of tests every month. We learned a lot along the way, 
 unlocking the possibility of unlimited scale. We plan to continue this work, and we will share 
 more findings in the future. 

 Call to action 
 ●  Follow the Firebase blog at  firebase.googleblog.com  for future updates on our work. 
 ●  Contact us at  mobile-device-farm@google.com  . 

 Further reading 
 ●  Firebase Test Lab 
 ●  Play Pre-Launch Report 
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