
24    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

SECURITYBeyondCorp
Building a Healthy Fleet

H U N T E R K I N G , M I C H A E L J A N O S K O , B E T S Y B E Y E R , A N D M A X S A L T O N S T A L L

Hunter King is an Engineer on
the Security Operations team at
Google. Currently, he focuses on
endpoint integrity and identity.
Hunter has also been a Lead

Engineer in the BeyondCorp effort for the last
seven years. Prior to Google, he was a Security
Researcher at SecureWorks. He enjoys hiking,
tinkering, and making lights blink. Hunter holds
a bachelor’s degree in computer science from
Colgate University. hunterking@google.com

Michael Janosko is a Security
Engineer Manager in Google’s
Enterprise Infrastructure
Protection group, where he
helps secure the way Google

works. On weekends, he enjoys a good cup
of coffee while building forts with his son.
janosko@google.com

Betsy Beyer is a Technical
Writer for Google Site Reliability
Engineering in NYC, and
the editor of Site Reliability
Engineering: How Google Runs

Production Systems and the forthcoming Site
Reliability Workbook. She has previously written
documentation for Google Datacenter and
Hardware Operations teams.
bbeyer@google.com

Max Saltonstall is a Technical
Director in the Google Cloud
Office of the CTO in New
York. Since joining Google in
2011, he has worked on video

products, internal change management, IT
externalization, and coding puzzles. He has a
degree in computer science and psychology
from Yale. maxsaltonstall@google.com

A ny security capability is inherently only as secure as the other sys-
tems it trusts. The BeyondCorp project helped Google clearly define
and make access decisions around the platforms we trust, shifting

our security strategy from protecting services to protecting trusted plat-
forms. Previous BeyondCorp articles discussed the tooling Google uses to
confidently ascertain the provenance of a device, but we have not yet covered
the mechanics behind how we trust these devices.

Our focus on platform security is supported by a wealth of evidence [1] in the industry that
end users are the number one target of a wide range of attacks that also vary in sophistica-
tion. Attackers can devise quite advanced social engineering attacks as mechanisms to
deliver malicious code onto devices, where they can then exploit the large attack surface of
modern operating systems. Advanced attackers aim to reuse trust inherent in the device, the
credentials on the device, or the trust granted to the user to further exploit systems.

To successfully prevent compromise in environments with a constant mix of trusted (enter-
prise web apps, corporate credentials) and untrusted content (external software repos, social
media, personal email, etc.), the platforms themselves must have a layered and consistent set
of controls. As a result, the platforms that make up the fleet are the new perimeter.

Building upon Previous Work
The work we describe in this article builds upon the work described in the white paper “Fleet
Management at Scale” [2] and the previous five BeyondCorp articles [3]. Building on this
foundation, our team aimed to further strengthen the BeyondCorp model by:

1.	 Defining what a healthy fleet looks like from a common control perspective

2.	 Ensuring that these controls are consistently and comprehensively applied, measured,
and enforced

3.	 Using these measurements to drive continuous improvement in our control set

Defining the Threats against Your Environment
As with any defensive security effort, it’s important to first define the threats against the
environment you’re trying to protect. When creating this list of threats, it’s helpful to think
of classes of attacks instead of all the variants of a single attack. Attackers are constantly
discovering new variants of attacks, which makes defining the entire tactical threat envi-
ronment impossible. However, if you successfully mitigate a class of attacks, then variants
within that class should be less concerning [4].

At a very high level, some classes of threats to consider against your platforms include:

1.	 Unknown devices: sensitive systems accessed by unknown or unmanaged devices

2.	 Platform compromise: exploitation of a misconfigured operating system or software on
the platform

3.	 Security control bypass: system compromise through unused or misconfigured security
policy

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  25

SECURITY
BeyondCorp: Building a Healthy Fleet

 4.	 Privilege escalation: code execution resulting in privileged
system controls takeover and persistence on the system

 5.	 Software compromise: installation and persistence of
malware

 6.	 Attack persistence: prolonged persistence of attackers due
to lack of inspection

 7.	 Authentication bypass: compromise of the platform
through password theft or authentication bypass

 8.	 Data compromise: unauthorized access to sensitive data
on disk, memory, or in transit

 9.	 Attack concealment: prolonged persistence of attackers
due to lack of logging and monitoring

10.	 Attack repudiation: hampered investigations due to
attackers’ ability to cover their tracks

Addressing These Threats through Improved
Fleet Health
With these threats defined, you can better identify the classes of
controls you need to mitigate these threats. Then you can mea-
sure the state of these controls (their effectiveness, and whether
they are on or off) through device inspection at service access
time. Table 1 maps each of the categories of threats outlined
above to the qualities (“Control”) one would expect to see in an
ideal trusted platform.

Characteristics of a Healthy Device
A healthy fleet is composed of healthy devices supported by tool-
ing, processes, and teams to maintain fleet health. We consider a
device to be healthy if:

◆◆ It can withstand most attacks.
◆◆ It provides sufficient telemetry to contain a compromise when

one occurs.

Let’s take a deeper look into the reasons why each of the qualities
of an ideal trusted platform we enumerated above are important.

Fleet Inventory and Asset Management
Hardware is the foundation on which the OS and applications
run. Limiting hardware configuration variations allows you to
more effectively reason about the capabilities and limitations of
the devices in your fleet. An inventory system places an upper
bound on the number of devices able to connect to sensitive sys-
tems through device access provisioning.

OS and Software Configuration Management
Software management is a key component to maintaining
a healthy fleet. A centralized management infrastructure
should drive a consistent platform configuration to ensure that
instances of the trusted platform:

◆◆ Are secure by default, with minimal drift over time
◆◆ Continue to benefit from security improvements over time

The ability to patch the running OS, the sensitive software stack,
and protective agents is paramount to a healthy security posture.
It’s equally important to manage configurations (e.g., software
auto-update policy) in a central location.

Security Policy Enforcement
Trusted platforms should enforce security policies consistently,
and report and log any deviations from expected policy. Security
policy is often intertwined with the general OS management and
configuration policies mentioned above. However, security pol-
icy is unique because it’s a mandatory access control policy that
users cannot subvert. For example, consider minimally inclusive
login policies: this strategy lessens the threat of lateral move-
ment, and removing root privileges by default helps mitigate the
damage a rogue process can inflict.

Resilience against System Takeover and Persistence
The goal here is to layer defenses so that malware execution
doesn’t necessarily compromise the security of the system.
Ensure that hosts can report abnormal behavior before advanced
malware can silence a host’s logging subsystem.

Threats Control

1 Unknown devices
Fleet inventory and asset
management

2 Platform
compromise

OS & base software configuration
management

3 Security control
bypass

Security policy management &
enforcement

4 Privilege escalation
Resilience against system takeover
& persistence

5 Software
compromise

Software control and anti-malware

6 Attack persistence Remotely verifiable platform state

7 Authentication
bypass

Robust authentication of platform
and user

8 Data compromise Data protection

9 Attack concealment
Logging and log collection for
detection capability

10 Attack repudiation
Response capability on platform/
Detection & response

Table 1: Threat classes and potential mitigations

26    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

SECURITY
BeyondCorp: Building a Healthy Fleet

Software Integrity and Control
You should be able to restrict unauthorized code execution on
the platform. Common strategies include either only allowing
known good software and explicitly blocking suspected bad soft-
ware. We generally prefer an allowed list strategy: it’s possible
to define the applications you need to accomplish your work,
but the potentially bad actors or software you need to block are
infinite.

Remotely Verifiable Platform State
The platform should have a cryptographically verifiable integ-
rity mechanism that provides guarantees on the underlying
platform—from the firmware up to and including the running
OS. Some examples include first-command-execution control [5],
secure boot, and remote attestation.

Robust Authentication of Platform and User
Wherever possible, credentials should be hardware-backed or
hardware-isolated on a system. Windows Defender Credential
Guard [6] is one example of this capability.

Data Protection
We assume that any user’s system has some sensitive data;
therefore, sensitive data should be encrypted both at rest and in
transit. To handle lost or stolen devices, devices should support
remote wipes that destroy any data stored on the system and any
long-term credentials.

Logging and Log Collection for Detecting Threats
To provide defense in depth, the platform threat model should
assume that attackers will bypass preventative controls and
that machines will be compromised. To mitigate this risk, your
platforms should be able to log such incidents. Logging should
include user- and device-attributable audit records for all sensi-
tive data accesses or modifications, including changes to the
platform’s security controls, state, and behavior. This informa-
tion should be streamed to a centralized logging facility. The
ideal logging strategy prevents unauthorized processes from
tampering with the logs.

Response Capability on Platform / Detection and Response
If a threat is detected, platform capabilities should facilitate
remote incident response by authorized intrusion analysts.
Tools like GRR can provide remote accessibility for performing
this analysis [7]. We prefer to keep device-in-hand forensics to
a minimum, as this strategy can’t scale to respond to a wide-
spread breach. Ideally, authorized analysts should be able to
create a forensically sound timeline of an incident and augment
the investigation with one-off pulls from the affected systems.
By re-creating an event, the Detection and Response team

can obtain a thorough picture of what happened and respond
accordingly.

Maintaining a Healthy Fleet
A group of client devices with the controls detailed above make
for a generally healthy and secure fleet. To reach that state, we
first needed to figure out how to bootstrap our platform trust.

Building Up Trust
Sensitive services should only be accessed by trusted devices.
We divide system trust into tiers. Devices can earn different
levels of trust based on their characteristics and behavior [8].

Unfortunately, this approach results in a chicken and egg prob-
lem: transitioning a device into a trustworthy state requires
access to a client software repository, yet a client software
repository is a sensitive system. To resolve this issue, we intro-
duce an Identified state in the journey from untrusted to trusted.
An identified device is one our inventory system believes to be in
good standing but is not trusted for some reason. These devices
can access a subset of our client software repository in order to
install remediation software. This software enables a machine
to report device state, download and apply required patches, and
take all necessary steps to fulfill the requirements of a trusted
platform.

As you work towards building a healthy fleet, you achieve a bet-
ter understanding of your environment. As a result, you’re in a
stronger position to grant access confidently. The next challenge
is maintaining that state as technology and your business con-
tinue to change. The following section discusses how to keep the
fleet in a good state of health as you evolve, and how to correct
quickly when health degrades.

Combating Device Entropy
Once in the hands of users, devices are prone to becoming less
secure as security guarantees atrophy over time. We’ve found a
few strategies useful in our fight against entropy.

The first and most powerful strategy is to integrate access
decisions with an inventory system. All machines should be
known and trusted before they’re granted access to internal
resources. At Google, we add every machine in our fleet to our
corporate inventory during the receiving and imaging process.
We promptly remove access from any devices reported as miss-
ing, stolen, or lost. To encourage timely reporting of lost or stolen
devices, we require users to self-report before they can receive a
replacement device.

It’s also important to have strong telemetry around the state of
any machine that accesses your environment. Facebook’s OS
Query [9] is an excellent open source telemetry tool for Linux, OS
X, and Windows: it allows you to measure device properties such

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  27

SECURITY
BeyondCorp: Building a Healthy Fleet

as a machine’s OS version, patch level of critical software, and
encryption status.

Finally, patch and configuration management tools [10] enable
you to change the security state of a machine—transitioning an
untrusted machine into a trustworthy one. BeyondCorp uses
access restriction to help drive user actions such as rebooting or
accepting updates.

Detecting Unhealthy Hosts
Throughout the lifecycle of a host, certain actions or inactions
might cause a device to transition to an unhealthy state. Our
trust inference system [11] detects state changes by perform-
ing continuous trust evaluations. When a device fails to meet
our trust criteria, we downgrade its trust level to Identified. We
notify the machine’s owner and provide instructions for remedi-
ating their device.

Our Detection and Response Team acts as an additional data-
source for trust decisions. This team can remove trust from any
machine that’s acting maliciously.

Providing Flexible Policies
At a quick glance, defining fleet healthiness is a straightforward
task. However, like most IT environments, the devil is in the
details (and the exceptions). When dealing with a plethora of dif-
ferent OSes and a wide variety of use cases, you encounter many
of these details.

As we roll out controls to the fleet, we always attempt to intro-
duce thresholds of policy compliance rather than institute abso-
lute requirements. This strategy allows users greater flexibility
to operate within a good state and avoids draconian rule sets that
break many of our users (causing them to seek out workarounds
or overrides). For example, if a user needs to apply a non-critical
patch, we give them a grace period before downgrading their
access.

We also believe it’s important to design preventative controls to
provide signal to your incident detection and response capabili-
ties. To that end, we work to integrate these controls into our
security information and event management pipeline so that
they can report and log relevant policy-related data. Captur-
ing data about when we allow access and when we block access
according to policy can aid in future forensics and incident
detection.

Rolling Out and Scaling These Principles
A typical development process and rollout by the Security Team
and its partners starts with the design and prototype phases,
followed by a period to gather feedback across the fleet and from
our users. Over time, we’ve arrived at a strategy of first roll-
ing out controls in monitor mode and crafting our dogfood [12]

populations to facilitate debugging. For instance, we might push
a new USB auditing agent to a subset of a hardware engineer-
ing organization, as this population often interacts with custom
USB components. As a result, we’ll uncover edge cases that
will likely crop up in a less concentrated form across a broader
sample size. Alternately, we might slice the dogfood geographi-
cally and prepare local support staff in advance of the change.

When rolling out new controls, clear communication helps build
understanding of the new policies and why they exist. Mapping
each control to the threats it addresses helps everyone under-
stand why the Security team has chosen a particular action.
High transparency and explicit explanations of our criteria have
increased understanding among our users and helped us build
consensus among stakeholders. When they saw we had no con-
cealed objectives or motives, we could bring them fully on board
with our vision of the future and our timeline to get there. Often,
teams tasked with making security-driven changes can benefit
from seeing the big picture goal, which increases the credibility
of the request and therefore also increases buy-in from partner
teams. This buy-in often leads to a virtuous cycle of feedback
about how you can make the fleet even more secure.

Platform Measurement and Control Parity
Once you define your baseline expected qualities, you’ll find
you can’t apply controls universally—capabilities vary (some-
times widely) among platforms, both in terms of the device itself
and in the management/policy layer. For example, Chome OS’s
Secure Access provides robust software control, but Linux has
no out-of-the-box capabilities that prevent malware. To ensure
consistency in security across our fleet, we needed to normalize
security evaluations. While it’s probably not appropriate to expect
100% parity across different platforms (as capabilities and threat
models differ), we aim to be consistent when classifying a control
as sufficient versus a security risk that requires action.

To accomplish normalized evaluations, we analyzed the current
state of all relevant platforms with respect to how well they met
our control ideal state. We then evaluated the gaps from ideal
in totality. We created an overall fleet health report for each
platform managed at Google—not a report card, but a shared
understanding of capabilities. For each platform, we evaluated
the following:

◆◆ Can the platform support the control?
◆◆ Is the control turned on by default?
◆◆ Can we measure the state of the control?
◆◆ Is the fleet in compliance?

To drive objective measurement and equivalencies, you might
consider:

◆◆ Anchoring these strategies in a shared measurement unit: time
since patch released, geo-location, count

28    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

SECURITY
BeyondCorp: Building a Healthy Fleet

◆◆ Driving your measurements from a relative reference point:
versions from current, features supported vs. implemented

Setting these standard measurements is the hard part. Once you
have equivalency, your ability to discuss fleet health will greatly
improve.

Where preventative controls are lacking or only partially effec-
tive, you can look for other ways to mitigate risk—for instance,
higher monitoring/detection signal confidence or a compensat-
ing control that is more effective on a platform. You may find that
you’re relying on a subjective overall sense of robustness of the
platform against attack. Modern operating systems have very
complex attack surfaces, capabilities, and threat models; the best
way we’ve found to aggregate all this information still boils down
to manually comparing the desired characteristics of the device
versus its actual characteristics. This comparison allows us to
make high-level recommendations around projects to fill gaps
and to prioritize those projects. No matter the source of the data
driving these conclusions, it’s important to document the ratio-
nale for the conclusion or at least the process that generated it.
Doing so allows people beyond the immediate security engineers
to understand the fleet state.

Deviations from Ideal
Despite all the best efforts to define, roll out, measure, and
enforce controls, you may inevitably face the harsh reality that
100% uniform control deployment is a mythical state where
unicorns frolic unconcerned about malware and state-sponsored
attackers. You need to have a plan for deviations from the ideal
state, root cause analysis, and exception handling.

Many deviations are naturally occurring, resulting from broken
processes, faulty management tooling, flaky releases, and other
root causes. For instance, there are often delays in applying
patches on a system. It’s important to understand when it makes
sense to grandfather in exceptions fleetwide, and preventing the
growth of the exception group versus when you should instigate
hard corrections in control states. If you’re clear about the threat
model and user impact tradeoffs, you can drive good decisions here.

Exceptions should be measurable and time-based. We recom-
mend you classify root causes in a consistent fashion across the
fleet so that you can drive understanding around any gaps and
identify places where controls are not suited to the fleet or cer-
tain classes of users. If an exception is perpetually renewed (or
otherwise never expires), the control is not working. You should
redesign the control or revisit your assumptions about its role in
the fleet.

Getting Started
How do you start putting the BeyondCorp principles dis-
cussed in this article into practice on your own fleet? A general
approach involves four main steps:

1.	 Define the security controls you care about.

2.	 Find a way to measure those controls.

3.	 Determine where your fleet isn’t in compliance.

4.	 Fix workflows that don’t work with your defined security
stance or define exceptions.

The first essential step is defining the goals you want to achieve.
You shouldn’t create a set of desired security controls in a
vacuum–these controls should be specific responses to threats
you need to defend against. Explicitly enumerating threats pro-
vides you a heuristic to measure effectiveness and a framework
to reason about the priority of individual properties. Consult
partner teams (see “Lessons Learned,” below) when defining
and ranking desired qualities. As you clarify your threats and the
controls that will mitigate them, build in tests such as unit tests
or end-to-end red team assessments to evaluate how effective
those controls are. Then you can determine whether they actu-
ally meet your security goals in practice.

In order to ascertain a device’s security posture, you must be able
to measure its current state versus the ideal state. If you haven’t
already, you’ll need to roll out instrumentation software to your
fleet to collect relevant data. However, raw data is only half of
the story: you also need to define the ideal state your devices will
be measured against. As a large fleet guarantees variation, you
need to define multiple ideal states in order to cover all potential
valid use cases.

Once you can measure the security stance of your fleet, you can
start examining devices with deviations from the ideal. Some
deviations might pose no security risk (as they’re mitigated by
compensating controls), but other deviations will uncover gaps.
We focused our initial efforts on ensuring that new machines are
in compliance with a control from the first moment employees
use them. Once we knew that all new devices began their lives in
a known good state, we could turn our attention to the rest of the
machines in our fleet to improve overall fleet health.

Establishing an exception framework so you can create excep-
tions for the existing fleet when enforcing a new control is
equally important. The deviation in the fleet will thus remain
static, allowing you to remediate existing machines while keep-
ing new machines in compliance. Once you isolate the problem
to a grandfathered portion of the fleet, you can cluster failure
reasons. These clusters will uncover problems shared by entire
classes of devices or workflows. Tackling the largest and most
risky of these clusters first will provide the largest security win
for the smallest amount of effort. Repeat this clustering and

www.usenix.org	   FA L L 20 1 8  VO L . 4 3 , N O. 3  29

SECURITY
BeyondCorp: Building a Healthy Fleet

remediation process until you have resolved the main issues in
the fleet. One-off issues may need explicit exceptions if a user’s
workflow is explicitly not compatible with a desired security
property.

While this system requires a lot of collaboration and hard work
from many different teams, completing the effort gives you and
your organization a more resilient position in the face of con-
stant attack.

Lessons Learned
Instituting a coherent program for measuring and evaluating
trust and fleet health is not a short-term project. Fully achiev-
ing the goals outlined in this paper (and the more general goals
of BeyondCorp) requires significant resources. That being said,
some lessons we’ve learned over the past couple of years can save
you some time and headaches.

Set Milestones Early
Set key milestones sooner rather than later. Determine which
properties you care about and rank them (at least roughly). This
exercise helps you allocate resources efficiently and provides
the motivation to implement large-scale projects. Incorporating
data from a fleet management system into your authorization
decisions is an excellent initial milestone. This alone will keep
unknown devices from reaching your services and has the side
benefit of providing a known good device inventory.

Decide How to Handle Exceptions
Define your approach to exceptions early in the project. Every
fleet contains devices that cannot fully comply with the ideal
security stance. Determining the procedural and technical
implementation of exception management is key to a success-
ful rollout. Define the reasons an exception can be granted, how
to document those reasons, the maximum length of time an
exception can exist before it must be reexamined, and the review
process for existing exceptions.

Engage with Partner and Impacted Teams Early
A successful implementation of BeyondCorp requires work from
the entire IT organization. Engaging with partner and impacted
teams early in the process will dramatically streamline the
enforcement portion of a rollout. For example:

◆◆ The device procurement and onboarding teams will need to
ensure they keep the fleet management system up to date as
devices are added or retired from the fleet.

◆◆ Other security teams will provide valuable input while defin-
ing machine security properties and potential inputs into the
overall system.

◆◆ Traditional IT support teams will field the vast majority of
user escalations. It is essential they understand the goals of the
project and are able to help troubleshoot user issues.

You also need a way to communicate with the users who will be
directly impacted by this change. Ensuring that the average user
can actually follow and complete self-remediation steps reduces
the load on IT and time wasted on troubleshooting.

Conclusion
Securing your employees’ machines is a cornerstone to securing
the crucial information your company handles. To this end, we
thoroughly evaluate and regularly inspect all corporate devices
to validate their health. Only known healthy devices can access
critical internal systems and information.

Employees and their devices have already earned the attention
of malicious actors, and it’s up to you to defend employees while
keeping them productive. To do that, you need a strong sense of
fleet health, clear policies and measurements, and a process for
handling deviations from the goal state. With consistent controls
and enforcement, we believe every enterprise can simultane-
ously boost fleet health and security, improving resilience to an
ever-increasing variety of attacks and threats.

Acknowledgments
While this continues to be a large cross-functional effort across
Google and there are many contributors to this project, we want
to acknowledge Cyrus Vesuna for his work on defining common
trusted controls across our platforms.

30    FA L L 20 1 8  VO L . 4 3 , N O. 3 	 www.usenix.org

SECURITY
BeyondCorp: Building a Healthy Fleet

References
[1] See Verizon, “2018 Data Breach Investigations Report:
Executive Summary”: https://www.verizonenterprise.com​
/resources/reports/rp_DBIR_2018_Report_execsummary_en​
_xg.pdf; Mandiant, M-Trends 2018: https://www.fireeye.com​
/content/dam/collateral/en/mtrends-2018.pdf.

[2] Google, “Fleet Management at Scale,” November 2017:
https://services.google.com/fh/files/misc/fleet_management​
_at_scale_white_paper.pdf.

[3] https://cloud.google.com/beyondcorp/#researchPapers.

[4] New variants often stretch the common understanding of
classes of attacks, so you can’t ignore variants completely. For
instance, the industry thought we had a good grasp on micro
architecture security up until 2018—see Jann Horn, Project
Zero (Google), “Reading Privileged Memory with a Side-Chan-
nel,” January 3, 2018: https://googleprojectzero.blogspot.com​
/2018/01/reading-privileged-memory-with-side.html.

[5] Such as Intel’s Boot Guard: https://www.intel.com/content​
/dam/www/public/us/en/documents/product-briefs/4th-gen​
-core-family-mobile-brief.pdf.

[6] Microsoft’s Defender Credential Guard: https://docs​
.microsoft.com/en-us/windows/security/identity-protection​
/credential-guard/credential-guard.

[7] https://github.com/google/grr.

[8] For a description of trust levels and calculation, see B.
Osborn, J. McWilliams, B. Beyer, M. Saltonstall, “BeyondCorp:
Design to Deployment at Google”: https://ai.google/research​
/pubs/pub44860.

[9] https://osquery.io/.

[10] For more on the tools we use at Google, see “Fleet Manage-
ment at Scale: How Google Manages a Quarter Million Com
puters Securely and Efficiently”: https://ai.google/research​
/pubs/pub46587.

[11] For more on the trust inference system and the other moving
parts of our BeyondCorp model, see B. Osborn, J. McWilliams,
B. Beyer, M. Saltonstall, “BeyondCorp: Design to Deployment at
Google”: https://ai.google/research/pubs/pub44860.

[12] Dogfood: early release of products to employees to get feed-
back and catch bugs before a wider release.

XKCD	 xkcd.com

https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_execsummary_en_xg.pdf
https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_execsummary_en_xg.pdf
https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_execsummary_en_xg.pdf
https://www.fireeye.com/content/dam/collateral/en/mtrends-2018.pdf
https://www.fireeye.com/content/dam/collateral/en/mtrends-2018.pdf
https://services.google.com/fh/files/misc/fleet_management_at_scale_white_paper.pdf
https://services.google.com/fh/files/misc/fleet_management_at_scale_white_paper.pdf
https://cloud.google.com/beyondcorp/#researchPapers
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://github.com/google/grr
https://ai.google/research/pubs/pub44860
https://ai.google/research/pubs/pub44860
https://osquery.io/
https://ai.google/research/pubs/pub46587
https://ai.google/research/pubs/pub46587
https://ai.google/research/pubs/pub44860

