Analyza: Exploring Data with Conversation

Kedar Dhamdhere Kevin S. McCurley Ralfi Nahmias
Google Research Google Research Google Research
Mountain View, USA Mountain View, USA Mountain View, USA
<firstname>@ google.com <lastname>@ google.com ralfi@google.com
Mukund Sundararajan Qiqi Yan
Google Research Google Research
Mountain View, USA Mountain View, USA
mukunds @google.com qigiyan@google.com

ABSTRACT

We describe Analyza, a system that helps lay users explore
data. Analyza has been used within two large real world sys-
tems. The first is a question-and-answer feature in a spread-
sheet product. The second provides convenient access to a
revenue/inventory database for a large sales force. Both user
bases consist of users who do not necessarily have coding
skills, demonstrating Analyza’s ability to democratize access
to data.

We discuss the key design decisions in implementing this sys-
tem. For instance, how to mix structured and natural language
modalities, how to use conversation to disambiguate and sim-
plify querying, how to rely on the “semantics” of the data
to compensate for the lack of syntactic structure, and how to
efficiently curate the data.

Author Keywords
Exploratory data analysis; Natural language

ACM Classification Keywords
H.5.2. User interfaces: Natural language

INTRODUCTION AND MOTIVATION

As the father of exploratory data analysis, John Tukey often
argued that scientists should spend a lot of time just looking
at data. He described it as being analogous to detective work,
where a situation is examined without preconceptions to fig-
ure out “what is going on here?”

Science - and engineering, which here includes agri-
culture and medicine - does not begin with a tidy ques-
tion. Nor does it end with a tidy answer.

John W. Tukey [36]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IUI 2017 March 13-16, 2017, Limassol, Cyprus

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4348-0/17/03.

DOL: http://dx.doi.org/10.1145/3025171.3025227

We should note that this also applies to all data-driven de-
cision making, including business. In situations that are de-
scribed by complex high-dimensional data sets, this will of-
ten require looking at many slices of the data. Moreover, the
problem is no longer just about examining a single data set
to uncover patterns, but the problem is also about finding the
data set that provides the most meaningful insight. We believe
that this demands a highly interactive environment in which
queries may be quickly created and refined, and the goal of
this paper is to describe a system to support data exploration.

There have been several approaches to describe the process
of exploring data [12, 18, 19, 26, 38]. A common thread be-
tween these is that it is a repeated cycle of dependent phases,
including discovery, inquiry, exploration, refinement, sum-
marization and visualization, collaboration, and inference. A
complete characterization of the data exploration process is
beyond the scope of this paper, but at the very least it entails:

Data discovery The user must be able to find out what kinds
of data exist, and what kinds of analysis can be performed
on the data. As organizations continue to gather more and
more data, this problem is increasing in importance [16].

Data inquiry The user should be able to examine different
slices of data to, and hone their inquiry as they inspect more
and more data. This process generally produces a sequence
of queries on the underlying data sets.

Visualization Just being able to select a slice of data is not
enough. Once the data has been produced and transformed,
there is also a need to choose a suitable visualization.

Summarization SQL includes various aggregation tech-
niques (e.g., count and sum), but as the volume of data
increases, visualizations and understanding may be over-
whelmed by the sheer volume of data. For this reason we
may often need to employ other summarization techniques.
Examples include clustering, bucketing for histograms, lin-
ear regression, forecasting, dimensionality reduction, or
factor analysis to concentrate on the most important dimen-
sions.

Collaboration Data analysis should be recognized as a col-
laborative activity, where the results of a user may be pre-
sented to others for the purpose of further analysis and
the formulation of hypotheses for confirmatory data analy-
sis [3] by an independent process.

http://dx.doi.org/10.1145/3025171.3025227

Access to data

The problem of designing convenient software tools for the
analysis of data is as old as the field of data curation itself.
Soon after Codd published his seminal work describing the
relational database, the SQL language [7] was proposed. One
of the motivations for the original SQL language was to ad-
dress “an increasing need to bring the non-professional user
into effective communication with a formatted data base”.
They went on to say:

“There are some users whose interaction with a com-
puter is so infrequent or unstructured that the user is un-
willing to learn a query language. For these users, natu-
ral language or menu selection (3,4) seem to be the most
viable alternatives.”

In the same year, Codd [9] also argued that

“If we are to satisfy the needs of casual users of data
bases, we must break through the barriers that presently
prevent these users from freely employing their native
languages (e.g., English) to specify what they want.”

A motivating example

To illustrate some of the problems in data exploration, con-
sider the example from [6] that was presented to extoll the
virtues of SQL. There the authors observed that the question
"What is the lowest price for bolts?" may be easily translated
into the program:

SELECT MIN (PRICE)

FROM PRICES

WHERE PARTNO IN

(SELECT PARTNO FROM PARTS
WHERE NAME = ’'BOLT’);

While this is indeed a relatively simple program, and it should
be possible for many people to master the skills required to
create this, there are a number of underlying problems that
still remain:

e How does the user know that this information is even
available in a database, and how do they find the specific
database? Those of us who are familiar with SQL will
recognize that the user would likely first issue a SHOW
DATABASES and SHOW TABLES command to see what
tables exist that might contain their data. This is a crude
first step in data discovery.

e How does the user know that the table is called PRICES
and that it contains references to another table called
PARTS where the word ' BOLT’ appears? In other words,
why should the user have to know anything about the un-
derlying relational schema in order to answer their ques-
tion? Ordinarily in SQL, the user would have to issue
a DESCRIBE PRICES command to inspect the schema,
followed by a DESCRIBE PARTS, probably followed
by a SELECT » from PARTS LIMIT 10 to inspect
what kind of data they would see in the PARTS table. Only
after this sequence of explorations would they have enough
knowledge and confidence to construct the query for their
answer.

e Once the user has found the lowest price, how do they per-
form a subsequent analysis, such as estimating the volatil-
ity for the price of bolts, or examining the different prices
for different size bolts, or to find out how rapidly their stock
of bolts is depleted?

o If the user is interested in not just the cheapest price, but
also the distribution of prices or the trend for price over
time, how can they easily view the distribution in some
meaningful way and not inspect numbers from a tabular
answer?

Many of these details of dealing with SQL are extraneous to
the goal of the user, and require too much understanding of
the physical layout of data. These problems describe quite
well why a natural language approach is so promising, and
explain why it is important that input should be in the user’s
vocabulary.

Even though the natural language approach was hoped to
eventually address the accessibility problem, natural lan-
guage interfaces for accessing data have had relatively low
adoption, perhaps because they run the risk of sacrificing pre-
cision. The goal of this paper is to describe how a natural
language interface that may be integrated into a multi-modal
tool for data exploration, in such a way that users are pro-
tected against loss of precision and may freely transition be-
tween different modes of interaction.

Due to the iterative nature of data exploration, we believe
that conversation is a important requirement for a success-
ful data analysis system. Our experience has also shown that
the conversation needs to flow in both directions, so that the
user may reinforce their understanding of how the system in-
terprets their questions and commands. While humans may
often speak imprecisely to machines, machines should never
speak imprecisely to humans.

RELATED WORK

This problem is long standing, and the subject of data ex-
ploration has been the focus for a great deal of prior work
from different points of view. Starting with the early work of
Codd, there has been a considerable amount of work in the
field of natural language interfaces for databases, with many
prototype systems being deployed using a variety of algorith-
mic approaches. See [1] for a survey through 1995. Much
of our work on natural language parsing follows the approach
described in [22, 27, 28].

We are also not the first to have built a multi-modal system
that combines a natural language interface to data with a vi-
sualization framework. Systems having some of these charac-
teristics have been described in [10, 13, 15, 33]. The field of
data visualization is also quite active and important for data
exploration [20, 13, 33, 10, 35, 11]. While we incorporate
visualization into our system and we recognize it as a cru-
cial component in data exploration, it is not a major focus of
our work. There is however a stronger overlap with recent
work on understanding the role of interaction in visualization
systems [38] as well as the role of conversation in NLP sys-
tems [33].

The problem of data discovery is also an active area of re-
search. Our focus is on identifying tables within a large cor-
pus of tables, but other approaches are mentioned in [5, 16].

A common Ul paradigm for visualization in data exploration
is that of a “data dashboard” that presents a visual display
of the state of data. The term itself is derived from the vi-
sual display in an airplane, which presents the current status
of various indicators. Dashboards started out as displays to
monitor the state of a dataset, using static views on underly-
ing data that may change over time. Over time the user in-
terfaces embraced exploratation of data, and provided a user
interface that facilitates the creation and navigation through
different views on the data, and the ability to change the vi-
sualization types [17]. We use dashboards as a starting point
for our work, and incorporate NLP and conversation into it.

BRIEF SYSTEM DESCRIPTION

We now give an overview of the various components of the
Analyza system; the purpose of this overview is to supply
context for the discussion around key design decisions in
subsequent sections. A diagram showing the overall system
architecture is in Figure 1. Notice that the system has sev-
eral different types of components for UI, parsing, structured
query generation and storage; also, there are two different
types of flows depicted. An online flow that handles the user’s
query, and an offline flow followed by a curator to improve the
system. Both flows are discussed in more detail later in the

paper.

Metadata store

This holds three types of metadata. The first type of metadata
is the set of intent words, such as “top”, “compare”, “list”
etc., which helps us disambiguate the user’s question. The
second type of metadata is schema information, similar to
a SQL database schema, with additional information about
the type of the column (e.g. is it a metric, dimension, etc),
data formats (e.g. should the number be formatted as a dollar
amount), date range defaults, etc. The third type of metadata
is a knowledge base about entities in the data (e.g., “fr”), i.e.,
the columns they belong to (e.g., “country”), the lexicon for
this entity (e.g., “france”). We also derive an additional lexi-
con for entities in our knowledge base by joining with a much
larger knowledge graph [4, 34].

Parser

This is arguably the most complex part of our system. We use
an existing parser for our parsing. The high level architcture
for the parser is based on the semantic parsing framework by
Liang [22].

Parsing

The role of the parser is to turn the user’s input into a interme-
diate structured representation called the semantic parse. The
semantic parse is essentially a form with place holders for the
typed concepts that make up the formal query; the types of
these concepts include metrics (numerical columns), dimen-
sions (string valued columns), filters (on dimensions and met-
rics), sort orders, limits, comparison types, and date ranges.
The semantic parse also contains fields that capture the user’s
intent, requests for types of aggregation and visualizations.

|

Metadata | Serving o= user
|
! Question - suggest

- ! Formulation UX - autocomplete
Knowledge]
Graph |
| NLP question
|
— o A Parsr

Annotator - convert lexicons to entities

Semantic predicates

- intent, dimensions, metrics,
date ranges, etc.

Knowledge

- context free
- determine intent

lexicon,

entities, etc. - invalidate some parses

- rank parses

semantic parse

| Conversation Handler
Context o
Resolution e user

Exploration Widget UX

semantic parse

curated |
type info

Table Identifier
Defaults Supplier

SQL/Formula
Generation

: | Query Execution
Result Visualization

- find tables with needed
dimensions & metrics

- add default metrics,

Usage logs date ranges, etc.

Interpretation Gen.

Answering Engine

questions, semantic
parses, SQLs, user
feedbacks, etc.

O user
[

Figure 1. The Analyza system.

Not all the fields of the semantic parse are filled in for every
query. See Figure 2 for more details. The components that
we implemented are described below.

Annotator

The annotator uses the knowledge base to map phrases in the
user’s query with the entities and intent word types. It uses a
combination of string matching, stemming and synonyms to
perform this mapping. Phrases can have multiple annotations,
and subsequent steps of parsing (such as scoring) perform dis-
ambiguation.

Grammar

We use a context-free grammar to parse the annotated query.
The grammar rules are written in terms of semantic types. We
will show grammar fragments later.

Semantic Predicates

Semantic predicates are used to qualify the validity of a se-
mantic parse. A semantic rule is specified on either a se-
mantic parse or a partial semantic parse, and could specify
something like: “no limit can be specified without specifying
a dimension”, or “average of a metric needs a dimension to
average over’.

Scoring

While semantic predicates disqualify parses, we also use
scoring to produce a soft ranking among parses. A parse with
fewer unrecognized words is usually better. A parse that in-
terprets a term "July" as the most recent one is better than an
ancient July. Scoring has two manually tuned components;
feature generation and feature scores. Feature generation ex-
tracts score-worthy aspects of the parse. A simple feature
could be the number of unrecognized words in the parse, or
the distance of the parsed date from the current time. The
feature scores give a linear weighting over features present in
the parse.

Table Identifier

We use a simple algorithm to find the smallest table that con-
tains all the columns referenced in the parse, or report that no
such table exists. At this stage we may also use access control
restrictions to identify which table is appropriate. There is no
need for the user to specify the table - this is part of the data
discovery phase.

Defaults supplier

Most queries to the system tend to be underspecified. For
instance the query may simply be something like “trend for
revenue?”. We use information in the schema for the table
to supply reasonable defaults (e.g. date ranges) that complete
the query.

Query Generator

The Query generator turns the semantic parse into an exe-
cutable query, i.e., either a SQL query or a spreadsheet for-
mula as appropriate. We implement this using a template-
based generation system. We then use the appropriate query
engine to fetch the data; notice we use existing query engines
and did not implement our own.

Interpretation Generator

This module recasts the semantic parse in natural language.
It is used to provide feedback to the user about the system’s
comprehension of the question. Similar to query generation,
a template-based system is used, with English templates in-
stead.

User interface

There are various subcomponents in the user interface includ-
ing ones that perform autocomplete, suggest questions, and
select and render the appropriate visualizations.

LESSONS FROM IMPLEMENTATIONS

A unique aspect of our work is the scale at which we have
gathered data from interaction by users, and the fact that our
components apply to multiple use cases. We have built sev-
eral different instances of the Analyza system, with slightly
different user interfaces that all utilize a natural language in-
terface.

Our initial prototype was built as a web interface and na-
tive mobile application that allowed sales people to submit
questions and get very quick responses. The underlying data
store for this prototype uses SQL. We ran this system for over
a year and collected over 70,000 questions during this time

SemanticParse {
vector<Metric> metrics;
vector<Dimension> dimensions;
vector<DimensionFilter> filters;
vector<MetricFilter> metric_filters;
vector<DateRange> date_ranges;
Bounds the number of output rows.
int limit;
SortOrder sort_order;
Ignored terms from the user question.
vector<UnusedTerm> unused_terms;
Is the query a continuation.
bool conversation;
Indicates a user request for type of
visualization; e.g, barchart, trend.
VisualizationHint hint;

}
There are analogous data structures for
Dimensions, Filters etc.
Metric {
string name;
string domain;
Dollar value, percentage etc.
Format format;
Type of aggregation (e.g., SUM, AVG).
Aggregator aggregator;
Whether there is a filter bound to the
metric, e.g. for the query revenue in
france, the filter france is bound to
the metric revenue.
vector<DimensionFilter> bound_filters;

}

Figure 2. Pseudocode for the Semantic Parse. The semantic parse is
our central abstraction; it is the output of the parsing process and the
input to SQL/formula generation. It is also used to convey context in
conversation.

from over 2000 users. The mobile application has proved to
be very useful for quick answers to ad hoc questions that arise
in business situations.

We also built a prototype that is now incorporated into a
spreadsheet product [30]. This implementation bears some
similarity to what was described in [15]. In a spreadsheet
interface, the data exposed to the user is much smaller than
the previous two prototypes, and the schemas are completely
unspecified. Moreover, a spreadsheet may itself encapsulate
several tables within the grid of cells, and we are often faced
with the problem of identifying what range of cells is being
referred to by the question. The query engine is also quite
different than the previous two examples, since it consists of
formulas that are written in the API that is commonly used
by creators of spreadsheets. It is worth noting that only 20%
of spreadsheet users indicated that they “do programming”,
which suggests that a large majority of spreadsheet users are
consumers rather than producers [31]. It is our hope that this
natural language tool will make it significantly easier for the
consumers of spreadsheets to easily construct formulas and
make more sophisticated use of the data stored in spread-
sheets.

KEY DESIGN DECISIONS
In this section we describe the key decisions for parsing, cu-
ration and UL

Why not Machine Learning

There is the potential that machine learning (ML in short)
techniques can be applied to parts of the Analyza system,
including grammar rules induction, and even the translation
from natural language directly to spreadsheet formula/SQL
generation [25]. However, we argue that as a first implemen-
tation, there are at least two reasons that we cannot rely on
ML. First, we did not have sufficient amount of high quality
training data to start with, which is needed by most ML sys-
tems. Second, ML systems tend to not be very robust, and
may not be able to achieve the required level of precision for
a data system.

Now that the Analyza system has launched in several forms,
we have accumulated real queries from a large set of users,
along with the correct formulae or SQL for each query. The
first issue on lack of training data is therefore somewhat re-
solved. It remains a research challenge whether the second
or other issues can be resolved toward a ML-based Analyza
system.

Semantics over Syntax

What queries should we cover?

Since SQL is the industry standard for data analysis, we could
aspire to support all SQIY, features via natural language. SQL
can be used to write very complex, nested queries. For exam-
ple the following query:

SELECT PART FROM PARTS

WHERE PART IN (
SELECT PART, SUM(SALES) as TOTAL_SALES
FROM PARTS
WHERE DATE BETWEEN ’2016-01-01’ AND ’2016-01-31’
GROUP BY PART ORDER BY TOTAL_SALES DESC LIMIT 20)
AND INVENTORY < 100;

The corresponding natural language question is a tongue-
twister: “show me the products that have inventory level be-
low 100 among the 20 top products in january”. Furthermore,
this question has added ambiguity: is the inventory level from
january or current? It is much cleaner to break it up into two
questions (“top 20 products in january” and “which of them
have inventory level below 100”). We will describe how An-
alyza supports this form of conversation in a subsequent sec-
tion.

When we inspected the usage logs from our system, we found
that most of the questions could be answered without sup-
porting arbitrary nesting and joins in SQL. We manually in-
spected a random sample of 200 queries from the sales sys-
tem, and found only 3% that would require a join or a nested
query. Some nested queries may be addressed by followup
conversation (e.g., "which of these...").

Natural language is often ambiguous and imprecise. Further-
more, the exposure of users to web search engines in re-
cent years has shaped user expectations for how to phrase
their queries. According to [37], only 3.2% of search engine
queries are formulated as natural language questions, and
about 10.3% were identified to have question intent. More-
over, [2] reports that a majority of the search engine queries
are noun phrases. This also reflects our experience with the
natural language questions that we observed in Analyza. Here

are some of the typical questions we observed from our pro-
totype for sales users.

Example 1 “france revenue and clicks”

Example 2 “top products”

Example 3 “average clicks and revenue by country”
Example 4 “clicks from france and uk”

Example 5 “mobile clicks from france”

It’s clear that these queries have very little syntactic struc-
ture. From the previously mentioned manual inspection of
200 queries from the sales system, we also observed that
22 could not be parsed, 6 had too many unrecognized terms,
resulting in a questionable parse. 2 made no sense at all to
us, 4 were refused because the user did not have access to the
data, and 4 failed because the user asked for data that did not
exist in the database.

Semantics and types

In Analyza, we categorize entities into metrics, dimensions
and filters. Metric entities correspond to columns contain nu-
meric values. The numeric values can have different types of
aggregations applicable: e.g. revenue is additive. Averaging
is a more reasonable aggregation for Age. It is also possible
to have metrics that cannot be added up. Conditions on met-
rics such as clicks > 100 are metric filters. In the SQL query,
metric filters are mapped to the HAVING clause. Thus clicks
> 100 becomes HAVING SUM(clicks) > 100.

Dimensions correspond to columns containing string values
or numeric identifiers. Examples include country, state, age
group. The dimensions may form a hierarchy. The in-
dividual values in a dimension column are dimension fil-
ters. For example, “france” represents the dimension filter
country = france. While executing the formula or SQL, di-
mension filters are translated to equality conditions applied to
each row of data.

Using the schema information, we can make sense of the un-
derspecified questions. In Example 5, revenue and clicks are
both metrics, hence the aggregation type average applies to
both.

In Example 5, both france and uk represent filter on the di-
mension country, hence we interpret “france and uk” as a
logical OR: country = france OR country = uk.

In Example 5, we have two dimension filters: mobile
(device = mobile) and france (country = france). Since these
are on different dimensions, we combine them using logical
AND.

This information about entity types allows us to infer mean-
ing for the seemingly vague and underspecified questions. We
discuss how we obtain the semantic information later in this
section.

Using default values

As seen in the examples given above, many of the questions
were underspecified or have implicit attributes. In Example 5
(“top products™) does not explicitly specify the quantity (i.e.

metric) to sort the products by. We add a pre-configured de-
fault metric (e.g. revenue) to the semantic parse in this case.
Other attributes that need to be supplied include limit (how
many products to show), and a relative date range over which
to compute the metric. A similar idea was presented in [13].
In a subsequent section on user interface, we describe how
the user is informed when these default values are applied.

Domains or entity scopes

In Example 5 given above (“france revenue and clicks”), the
metric revenue could represent revenue from many different
products. However, the metric clicks is relevant only to online
ads, helping us disambiguate revenue.

To achieve this, entities are further grouped into “domains”,
which represent an abstraction on how entities are related to
each other. The overall goal of a domain is to provide scope
for where an entity remains semantically consistent. In the
narrowest sense, a domain may represent a single spreadsheet
where entities are next to each other in a sheet, or a domain
may group the columns of a single SQL table. More gener-
ally, multiple tables may share a consistent entity across them,
e.g. country code or language specification will often be used
to represent entities in different tables. The parser insists that
all the entities from a semantic parse belong to the same do-
main.

Grammar

In order to make the grammar work reliably even in absence
of syntactic structure, we chose to use a context-free gram-
mar. The grammar uses two kinds of rules. The first kind
are floating rules that match the question as sets of entities.
Following is an example of floating rules which use Kleene
star.

Entities <« (Entity)x
Entity < Metric
Entity < Dimension
Entity <« Stopword

The second kind of grammar rules use phrase-level informa-
tion to capture dependencies between the words. We give ex-
ample rules in the figure below. The first one matches “clicks
more than 100”. The second rule matches “france vs uk”.
It uses a semantic predicate, validate, that only allows the
derivations where both filters apply to the same dimension.
Hence phrases like “france vs mobile” won’t be accepted.

MetricFilter «+ Metric Comparison Bound (1)
Comparison <+ “more than”
Bound < Number
SliceComparison <« validate(Filter Against Filter) (2)
Against + “vs”

The previous work in this area has used alternative ap-
proaches based on syntactic parsing. [21] used constituency-
trees while [13, 27] have used dependency trees in their pars-
ing.

Portability

As mentioned previously, the Annotator maps terms to typed
entities. The rest of the system, including grammar, semantic
predicates and query generator work on the semantic types.

Furthermore, the semantic parse corresponds to an abstract
data specification that can be translated via a template-based
system to queries for the underlying query engine.

These two things allowed us to use the same implementation
of Analyza for two very different applications, one with rela-
tional databases and one with spreadsheets as underlying data
storage.

In summary, when we observed the usage of Analyza, our key
takeaways were:

e We rely heavily on semantics of data to make up for lack
of syntax.

e Supporting all of SQL via natural language is neither nec-
essary nor sufficient.

Curation Process
Next, we describe the process of populating the Meradata
store described previously.

The Metadata store holds two types of metadata that need
curation. The first is schema information, i.e. which columns
are metrics, which are dimensions, dates etc. The second type
of metadata is a knowledge base about entities in the data.,
i.e., the columns they belong to, and the lexicon for this entity.
As we describe below, we use a combination of automated
and manual process of curating this data.

Inferring semantics from structured data

In most cases, the semantics of entities are inferred from the
structure exposed by the underlying data storage system. The
dimensions and metrics are columns in the tables and the val-
ues in dimension columns are collected as dimension filters.

For databases, we are able to re-use the work put in by the
database adminstrator in creating the table schema. When
creating the table schema, the columns represent coherent
types, e.g. all the values in country column will be coun-
tries. Furthermore, the columns have data types. This type
information from table schema allows us to identify columns
as metrics, dimensions and date columns.

For spreadsheets, we found that the terminology used to name
columns in spreadsheets is more amenable to direct usage in
an NLP system. Additionally, spreadsheets have additional
information such as visual hints of headers, formatting of
numerical values, currencies, dates, and cells automatically
filled using formulae. This allows us to infer semantics about
the columns, e.g. which aggregations are applicable to a met-
ric. While the schemas are wide open, the fact that spread-
sheets are often shared between individuals means that they
are often populated with meaningful column headings and vi-
sual markup that indicates the structure of the underlying data
set.

Manual curation

The column names typically used in databases are often cho-
sen to satisfy goals other than understandability of the data,
and the closest analogy for how these names are chosen
is probably found in the goals by which programmers se-
lect variable names. The goal is often toward maintaining

short variable names that are easily distinguished from oth-
ers. There have been multiple studies [14] that support the
hypothesis that programmers and database engineers often
use non-linguistic constructions. These include use of com-
pound names like productname, the use of snake case
like product_name, the elimination of vowels to produce
things like cntr, and the use of terse acronyms like CTR.
Simple techniques such as word segmentation allow us to
build a lexicon for the columns of a table, though the process
may sometimes result in awkward or unnatural utterances, be-
cause programmers and users may use different language. In
many cases, the inferred semantics can be further enriched by
a manual curation step.

We needed to augment the lexicon for entities in our knowl-
edge base. For instance, even if there is a table called
customers in which there is a field called name, we would
still need further context to know whether customer names are
company names or human names. If a database table contains
a column named PRICE, we would automatically recognize
that the utterance “price” from a user may be mapped to this
column, but in some circumstances there may be alternative
synonyms like cost, charge, amount, fare, etc.

The curation also augments the schema information. This in-
clude whether a metric is an additive or ratio metric, whether
“best” means bigger or smaller values of the metric, or
whether a metric represents a currency. The ability to add
manually curated information depends on the scale of the
problem in terms of number of data sets. In cases where the
number of potential users is large (e.g., our sales force use
case), there is considerable value from having someone man-
ually add utterances. One approach to this would be to use
crowdsourcing, but as the number of users grows, the num-
ber of desirable views on data will also increase so any effort
made to tailor static views is probably better spent on refining
the lexicon. For the implementation of Analyza on spread-
sheets, we had to forego the manual part of the curation pro-
cess.

Ongoing curation

We periodically reviewed and summarized the logs from in-
teractions of sales users with our first prototype. We used
these to identify classes of questions that should have been
answered, and alternate lexicon to refer to entities within the
system. This involved automatically finding phrases in the
questions that were not mapped to any entity and clustering
all the questions based on these phrases.

This required designing our parser in a way that accounts for
each term in the input question. It could either be mapped
to a known entity from the schema or it’d be identified as an
unused term. Keeping track of every term in the question was
mentioned in [28]. In a subsequent section, we describe the
use of unused terms in the user interface.

From inspecting the query logs, we noticed many questions
using the construction “ratio of X and Y”. This prompted us
to support various ways of combining metrics in Analyza. We
also found that users asked for dimensions that didn’t exist in
the data set (e.g. gender). We added a feature to the system

to detect questions including such known unknowns that the
system can’t answer. A helpful error message was displayed
in these cases.

On the sales database we went through two rounds of itera-
tion in which we examined a sample of questions to deter-
mine precision, as well as an ordered list of the most com-
mon unrecognized terms. The first curation round raised the
precision from 75% to 81%, and the second curation round
raised the precision from 81% to 90%. Upon completion of
these two rounds, we observed that queries had an average of
6.3 terms, and 2.7% of terms ended up being unused in the
parse. We suspended manual curation at this point, because
there is a diminishing return from trying to manually track
down unused terms from the long tail, and we should always
expect such terms to appear.

Inferring Semantics from Knowledge Graph

We use additional heuristics to derive information from
columns and expand the lexicon by using a much larger pro-
prietary knowledge graph [34, 4]. This allows us to perform
two kinds of inference from the content of the database.

1. When we see a column whose name is LOC that contains
strings such as “Chicago”, “New York™, “Springfield”, and
“Sunnyvale”, we can use the knowledge graph to iden-
tify that these strings all belong to a collection of entity
names called /location/citytown that has various
utterances used to describe it, including “city”, “town”,

“locality”, “village”, “municipality”, etc. This allows us
to infer synonyms for the name of columns.

2. Once a column has been associated with a collection of en-

tities from the knowledge graph, we may further infer that
individual entities may have alternative utterances. Thus in
a database of US election campaign contribution data, an
entry of “Rafael Edward Cruz” may be recognized by the
more common name of “Ted Cruz”. A column containing
entries such as AMZN, MSFT, and AAPL would be recog-
nized as stock ticker symbols for publicly held companies,
and allows us to recognize them by the utterances “Ama-
zon”, “Microsoft”, or “Apple”.

The efficacy of these techniques is strongly dependent upon
the scope of the knowledge graph and the nature of the
database. Our knowledge graph is human-vetted, so it is of
high precision but modest coverage. In the case of the sales
data set (which contains countries, fairly large companies,
etc) it was able to detect entities for approximately 50% of the
values in the tables. For another data set from the US Federal
Election Commission, it only identified 9% of the entities.
This data set contains many less well-known entities such as
individual contributors, their companies, etc. The algorithm
was tuned to have very high precision (about 98%) at the cost
of lower recall, but the recall still varies quite a bit.

Approximate matches

We increase the value of the curated lexicon in our knowledge
base by using approximate matches. We used multiple ways
of establishing semantic similarity between a question term
and the lexicon. Two terms are similar if they have low edit-
distance, or if they have the same stem [29], or if they are

synonyms. Similar techniques for semantic similarity were
employed in [13]. It should be noted that spell correction
should be done against terms of the vocabulary from the lex-
icon, as the statistics will be different from a generic corpus
of documents.

User interface design

The goal of a user interface for an data exploration system is
to make it easy to perform the iterative process that was de-
scribed in the introduction. We propose using a a multi-modal
interface that combines natural language with a dashboard-
style method of specifying a data slice. A key component of
this design involves a two-way conversation between the user
and the system. This has two main purposes. First, complex
queries are most naturally formed through a conversation, and
second, we need to confirm to the user how their input was
understood by the system. The latter concept is related to the
theory of grounding [8] in communication, where two par-
ticipants come to a common understanding of what has been
said.

Framing the mental model for the user

Exploratory dashboards have proved to be quite effective, but
they suffer from one major weakness, namely as the complex-
ity of the data set(s) increases and the number of dimensions
and metrics grows, it becomes increasingly difficult to navi-
gate through the space of possible options. It is not uncom-
mon to see database tables that contain dozens or even thou-
sands of individual fields in a record, and this is infeasible to
show with widgets, menus, or even autocomplete. The curse
of dimensionality is as much a problem in user interfaces as
it is in algorithms. For mobile user interfaces this problem is
even more acute.

The NLP interface makes it easy for the user to specify their
data selection, but also suffers from the problem that a novice
user will be unaware of the grammar or vocabulary that the
system supports, and must therefore be helped to learn these.
This problem is similar to the process by which humans learn
a second language, where the user needs to learn both the
grammar of recognized questions as well as the vocabulary
that corresponds to their known concepts. The user challenge
is less severe than learning a second language, because they
need only learn which subset of their existing grammar and
vocabulary will be recognized.

In the study of how humans learn a second language, a great
deal of research has been concentrated on the feedback given,
both negative and positive. The two primary concepts that
have evolved in this discipline are recast and noticing. The
goal of recast is to echo back what the learner said, but
with corrections to the sentence structure. This can be seen
as either negative or positive reinforcement. According to
Schmidt’s noticing hypothesis [32], users will only realize
that they are making mistakes or asking correct questions
when they become consciously aware of some stimulus in
their environment. Long [23] has suggested that in order for
recasts to be useful, the learner must recognize the negative
feedback contained within, as opposed to just recognizing it

top three imdb rating movies in france

QUESTION
top three imdb rating movies in fraree

ANSWER
Top 30 Movie with IMDB Rating = 3

Movie Count
Graduation Day 1
Inchon 1
The Master of Disguise 1

See formula

Figure 3. An answer card in the spreadsheet user interface. The user
entered a question asking for movies in France, but the data does not
contain this information so the display of the original question has this
with strikethrough. The recast of the original question shows this by
omission, but the strikethrough is used to enhance the user’s ability to
notice the omission.

as a rephrasing of the original question. We believe that sim-
ply restating the question as it is understood by the system
is not enough when there are terms that are unused in the
user’s original question. In this case, a mere restatement of
the question omitting reference to the unused phrases places
too high a cognitive burden on the user to notice the omis-
sion of terms that they originally specified. For this reason,
we advocate using both explicit positive feedback and well
as explicit negative feedback about unused terms. The de-
sign we have chosen for this is to repeat the original user’s
question with strikethrough to highlight the terms that were
ignored, along with a recast of the system’s understanding of
the original question in a canonical format that is easy to un-
derstand (see Figure 3). We omit strikethrough on relatively
unimportant terms such as conjunctions.

The recast used in our system has the additional function of
showing how the system canonicalizes utterances by the user
(e.g, replacing “Click through rate” with CTR). This provides
hints on synonyms and shortcuts the user might benefit from.
It also allows us to display supplied defaults in the parse pro-
cess. In the case of spreadsheets, we also highlight the regions
of the spreadsheet that are referenced by the question in order
to reinforce which parts the recast refers to.

It should perhaps be noted that the feedback mechanism also
bears a close resemblance to the use of readback in communi-
cation between pilots and air traffic control [24], where preci-
sion is imperative. The basic principle is to have the pilot and

controller repeat information back to each other to confirm
the accuracy of their communication.

Suggestions

We also lean heavily on the common UI paradigm of interac-
tive suggestions as the user types or speaks to the system. We
use two kinds of suggestions, namely entities from the data
to inform the user about vocabulary, as well as full questions
that inform the user about the grammar that is recognized by
the system. In Figure 4 we show an implementation of this,
in which we display entities from the data that may be con-
catenated to the user’s question, as well as full questions (in
this case from the user’s history). Full questions may also be
constructed from templates generated from the grammar and
the data.

Speed of interaction

In order to scale this approach to large data sets, it is impor-
tant that the NLP understanding part be decoupled from the
data fetch to present an answer. Our parser typically takes
only 100ms to completely resolve a question into a query, so
the user may receive immediate feedback on how the system
understands their question and is given a chance to review this
while the system fetches the data resulting from their query.
If the recast represents an incorrect interpretation, the user is
then given a chance to rephrase their request before the sys-
tem fetches the data.

Dealing with ambiguity

Due to the vague nature of natural langauge, it is sometimes
impossible for the system to recognize the user intent. We
may either have too little confidence in the parse, or we may
be unable to distinguish between two semantically different
parses. In the case where multiple parses cannot be resolved,
we present the recast of these to the user and ask them to
choose one. In case there is insufficient confidence in a parse,
we may present alternatives to the user that have strong over-
lap with the user’s original question, or simply ask them to
rephrase their question. The case of ambiguity is fairly com-
mon, and other approaches are described in [13].

There are a number of other possible failure modes that need
to be communicated to the user, including when the question
is recognized but the user does not have access to the data,
or the query engine is incapable of generating the requested
data set. For example, this could happen if the date range is
not present in the data, or the user requests hourly aggregation
but the data only contains aggregation by day.

Role of conversation

Once a user has asked a question like what is the trend for
revenue in France in ql? and seen an answer, they may ask
a followup question that reuses the state from their previous
question. Thus a subsequent question like what about Ger-
many? or how does it compare to last year? should be rec-
ognized within the context of the answer just provided to the
user. Such “elliptical” sentences tend to be common in dis-
course [1, section 4.6].

The system supports substitution of a single element of the
semantic parse (e.g., metric or dimension or daterange), but
the user may also continue the conversation from the results

billing category
company division name
company parent name
platform

primary secondary
product

product area

Figure 5. The recast of a question is used to create an additional user
widget that facilitates exploration of similar questions.

that were shown in the answer. Thus the context for a con-
versation consists of both the previous question but also the
data from the previous query. As an example, after a question
like top US cities by population, the user can ask a question
like which of these have a female mayor?. The result would
be the subset of cities that have a female mayor, ordered by
population. Note that the followup question need not even be
from the same table.

Modes of conversation

While a user may engage in natural language conversation
with the system, this places a burden on the user to construct
followup questions. We also provide an alternate mode of in-
teraction by creating click targets in the recast to show some
of the possible substitutions of metrics, dimensions, filters,
and date ranges (see Figure 5). This is similar to the ambi-
guity widgets of [13], but is used to generalize the question
rather than disambiguate the question.

A natural language interface has some natural limitations
for very complex queries that require nested queries or sub-
clauses. By providing a conversational interface, we make
it much easier for a user to express these nested queries.
Moreover, we can support a “sticky” form of context that
spans multiple independent queries, through the linguistic
command such as “set scope to France”. This would then
be displayed in the user interface as something that becomes
part of the user’s question, but may also be dismissed.

Code generation and multi-mode extension

Once a user has submitted a question and received an answer,
there are several actions that might be performed other than
conversation. A representative card from the mobile applica-
tion is shown in Figure 6, where there are icons to “share”
or “star” (bookmark or save) a given answer. The action of
“starring” a card creates a question that becomes part of their
customized dashboard. If they revisit the card in the future,
the question is reparsed and the answer is recreated using cur-
rent data. This allows a user to create an on-the-fly dashboard.

We believe that other data exploration paradigms such as SQL
and dashboards have their own advantages, and we seek to
amplify those rather than replace them. For this reason, we
expose the underlying generated SQL and formulas to the

revenue

revenue
CRM - Metrie

&

Billing - Metric CRM - Metric
chart of quota vs. revenue in g2

compare mexico canada trend of revenues

CICRECRRC!

daily average revenue

A, revenue 4, revenue gap A

revenue in local fx

Billing - Metric

w

compare trend of turkey and spain revenue last week

Figure 4. The use of suggestions in a prototype user interface. As the user types, we autocomplete entities from the data that can be used to extend their
question, and we show the domain of the entity. We also match against full questions that the user may ask.

daily revenue qtd X

Just now

| revenue

EXPLORE * C < & v

Figure 6. A representative card from the mobile interface, showing icons
to perform subsequent actions such as “star” or “share”. In this imple-
mentation, clicking on “Explore” brings up the widget in Figure 5.

user so that they may use them as starting points for inves-
tigations that a user may express more naturally through code
rather than natural language.

In the spreadsheet case, a user may use drag and drop to insert
the generated formula to a cell in the spreadsheet, and use the
existing programming interface to make appropriate modifi-
cations. This is similar to [15], where they directly modify
the spreadsheet. In the case of a dashboard backed by a rela-
tional database, we expose the SQL query as a starting point
for refining their analysis when the situation calls for it. We
also augment static dashboards by allowing a user to “star”
or “bookmark” a query so that they may refer to it later. This
provides the capability for a user to create a personalized on-
the-fly dashboard.

SUMMARY AND CONCLUSIONS

We wouldn’t truly have succeeded in democratizing access to
this data until we allow users without coding skills to explore
and interact with this data effectively. Analyza is a system
that uses natural language processing to do just this. It com-
bines the ease-of-use of a natural language interface with the

precision of a structured interface, enabling users to explore
data effectively, without resorting to a computer language.

Analyza has been used within two large-scale real world sys-
tems — one that enables a large sales force to interact with a
revenue/inventory database, and another which provides nat-
ural language abilities to a spreadsheet product. Both user
bases have a large fraction of users who are unfamiliar with
coding, but are able to interpret data and make data-driven
decisions.

In the process of designing and implementing this system, we
identified several fundamental design choices around abstrac-
tion, parsing, curation, multimodality, and portability. We be-
lieve that several of the ideas could also apply to intelligent
personal (software) assistants.

One of the difficulties in evaluating a system of this type lies
in the heterogeneous nature of data sets and the varying so-
phistication of users. There is some danger in attempting to
extrapolate from the observed metrics on our system, because
there is no such thing as a "generic database" or a "generic
user", and observations are dependent on the nature of data
and the mental model of data that is held by the user. We
have applied our system to multiple user bases as well as
data sets spanning at least least seven orders of magnitude
in size. This leaves us hopeful that our observations have at
least some generality.

We envision different lines of possible future work; to add
the ability to build simple statistical models, to add a data-
driven alert functionality, and to build a conversational feature
that suggests followup questions, taking into account prior
questions of the user.

ACKNOWLEDGEMENTS

The process of turning a research project into a product in-
volves the work of many individuals, and this process pro-
duces a lot of insights. We thankfully acknowledge the con-
tributions of the following people: Ajay Nainani, Amir Na-
jmi, Arijit De, Bill MacCartney, Daniel Gundrum, Diane
Tang, Garima, Jakob Uszkoreit, Kannan Pashupathy, Koen
Dirckx, Mateo Slanina, Nikunj Agrawal, Nishant Redkar,
Peter Danenberg, Serge Yaroshenko, Shruti Gupta, Shrikant
Shanbhag, Yogita Mehta, and Xiaogiang Luo.

REFERENCES
1. 1. Androutsopoulos, G. D. Ritchie, and P. Thanisch.

1995. Natural language interfaces to databases - an
introduction. Natural Language Engineering 1(1)
(1995), 29-81.
https://arxiv.org/pdf/cmp-1g/9503016.pdf

. Cory Barr, Rosie Jones, and Moira Regelson. 2008. The
Linguistic Structure of English Web-search Queries. In
Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP "08).
Association for Computational Linguistics, Stroudsburg,
PA, USA, 1021-1030. http:
//dl.acm.org/citation.cfm?id=1613715.1613848

. E. Bier, Card S. K., and J. W. Bodnar. 2007.
Entity-based collaboration tools for intelligence
analysis. In IEEE Symposium on Visual Analytics
Science and Technology (VAST '07), W. Ribarsky and
O. Keim (Eds.). IEEE Computer Society Press, Los
Alamitos, CA, 99-106. DOT :
http://dx.doi.org/10.1109/VAST.2008.4677362

. Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A
Collaboratively Created Graph Database for Structuring
Human Knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data (SIGMOD °08). ACM, New York, NY, USA,
1247-1250. DOI :
http://dx.doi.org/10.1145/1376616.1376746

. Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang,
Eugene Wu, and Yang Zhang. 2008. WebTables:
Exploring the Power of Tables on the Web. Proc. VLDB
Endow. 1, 1 (Aug. 2008), 538-549. DOTI :
http://dx.doi.org/10.14778/1453856.1453916

. Donald D. Chamberlin, Morton M. Astrahan,

Michael W. Blasgen, James N. Gray, W. Frank King,
Bruce G. Lindsay, Raymond Lorie, James W. Mehl,
Thomas G. Price, Franco Putzolu, Patricia Griffiths
Selinger, Mario Schkolnick, Donald R. Slutz, Irving L.
Traiger, Bradford W. Wade, and Robert A. Yost. 1981. A
History and Evaluation of System R. Commun. ACM 24,
10 (Oct. 1981), 632-646. DOT :
http://dx.doi.org/10.1145/358769.358784

. Donald D. Chamberlin and Raymond F. Boyce. 1974.
SEQUEL: A Structured English Query Language. In
Proceedings of the 1974 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and
Control (SIGFIDET ’74). ACM, New York, NY, USA,
249-264. DOT :
http://dx.doi.org/10.1145/800296.811515

. Herbert H. Clark and Susan E. Brennan. 1991.
Grounding in Communication. Vol. 13. American
Psychological Association, 127-149.

. E. F. Codd. 1974. Seven Steps to Rendezvous with the
Casual User. In Proc. IFIP TC-2 Working Conference on
Data Base Management Systems. https://exhibits.

10.

11.

12.

13.

14.

15.

16.

17.

stanford.edu/feigenbaum/catalog/cp353£q9623
published in "Data Base Management", ed. J. W.
Klimbie and K. I. Koffeman, North-Holland 1974.

Kenneth Cox, Rebecca E. Grinter, Stacie L. Hibino,
Lalita Jategaonkar Jagadeesan, and David Mantilla.
2001. A Multi-Modal Natural Language Interface to an
Information Visualization Environment. International
Journal of Speech Technology 4, 3 (2001), 297-314.
DOTI :http://dx.doi.org/10.1023/A:1011368926479

Usama Fayyad, Georges G. Grinstein, and Andreas
Wierse (Eds.). 2002. Information Visualization in Data
Mining and Knowledge Discovery. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and
Padhraic Smyth. 1996. From Data Mining to Knowledge
Discovery: An Overview. In Advances in Knowledge
Discovery and Data Mining, Usama M. Fayyad,
Gregory Piatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy (Eds.). American Association
for Artificial Intelligence, Menlo Park, CA, USA, 1-34.
http://dl.acm.org/citation.cfm?id=257938.257942

Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu,
and Karrie G. Karahalios. 2015. DataTone: Managing
Ambiguity in Natural Language Interfaces for Data
Visualization. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software &
Technology (UIST ’15). ACM, New York, NY, USA,
489-500. DOT :
http://dx.doi.org/10.1145/2807442.2807478

Latifa Guerrouj, Massimiliano Penta, Yann-Gagl
Guéhéneuc, and Giuliano Antoniol. 2014. An
Experimental Investigation on the Effects of Context on
Source Code Identifiers Splitting and Expansion.
Empirical Softw. Engg. 19, 6 (Dec. 2014), 1706-1753.
DOI:
http://dx.doi.org/10.1007/s10664-013-9260-1

Sumit Gulwani and Mark Marron. 2014. NLyze:
Interactive Programming by Natural Language for
Spreadsheet Data Analysis and Manipulation. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’14).
ACM, New York, NY, USA, 803-814. DOTI:
http://dx.doi.org/10.1145/2588555.2612177

Alon Halevy, Flip Korn, Natalya F. Noy, Christopher
Olston, Neoklis Polyzotis, Sudip Roy, and

Steven Euijong Whang. 2016. Goods: Organizing
Google’s Datasets. In Proceedings of the 2016
International Conference on Management of Data
(SIGMOD ’16). ACM, New York, NY, USA, 795-806.
DOI :http://dx.doi.org/10.1145/2882903.2903730

Patrick Hertzog. 2015. Binary Space Partitioning
Layouts To Help Build Better Information Dashboards.
In Proceedings of the 20th International Conference on
Intelligent User Interfaces (IUI ’15). ACM, New York,
NY, USA, 138-147. DOI :
http://dx.doi.org/10.1145/2678025.2701383

https://arxiv.org/pdf/cmp-lg/9503016.pdf
http://dl.acm.org/citation.cfm?id=1613715.1613848
http://dl.acm.org/citation.cfm?id=1613715.1613848
http://dx.doi.org/10.1109/VAST.2008.4677362
http://dx.doi.org/10.1145/1376616.1376746
http://dx.doi.org/10.14778/1453856.1453916
http://dx.doi.org/10.1145/358769.358784
http://dx.doi.org/10.1145/800296.811515
https://exhibits.stanford.edu/feigenbaum/catalog/cp353fq9623
https://exhibits.stanford.edu/feigenbaum/catalog/cp353fq9623
http://dx.doi.org/10.1023/A:1011368926479
http://dl.acm.org/citation.cfm?id=257938.257942
http://dx.doi.org/10.1145/2807442.2807478
http://dx.doi.org/10.1007/s10664-013-9260-1
http://dx.doi.org/10.1145/2588555.2612177
http://dx.doi.org/10.1145/2882903.2903730
http://dx.doi.org/10.1145/2678025.2701383

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Andreas Holzinger, Matthias Dehmer, and Igor Jurisica.
2014. Knowledge Discovery and interactive Data
Mining in Bioinformatics - State-of-the-Art, future
challenges and research directions. BMC Bioinformatics
15, S-6 (2014),11. DOT :
http://dx.doi.org/10.1186/1471-2105-15-S6-1I1

S. Jolaoso, R. Burtner, and A. Endert. 2015. Toward a
Deeper Understanding of Data Analysis, Sensemaking,
and Signature Discovery. In Human-Computer
Interaction—-INTERACT, 2015. Springer, 463-478.

Daniel A. Keim. 2002. Information Visualization and
Visual Data Mining. IEEE Transactions on Visualization
and Computer Graphics 8, 1 (Jan. 2002), 1-8. DOT :
http://dx.doi.org/10.1109/2945.981847

Fei Li and H. V. Jagadish. 2016. Understanding Natural
Language Queries over Relational Databases. SIGMOD
Rec. 45, 1 (June 2016), 6-13. DOTI :
http://dx.doi.org/10.1145/2949741.2949744

Percy Liang. 2016. Learning Executable Semantic
Parsers for Natural Language Understanding. Commun.
ACM 59, 9 (Aug. 2016), 68—76. DOI:
http://dx.doi.org/10.1145/2866568

Michael H. Long. 1996. The role of the linguistic
environment in second language acquisition. Academic
Press.

Daniel Morrow, Alfred Lee, and Michelle Rodvold.
1993. Analysis of Problems in Routine Controller-Pilot
Communication. The International Journal of Aviation
Psychology 3,4 (1993), 285-302. DOI :
http://dx.doi.org/10.1207/s15327108i3jap0304_3

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever.

2015. Neural Programmer: Inducing Latent Programs
with Gradient Descent. CoRR abs/1511.04834 (2015).
http://arxiv.org/abs/1511.04834

P. Pirolli and S. Card. 2015. The sensemaking process
and leverage points for analyst technology as identified
through cognitive task analysis. In Proceedings of 2005
International Conference on Intelligence Analysis.
http:
//www.phibetaiota.net/wp—-content/uploads/2014/
12/Sensemaking-Process—Pirolli-and-Card.pdf

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates. 2004. Modern Natural
Language Interfaces to Databases: Composing
Statistical Parsing with Semantic Tractability. In
Proceedings of the 20th International Conference on
Computational Linguistics (COLING ’04). Association
for Computational Linguistics, Stroudsburg, PA, USA,
Article 141. DOT:
http://dx.doi.org/10.3115/1220355.1220376

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a Theory of Natural Language Interfaces
to Databases. In Proceedings of the Sth International
Conference on Intelligent User Interfaces (IUI "03).

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

ACM, New York, NY, USA, 149-157. DOI:
http://dx.doi.org/10.1145/604045.604070

Martin F Porter. 1980. An algorithm for suffix stripping.
Program 14, 3 (1980), 130-137.

Ritcha Ranjan. 2016. Explore in Docs, Sheets and Slides
makes work a breeze — and makes you look good, too.
(Sep&nnber2016).https://docs.googleblog.com/
2016/09/ExploreinDocsSheetsSlides.html.

Christopher Scaffidi, Mary Shaw, and Brad Myers.
2005. Estimating the Numbers of End Users and End
User Programmers. In Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VLHCC ’05). IEEE Computer Society,
Washington, DC, USA, 207-214. DOTI :
http://dx.doi.org/10.1109/VLHCC.2005.34

Richard Schmidt. 1990. The Role of Consciousness in
Second Language Learning. Applied Linguistics 11
(1990), 129-158. http://nflrc.hawaii.edu/PDFs/
SCHMIDT%20The%20role%200f%20consciousness%$20in%
20second%20language%20learning.pdf

Vidya Setlur, Sarah E Battersby, Melanie K Tory, Rich
Gossweiler, and Angel X Chang. 2016. Eviza: A
Natural Language Interface for Visual Analysis. In 29¢h
ACM User Interface Software and Technology
Symposium (UIST 2016). ACM, New York, NY. DOT :
http://dx.doi.org/10.1145/2984511.2984588

Amit Singhal. 2012. Introducting the Knowledge Graph:
things, not strings. Google Blog. (May 2012).
https://blog.google/products/search/
introducing-knowledge-graph-things—-not/ See also
https://www.google.com/intl/bn/insidesearch/
features/search/knowledge.html.

Chris Stolte, Diane Tang, and Pat Hanrahan. 2008.
Polaris: A System for Query, Analysis, and
Visualization of Multidimensional Databases. Commun.
ACM 51, 11 (Nov. 2008), 75-84. D01 :
http://dx.doi.org/10.1145/1400214.1400234

John W. Tukey. 1980. We need both exploratory and
confirmatory. The American Statistician 34 (1980),
23-25.
https://www.jstor.org/stable/2682991?seq=1

Ryen W. White, Matthew Richardson, and Wen-tau Yih.
2015. Questions vs. Queries in Informational Search
Tasks. In Proceedings of the 24th International
Conference on World Wide Web (WWW ’15
Companion). ACM, New York, NY, USA, 135-136.
DOI :http://dx.doi.org/10.1145/2740908.2742769

Ji Soo Yi, Youn ah Kang, John Stasko, and Julie Jacko.
2007. Toward a Deeper Understanding of the Role of
Interaction in Information Visualization. IEEE
Transactions on Visualization and Computer Graphics
13, 6 (Nov. 2007), 1224-1231. DOT :
http://dx.doi.org/10.1109/TVCG.2007.70515

http://dx.doi.org/10.1186/1471-2105-15-S6-I1
http://dx.doi.org/10.1109/2945.981847
http://dx.doi.org/10.1145/2949741.2949744
http://dx.doi.org/10.1145/2866568
http://dx.doi.org/10.1207/s15327108ijap0304_3
http://arxiv.org/abs/1511.04834
http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
http://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
http://dx.doi.org/10.3115/1220355.1220376
http://dx.doi.org/10.1145/604045.604070
https://docs.googleblog.com/2016/09/ExploreinDocsSheetsSlides.html
https://docs.googleblog.com/2016/09/ExploreinDocsSheetsSlides.html
http://dx.doi.org/10.1109/VLHCC.2005.34
http://nflrc.hawaii.edu/PDFs/SCHMIDT%20The%20role%20of%20consciousness%20in%20second%20language%20learning.pdf
http://nflrc.hawaii.edu/PDFs/SCHMIDT%20The%20role%20of%20consciousness%20in%20second%20language%20learning.pdf
http://nflrc.hawaii.edu/PDFs/SCHMIDT%20The%20role%20of%20consciousness%20in%20second%20language%20learning.pdf
http://dx.doi.org/10.1145/2984511.2984588
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
http://dx.doi.org/10.1145/1400214.1400234
https://www.jstor.org/stable/2682991?seq=1
http://dx.doi.org/10.1145/2740908.2742769
http://dx.doi.org/10.1109/TVCG.2007.70515

	Introduction and Motivation
	Access to data
	A motivating example

	Related work
	Brief System Description
	Lessons from implementations
	Key Design Decisions
	Curation Process
	User interface design
	Role of conversation
	Modes of conversation

	Summary and Conclusions
	Acknowledgements
	References

