
28    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SECURITYBeyondCorp Part III
The Access Proxy

L U C A C I T T A D I N I , B A T Z S P E A R , B E T S Y B E Y E R , A N D M A X S A L T O N S T A L L

Luca Cittadini is a Site Reliability
Engineer at Google in Dublin.
He previously worked as a
Network Engineer at the Italian
Central Bank in Rome. He holds

a PhD in computer science from Roma Tre
University. lucacittadini@google.com

Batz Spear is a Software
Engineer at Google in Mountain
View. He holds a PhD in
computer science from UC
Davis. batz@google.com

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

Max Saltonstall is a Program
Manager for Google Corporate
Engineering in New York.
Since joining Google in 2011
he has worked on video

products, internal change management, IT
externalization, and coding puzzles. He has a
degree in computer science and psychology
from Yale. maxsaltonstall@google.com

This article details the implementation of BeyondCorp’s front-end
infrastructure. It focuses on the Access Proxy, the challenges we
encountered in its implementation and the lessons we learned in its

design and rollout. We also touch on some of the projects we’re currently
undertaking to improve the overall user experience for employees accessing
internal applications.

In migrating to the BeyondCorp model (previously discussed in “BeyondCorp: A New
Approach to Enterprise Security” [1] and “BeyondCorp: Design to Deployment at Google” [2]),
Google had to solve a number of problems. Figuring out how to enforce company policy
across all our internal-only services was one notable challenge. A conventional approach
might integrate each back end with the device Trust Inferer in order to evaluate applicable
policies; however, this approach would significantly slow the rate at which we’re able to
launch and change products.

To address this challenge, Google implemented a centralized policy enforcement front-end
Access Proxy (AP) to handle coarse-grained company policies. Our implementation of the
AP is generic enough to let us implement logically different gateways using the same AP
codebase. At the moment, the Access Proxy implements both the Web Proxy and the SSH
gateway components discussed in [2]. As the AP was the only mechanism that allowed
employees to access internal HTTP services, we required all internal services to migrate
behind the AP.

Unsurprisingly, initial attempts that dealt only with HTTP requests proved inadequate, so
we had to provide solutions for additional protocols, many of which required end-to-end
encryption (e.g., SSH). These additional protocols necessitated a number of client-side
changes to ensure that the device was properly identified to the AP.

The combination of the AP and an Access Control Engine (a shared ACL evaluator) for
all entry points provided two main benefits. By supplying a common logging point for all
requests, it allowed us to perform forensic analysis more effectively. We were also able to
make changes to enforcement policies much more quickly and consistently than before.

BeyondCorp’s Front-End Infrastructure
Any modern Web application deployed at scale employs front-end infrastructure, which is
typically a combination of load balancers and/or reverse HTTP proxies. Enterprise Web
applications are no exception, and the front-end infrastructure provides the ideal place to
deploy policy enforcement points. As such, Google’s front-end infrastructure occupies a
critical position in BeyondCorp’s enforcement of access policies.

The main components of Google’s front-end infrastructure are a fleet of HTTP/HTTPS
reverse proxies called Google Front Ends (GFEs [3]). GFEs provide a number of benefits,
such as load balancing and TLS handling “as a service.” As a result, Web application back
ends can focus on serving requests and largely ignore the details of how requests are routed.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  29

SECURITY
BeyondCorp Part III: The Access Proxy

BeyondCorp leverages the GFE as a logically centralized point of
access policy enforcement. Funneling requests in this manner
led us to naturally extend the GFE to provide other features,
including self-service provisioning, authentication, authoriza-
tion, and centralized logging. The resulting extended GFE is
called the Access Proxy (AP). The following section details the
specifics of the services the Access Proxy offers.

Features of the Extended GFE: Product Requirements
The GFE provides some built-in benefits that weren’t designed
specifically for BeyondCorp: it both provides load balancing for
the back ends and addresses TLS handling by delegating TLS
management to the GFE. The AP extends the GFE by introduc-
ing authentication and authorization policies.

Authentication
In order to properly authorize a request, the AP needs to identify
the user and the device making the request. Authenticating
the device poses a number of challenges in a multi-platform
context, which we address in a later section, “Challenges with
Multi-Platform Authentication.” This section focuses on user
authentication.

The AP verifies user identities by integrating with Google’s
Identity Provider (IdP). Because it isn’t scalable to require
back-end services to change their authentication mechanisms
in order to use the AP mechanism, the AP needs to support a
range of authentication options: OpenID Connect, OAuth, and
some custom protocols.

The AP also needs to handle requests made without user
credentials, e.g., a software management system attempting to
download the latest security updates. In these cases, the AP
can disable user authentication.

When the AP authenticates the user, it strips the credential
before sending the request to the back end. Doing so is essential
for two reasons:

◆◆ The back end can’t replay the request (or the credential)
through the Access Proxy.

◆◆ The proxy is transparent to the back ends. As a result, the back
ends can implement their own authentication flows on top of
the Access Proxy’s flow, and won’t observe any unexpected
cookies or credentials.

Authorization
Two design choices drove our implementation of the authoriza-
tion mechanism in a BeyondCorp world:

◆◆ A centralized Access Control List (ACL) Engine queryable via
Remote Procedure Calls (RPCs)

◆◆ A domain-specific language to express the ACLs that is both
readable and extensible

Providing ACL evaluation as a service enables us to guaran-
tee consistency across multiple front-end gateways (e.g., the
RADIUS network access control infrastructure, the AP, and
SSH proxies).

Providing centralized authorization has both benefits and
drawbacks. On the one hand, an authorizing front end frees
back-end developers from dealing with the details of authoriza-
tion by promoting consistency and a centralized point of policy
enforcement. On the other hand, the proxy might not be able to
enforce fine-grained policies that are better handled at the back
end (e.g., “user A is authorized to modify resource B”).

In our experience, combining coarse-grained, centralized
authorization at the AP with fine-grained authorization at
the back end provides the best of both worlds. This approach
doesn’t result in much duplication of effort, since the applica-
tion-specific fine-grained policies tend to be largely orthogo-
nal to the enterprise-wide policies enforced by the front-end
infrastructure.

Mutual authentication between the proxy and the back end

Because the back end delegates access control to the front end,
it’s imperative that the back end can trust that the traffic it
receives has been authenticated and authorized by the front end.
This is especially important since the AP terminates the TLS
handshake, and the back end receives an HTTP request over an
encrypted channel.

Meeting this condition requires a mutual authentication scheme
capable of establishing encrypted channels—for example, you
might implement mutual TLS authentication and a corporate
public key infrastructure. Our solution is an internally developed
authentication and encryption framework called LOAS (Low
Overhead Authentication System) that bi-directionally authen
ticates and encrypts all communication from the proxy to the
back ends.

One benefit of mutual authentication and encryption between
the front end and back end is that the back end can trust any
additional metadata inserted by the AP (usually in the form of
extra HTTP headers). While adding metadata and using a cus-
tom protocol between the reverse proxy and the back ends isn’t
a novel approach (for example, see Apache JServe Protocol [4]),
the mutual authentication scheme between the AP ensures that
the metadata is not spoofable.

As an added benefit, we can also incrementally deploy new
features at the AP, which means that consenting back ends can
opt in by simply parsing the corresponding headers. We use this
functionality to propagate the device trust level to the back ends,
which can then adjust the level of detail served in the response.

30    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SECURITY
BeyondCorp Part III: The Access Proxy

The ACL language

Implementing a domain-specific language for ACLs was key in
tackling challenges of centralized authorization. The language
both allows us to compile ACLs statically (which aids perfor-
mance and testability) and helps reduce the logical gap between
the policy and its implementation. This strategy promotes sepa-
ration of duties among the following parties:

◆◆ The team that owns the security policy: Responsible for the
abstract and statically compiled specification of access decisions

◆◆ The team that owns the inventory pipeline: Responsible for
the concrete instantiation of a decision about granting access
to a resource based on the specific device and user requesting
access (see [2] for more details about the inventory pipeline)

◆◆ The team that owns the Access Control Engine: Respon-
sible for evaluating and executing the security policy

The ACL language works using first-match semantics, which
is similar to traditional firewall rules. While this model creates
well-studied corner cases (for example, rules which shadow each
other), we’ve found that the security team can reason about this
model relatively easily. The structure of the ACLs we currently
enforce consists of two macro-sections:

◆◆ Global rules: Usually coarse-grained and affect all services
and resources. For example, “Devices at a low tier are not al-
lowed to submit source code.”

◆◆ Service-specific rules: Specific to each service or hostname;
usually involve assertions about the user. For example, “Ven-
dors in group G are allowed access to Web application A.”

The above assumes that service owners can identify the sections
of their URL space that need policies. Service owners should
almost always be able to identify these sections, except for some
cases in which the differentiation occurs in the request body
(although the AP could be modified to handle this scenario). The
portion of the ACL dealing with service-specific rules inevitably
grows in size as the Access Proxy accounts for more and more
services with a business need for a specialized ACL.

The set of global rules is very handy during security escala-
tions (e.g., employee exit) and incident response (e.g., browser
exploits or stolen devices). For example, these rules helped us
successfully mitigate a zero-day vulnerability in third-party
plugins shipped with our Chrome browser. We created a new
high-priority rule that redirected out-of-date Chrome versions
to a page with update instructions, which was deployed and
enforced across the entire company within 30 minutes. As a
result, the observed population of vulnerable browsers dropped
very quickly.

Centralized Logging
In order to conduct proper incident response and forensic
analysis, it’s essential that all requests are logged to persistent
storage. The AP provides an ideal logging point. We log a subset
of the request headers, the HTTP response code, and metadata
relevant to debugging or reconstructing the access decision and
the ACL evaluation process. This metadata includes the device
identifier and the user identity associated with the request.

Features of the Access Proxy: Operational Scalability

Self-Service Provisioning
Once the Access Proxy infrastructure is in place, developers and
owners of enterprise applications have an incentive to configure
their services to be accessible via the proxy.

When Google began gradually limiting users’ network-level
access into corporate resources, most internal application
owners looked to the Access Proxy as the fastest solution to
keep their service available as the migration proceeded. It was
immediately clear that a single team couldn’t scale to handle
all changes to the AP’s configuration, so we structured the AP’s
configuration to facilitate self-service additions. Users retain
ownership of their fragment of the configuration, while the team
that owns the AP owns the build system that collates, tests,
canaries, and rolls out configurations.

This setup has a few main benefits:

◆◆ Frees the AP owners from continuously modifying the configu-
ration per user requests

◆◆ Encourages service owners to own their configuration frag-
ment (and write tests for it)

◆◆ Ensures a reasonable compromise between development
velocity and system stability

The time it takes to set up a service behind the AP has effectively
been reduced to minutes, while users are also able to iterate on
their configuration fragments without requesting support from
the team that owns the AP.

Challenges with Multi-Platform Authentication
Now that we’ve described the server side of BeyondCorp’s front
end—its implementation and the resulting challenges and com-
plications—we’ll take a similar view into the client side of this
model.

At minimum, performing proper device identification requires
two components:

◆◆ Some form of device identifier

◆◆ An inventory database tracking the latest known state of any
given device

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  31

SECURITY
BeyondCorp Part III: The Access Proxy

One goal of BeyondCorp is to replace trust in the network with
an appropriate level of trust in the device. Each device must have
a consistent, non-clonable identifier, while information about the
software, users, and location of the device must be integrated in
the inventory database. As discussed in the previous BeyondCorp
papers, building and maintaining a device inventory can be quite
challenging. The following subsections describe the challenges
and solutions related to device identification in more detail.

Desktops and Laptops
Desktops and laptops use an X.509 machine certificate and a
corresponding private key stored in the system certificate store.
Key storage, a standard feature of modern operating systems,
ensures that command-line tools (and daemons) that com-
municate with servers via the AP can be consistently matched
against the correct device identifier. Since TLS requires the
client to present a cryptographic proof of private key possession,
this implementation makes the identifier non-spoofable and
non-clonable, assuming it’s stored in secure hardware such as a
Trusted Platform Module (TPM).

This implementation has one main drawback: certificate
prompts tend to frustrate users. Thankfully, most browsers
support automatic certificate submission via policy or exten-
sion. Users might also be frustrated if the server rejects the TLS
handshake when the client presents an invalid certificate. A
failed TLS handshake results in a browser-specific error mes-
sage that can’t be customized. To mitigate this user experience
issue, the AP accepts TLS sessions that don’t have valid client
certificates, and presents an HTML deny page when required.

Mobile Devices
The policies to suppress certificate prompts discussed above
don’t exist on major mobile platforms. Instead of relying on cer-
tificates, we use a strong device identifier natively provided by
the mobile operating systems. For iOS devices, we use the identi-
fier ForVendor, while Android devices use the device ID reported
by the Enterprise Mobility Management application.

Special Cases and Exceptions
While we’ve been able to transition the vast majority of Web
applications to the Access Proxy over the past few years, some
special use cases either don’t naturally fit the model or need
some sort of special handling.

Non-HTTP Protocols
A number of enterprise applications at Google employ non-
HTTP protocols that require end-to-end encryption. In order to
serve these protocols through the AP, we wrap them in HTTP
requests.

Wrapping SSH traffic in HTTP over TLS is easy thanks to the
existing ProxyCommand facility. We developed a local proxy
which looks a lot like Corkscrew, except the bytes are wrapped
into WebSockets. While both WebSockets and HTTP CON-
NECT requests allow the AP to apply the ACLs, we opted to
use WebSockets over CONNECT because WebSockets natively
inherit user and device credentials from the browser.

In the cases of gRPC and TLS traffic, we wrapped the bytes
in an HTTP CONNECT request. Wrapping has the obvious
downside of imposing a (negligible) performance penalty on the
transported protocol. However, it has the important advantage of
separating device identification and user identification at differ-
ent layers of the protocol stack. Inventory-based access control
is a relatively new concept, so we frequently find that existing
protocols have native support for user authentication (e.g., both
LOAS and SSH provide this), but extending them with device
credentials is non-trivial.

Because we perform device identification on the TLS layer in the
wrapping CONNECT request, we don’t need to rewrite applica-
tions to make them aware of the device certificate. Consider the
SSH use case: the client and server can use SSH certificates to
perform user authentication, but SSH doesn’t natively support
device authentication. Furthermore, it would be impossible to
modify the SSH certificate to also convey device identification,
because SSH client certificates are portable by design: they
are expected to be used on multiple devices. Similar to how we
handle HTTP, the CONNECT wrapping ensures we properly
separate user and device authentication. While we use the TLS
client certificate to authenticate the device, we might use the
username and password to authenticate the user.

Remote Desktop
Chrome Remote Desktop, which is publicly available in the
Chrome code base [5], is the predominant remote desktop solu-
tion at Google. While wrapping protocols in HTTP works in
many cases, some protocols, like those powering remote desktop,
are especially sensitive to the additional latency imposed by
being routed through the AP.

In order to ensure that requests are properly authorized, Chrome
Remote Desktop introduces an HTTP-based authorization
server into the connection establishment flow. The server acts
as an authorizing third party between the Chromoting client and
the Chromoting host, while also helping the two entities share a
secret, operating similarly to Kerberos.

We implemented the authorization server as a simple back end
of the AP with a custom ACL. This solution has proven to work
very well: the extra latency of going through the AP is only paid
once per remote desktop session, and the Access Proxy can apply
the ACLs on each session creation request.

32    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SECURITY
BeyondCorp Part III: The Access Proxy

Third-Party Software
Third-party software has frequently proved troublesome, as
sometimes it can’t present TLS certificates, and sometimes it
assumes direct connectivity. In order to support these tools, we
developed a solution to automatically establish encrypted point-
to-point tunnels (using a TUN device). The software is unaware
of the tunnel, and behaves as if it’s directly connected to the
server. The tunnel setup mechanism is conceptually similar to
the solution for remote desktop:

◆◆ The client runs a helper to set up the tunnel.

◆◆ The server also runs a helper that acts as a back end of the AP.

◆◆ The AP enforces access control policies and facilitates the
exchange of session information and encryption keys between
the client and server helpers.

Lessons Learned
ACLs Are Complicated
We recommend the following best practices to mitigate the dif-
ficulties associated with ACLs:

◆◆ Ensure the language is generic. The AP’s ACL has changed
numerous times, and we’ve had to add new feeds (e.g., user and
group sources). Expect that you’ll need to regularly change the
available features, and ensure that the language itself won’t
hamper these changes.

◆◆ Launch ACLs as early as possible. The reasons for doing so
are twofold:

○○ Ensures that users become trained on the ACLs and poten-
tial reasons for denial sooner rather than later.

○○ Ensures that developers begin to adjust their code to
meet the requirements of the AP. For example, we had to
implement a cURL replacement to handle user and device
authentication.

◆◆ Make modifications self-service. As previously mentioned, a
single team that manages service-specific configuration doesn’t
scale to support multiple teams.

◆◆ Create a mechanism to pass data from the AP to the back
ends. As mentioned above, the AP can securely pass additional
data to the back end to allow it to perform fine-grained access
controls. Plan for this required functionality early.

Emergencies Happen
Have well-tested plans in place to handle inevitable emergen-
cies. Be sure to consider two major categories of emergencies:

◆◆ Production emergencies: Caused by outages or malfunctions
of critical components in the request serving path

◆◆ Security emergencies: Caused by urgent needs to grant/
revoke access to specific users and/or resources

Production Emergencies
In order to ensure the AP survives most outages, design and
operate it according to SRE best practices [3]. To survive poten-
tial data source outages, all of our data is periodically snapshot-
ted and available locally. We also designed AP repair paths that
don’t depend on the AP.

Security Emergencies
Security emergencies are more subtle than production emer-
gencies, as they’re easy to overlook when designing the access
infrastructure. Be sure to factor ACL push frequency and TLS
issues into user/device/session revocation.

User revocation is relatively straightforward: revoked users are
automatically added to a special group as part of the revocation
process, and one of the early global rules (see “The ACL lan-
guage,” above) in the ACL guarantees that these users are denied
access to any resource. Similarly, session tokens (e.g., OAuth and
OpenID Connect tokens) and certificates are sometimes leaked
or lost and therefore need to be revoked.

As discussed in the first BeyondCorp article [1], device identi-
fiers are untrusted until the device inventory pipeline reports
otherwise. This means that even losing the certificate authority
(CA) key (which implies inability to revoke certificates) doesn’t
imply losing control, because new certificates aren’t trusted
until they are properly catalogued in the inventory pipeline.

Given this ability, we decided to ignore certificate revocation
altogether: instead of publishing a certificate revocation list
(CRL), we treat certificates as immutable and simply down-
grade the inventory trust tier if we suspect the corresponding
private key is lost or leaked. Essentially, the inventory acts as a
whitelist of the accepted device identifiers, and there is no live
dependency on the CRL. The major downside of this approach
is that it might introduce additional delay. However, this delay
is relatively easy to solve by engineering fast-track propagation
between the inventory and the Access Proxy.

You need a standard, rapid-push process for ACLs in order to
ensure timely policy enforcement. Beyond a certain scale, you
must delegate at least part of the ACL definition process to
service owners, which leads to inevitable mistakes. While unit
tests and smoke tests can usually catch obvious mistakes, logic
errors will trickle through safeguards and make their way to
production. It’s important that engineers can quickly roll back
ACL changes to restore lost access or to lock down unintended
broad access. To cite our earlier zero-day vulnerability plugin
example, our ability to push ACLs rapidly was key to our incident
response team, as we could quickly create a custom ACL to force
users to update.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  33

SECURITY
BeyondCorp Part III: The Access Proxy

Engineers Need Support
Transitioning to the BeyondCorp world does not happen over-
night and requires coordination and interaction among multiple
teams. At large enterprise scale, it’s impossible to delegate the
entire transition to a single team. The migration will likely
involve some backwards-incompatible changes that need suf-
ficient management support.

The success of the transition largely depends on how easy it is
for teams to successfully set up their service behind the Access
Proxy. Making the lives of developers easier should be a primary
goal, so keep the number of surprises to a minimum. Provide
sane defaults, create walkthrough guides for the most common
use cases, and invest in documentation. Provide sandboxes for
the more advanced and complicated changes—for example, you
can set up separate instances of the Access Proxy that the load
balancer intentionally ignores but that developers can reach (e.g.,
temporarily overriding their DNS configuration). Sandboxes
have proven extremely useful in numerous cases, like when we
needed to make sure that clients would be able to handle TLS
connections after major changes to the X.509 certificates or to
the underlying TLS library.

Looking Forward
While our front-end implementation of BeyondCorp has been
largely quite successful, we still have a few pain points. Perhaps
most obvious, desktops and laptops use certificates to authenti-
cate, while mobile devices use a different device identifier. Cer-
tificate rotations are still painful, as presenting a new certificate
requires a browser restart to ensure that existing sockets are
closed.

To address both of these issues, we’re planning to migrate
desktops and laptops to the mobile model, which will remove the
need for certificates. To carry out the migration, we plan to build
a desktop device manager, which will look quite similar to the
mobile device manager. It will provide a common identifier in the
form of a Device-User-Session-ID (DUSI) that’s shared across
all browsers and tools using a common OAuth token-granting
daemon. Once the migration is complete, we’ll no longer need to
authenticate desktops and laptops via a certificate, and all con-
trols can migrate to use the DUSI consistently across all OSes.

Conclusion
Google’s implementation of the Access Proxy as a core compo-
nent of BeyondCorp is specific to our infrastructure and use
cases. The design we ultimately implemented is well aligned
with common SRE best practices and has proven to be very
stable and scalable—the AP has grown by a number of orders of
magnitude over the course of its deployment.

Any organization seeking to implement a similar security model
can apply the same fundamental principles of creating and
deploying a solution similar to the AP. We hope that by sharing
our solutions to challenges like multi-platform authentication
and special cases and exceptions, and the lessons we learned
during this project, our experience can help other organizations
to undertake similar solutions with minimal pain.

References
[1] R. Ward and B. Beyer, “BeyondCorp: A New Approach to
Enterprise Security,” ;login:, vol. 39, no. 6 (December 2014):
https://www.usenix.org/system/files/login/articles/login
_dec14_02_ward.pdf.

[2] B. Osborn, J. McWilliams, B. Beyer, and M. Saltonstall,
“BeyondCorp: Design to Deployment at Google,” ;login:, vol. 41,
no. 1 (Spring 2016): https://www.usenix.org/system/files
/login/articles/login_spring16_06_osborn.pdf.

[3] B. Beyer, C. Jones, J. Petoff, and N. Murphy, eds., Site Reli-
ability Engineering (O’Reilly Media, 2016).

[4] Apache JServer Protocol: https://tomcat.apache.org
/connectors-doc/ajp/ajpv13ext.html.

[5] https://src.chromium.org/viewvc/chrome/trunk/src
/remoting/.

