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This article details the implementation of BeyondCorp’s front-end 
infrastructure. It focuses on the Access Proxy, the challenges we 
encountered in its implementation and the lessons we learned in its 

design and rollout. We also touch on some of the projects we’re currently 
undertaking to improve the overall user experience for employees accessing 
internal applications. 

In migrating to the BeyondCorp model (previously discussed in “BeyondCorp: A New 
Approach to Enterprise Security” [1] and “BeyondCorp: Design to Deployment at Google” [2]), 
Google had to solve a number of problems. Figuring out how to enforce company policy 
across all our internal-only services was one notable challenge. A conventional approach 
might integrate each back end with the device Trust Inferer in order to evaluate applicable 
policies; however, this approach would significantly slow the rate at which we’re able to 
launch and change products. 

To address this challenge, Google implemented a centralized policy enforcement front-end 
Access Proxy (AP) to handle coarse-grained company policies. Our implementation of the 
AP is generic enough to let us implement logically different gateways using the same AP 
codebase. At the moment, the Access Proxy implements both the Web Proxy and the SSH 
gateway components discussed in [2]. As the AP was the only mechanism that allowed 
employees to access internal HTTP services, we required all internal services to migrate 
behind the AP.

Unsurprisingly, initial attempts that dealt only with HTTP requests proved inadequate, so 
we had to provide solutions for additional protocols, many of which required end-to-end 
encryption (e.g., SSH). These additional protocols necessitated a number of client-side 
changes to ensure that the device was properly identified to the AP.

The combination of the AP and an Access Control Engine (a shared ACL evaluator) for 
all entry points provided two main benefits. By supplying a common logging point for all 
requests, it allowed us to perform forensic analysis more effectively. We were also able to 
make changes to enforcement policies much more quickly and consistently than before. 

BeyondCorp’s Front-End Infrastructure
Any modern Web application deployed at scale employs front-end infrastructure, which is 
typically a combination of load balancers and/or reverse HTTP proxies. Enterprise Web 
applications are no exception, and the front-end infrastructure provides the ideal place to 
deploy policy enforcement points. As such, Google’s front-end infrastructure occupies a 
critical position in BeyondCorp’s enforcement of access policies.

The main components of Google’s front-end infrastructure are a fleet of HTTP/HTTPS 
reverse proxies called Google Front Ends (GFEs [3]). GFEs provide a number of benefits, 
such as load balancing and TLS handling “as a service.” As a result, Web application back 
ends can focus on serving requests and largely ignore the details of how requests are routed.
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BeyondCorp leverages the GFE as a logically centralized point of 
access policy enforcement. Funneling requests in this manner 
led us to naturally extend the GFE to provide other features, 
including self-service provisioning, authentication, authoriza-
tion, and centralized logging. The resulting extended GFE is 
called the Access Proxy (AP). The following section details the 
specifics of the services the Access Proxy offers.

Features of the Extended GFE: Product Requirements
The GFE provides some built-in benefits that weren’t designed 
specifically for BeyondCorp: it both provides load balancing for 
the back ends and addresses TLS handling by delegating TLS 
management to the GFE. The AP extends the GFE by introduc-
ing authentication and authorization policies.

Authentication
In order to properly authorize a request, the AP needs to identify 
the user and the device making the request. Authenticating 
the device poses a number of challenges in a multi-platform 
context, which we address in a later section, “Challenges with 
Multi-Platform Authentication.” This section focuses on user 
authentication.

The AP verifies user identities by integrating with Google’s 
Identity Provider (IdP). Because it isn’t scalable to require 
back-end services to change their authentication mechanisms  
in order to use the AP mechanism, the AP needs to support a 
range of authentication options: OpenID Connect, OAuth, and 
some custom protocols.

The AP also needs to handle requests made without user 
credentials, e.g., a software management system attempting to 
download the latest security updates. In these cases, the AP 
can disable user authentication. 

When the AP authenticates the user, it strips the credential 
before sending the request to the back end. Doing so is essential 
for two reasons: 

◆◆ The back end can’t replay the request (or the credential) 
through the Access Proxy.

◆◆ The proxy is transparent to the back ends. As a result, the back 
ends can implement their own authentication flows on top of 
the Access Proxy’s flow, and won’t observe any unexpected 
cookies or credentials.

Authorization
Two design choices drove our implementation of the authoriza-
tion mechanism in a BeyondCorp world: 

◆◆ A centralized Access Control List (ACL) Engine queryable via 
Remote Procedure Calls (RPCs)

◆◆ A domain-specific language to express the ACLs that is both 
readable and extensible

Providing ACL evaluation as a service enables us to guaran-
tee consistency across multiple front-end gateways (e.g., the 
RADIUS network access control infrastructure, the AP, and 
SSH proxies).

Providing centralized authorization has both benefits and 
drawbacks. On the one hand, an authorizing front end frees 
back-end developers from dealing with the details of authoriza-
tion by promoting consistency and a centralized point of policy 
enforcement. On the other hand, the proxy might not be able to 
enforce fine-grained policies that are better handled at the back 
end (e.g., “user A is authorized to modify resource B”).

In our experience, combining coarse-grained, centralized 
authorization at the AP with fine-grained authorization at 
the back end provides the best of both worlds. This approach 
doesn’t result in much duplication of effort, since the applica-
tion-specific fine-grained policies tend to be largely orthogo-
nal to the enterprise-wide policies enforced by the front-end 
infrastructure.

Mutual authentication between the proxy and the back end

Because the back end delegates access control to the front end, 
it’s imperative that the back end can trust that the traffic it 
receives has been authenticated and authorized by the front end. 
This is especially important since the AP terminates the TLS 
handshake, and the back end receives an HTTP request over an 
encrypted channel.

Meeting this condition requires a mutual authentication scheme 
capable of establishing encrypted channels—for example, you 
might implement mutual TLS authentication and a corporate 
public key infrastructure. Our solution is an internally developed 
authentication and encryption framework called LOAS (Low 
Overhead Authentication System) that bi-directionally authen
ticates and encrypts all communication from the proxy to the 
back ends.

One benefit of mutual authentication and encryption between 
the front end and back end is that the back end can trust any 
additional metadata inserted by the AP (usually in the form of 
extra HTTP headers). While adding metadata and using a cus-
tom protocol between the reverse proxy and the back ends isn’t 
a novel approach (for example, see Apache JServe Protocol [4]), 
the mutual authentication scheme between the AP ensures that 
the metadata is not spoofable.

As an added benefit, we can also incrementally deploy new 
features at the AP, which means that consenting back ends can 
opt in by simply parsing the corresponding headers. We use this 
functionality to propagate the device trust level to the back ends, 
which can then adjust the level of detail served in the response.
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The ACL language

Implementing a domain-specific language for ACLs was key in 
tackling challenges of centralized authorization. The language 
both allows us to compile ACLs statically (which aids perfor-
mance and testability) and helps reduce the logical gap between 
the policy and its implementation. This strategy promotes sepa-
ration of duties among the following parties:

◆◆ The team that owns the security policy: Responsible for the 
abstract and statically compiled specification of access decisions

◆◆ The team that owns the inventory pipeline: Responsible for 
the concrete instantiation of a decision about granting access 
to a resource based on the specific device and user requesting 
access (see [2] for more details about the inventory pipeline)

◆◆ The team that owns the Access Control Engine: Respon-
sible for evaluating and executing the security policy

The ACL language works using first-match semantics, which 
is similar to traditional firewall rules. While this model creates 
well-studied corner cases (for example, rules which shadow each 
other), we’ve found that the security team can reason about this 
model relatively easily. The structure of the ACLs we currently 
enforce consists of two macro-sections:

◆◆ Global rules: Usually coarse-grained and affect all services 
and resources. For example, “Devices at a low tier are not al-
lowed to submit source code.”

◆◆ Service-specific rules: Specific to each service or hostname; 
usually involve assertions about the user. For example, “Ven-
dors in group G are allowed access to Web application A.”

The above assumes that service owners can identify the sections 
of their URL space that need policies. Service owners should 
almost always be able to identify these sections, except for some 
cases in which the differentiation occurs in the request body 
(although the AP could be modified to handle this scenario). The 
portion of the ACL dealing with service-specific rules inevitably 
grows in size as the Access Proxy accounts for more and more 
services with a business need for a specialized ACL. 

The set of global rules is very handy during security escala-
tions (e.g., employee exit) and incident response (e.g., browser 
exploits or stolen devices). For example, these rules helped us 
successfully mitigate a zero-day vulnerability in third-party 
plugins shipped with our Chrome browser. We created a new 
high-priority rule that redirected out-of-date Chrome versions 
to a page with update instructions, which was deployed and 
enforced across the entire company within 30 minutes. As a 
result, the observed population of vulnerable browsers dropped 
very quickly.

Centralized Logging
In order to conduct proper incident response and forensic 
analysis, it’s essential that all requests are logged to persistent 
storage. The AP provides an ideal logging point. We log a subset 
of the request headers, the HTTP response code, and metadata 
relevant to debugging or reconstructing the access decision and 
the ACL evaluation process. This metadata includes the device 
identifier and the user identity associated with the request.

Features of the Access Proxy: Operational Scalability

Self-Service Provisioning
Once the Access Proxy infrastructure is in place, developers and 
owners of enterprise applications have an incentive to configure 
their services to be accessible via the proxy.

When Google began gradually limiting users’ network-level 
access into corporate resources, most internal application 
owners looked to the Access Proxy as the fastest solution to 
keep their service available as the migration proceeded. It was 
immediately clear that a single team couldn’t scale to handle 
all changes to the AP’s configuration, so we structured the AP’s 
configuration to facilitate self-service additions. Users retain 
ownership of their fragment of the configuration, while the team 
that owns the AP owns the build system that collates, tests, 
canaries, and rolls out configurations.

This setup has a few main benefits:

◆◆ Frees the AP owners from continuously modifying the configu-
ration per user requests

◆◆ Encourages service owners to own their configuration frag-
ment (and write tests for it)

◆◆ Ensures a reasonable compromise between development 
velocity and system stability

The time it takes to set up a service behind the AP has effectively 
been reduced to minutes, while users are also able to iterate on 
their configuration fragments without requesting support from 
the team that owns the AP.

Challenges with Multi-Platform Authentication
Now that we’ve described the server side of BeyondCorp’s front 
end—its implementation and the resulting challenges and com-
plications—we’ll take a similar view into the client side of this 
model.

At minimum, performing proper device identification requires 
two components:

◆◆ Some form of device identifier

◆◆ An inventory database tracking the latest known state of any 
given device
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One goal of BeyondCorp is to replace trust in the network with 
an appropriate level of trust in the device. Each device must have 
a consistent, non-clonable identifier, while information about the 
software, users, and location of the device must be integrated in 
the inventory database. As discussed in the previous BeyondCorp 
papers, building and maintaining a device inventory can be quite 
challenging. The following subsections describe the challenges 
and solutions related to device identification in more detail.

Desktops and Laptops
Desktops and laptops use an X.509 machine certificate and a 
corresponding private key stored in the system certificate store. 
Key storage, a standard feature of modern operating systems, 
ensures that command-line tools (and daemons) that com-
municate with servers via the AP can be consistently matched 
against the correct device identifier. Since TLS requires the 
client to present a cryptographic proof of private key possession, 
this implementation makes the identifier non-spoofable and 
non-clonable, assuming it’s stored in secure hardware such as a 
Trusted Platform Module (TPM).

This implementation has one main drawback: certificate 
prompts tend to frustrate users. Thankfully, most browsers 
support automatic certificate submission via policy or exten-
sion. Users might also be frustrated if the server rejects the TLS 
handshake when the client presents an invalid certificate. A 
failed TLS handshake results in a browser-specific error mes-
sage that can’t be customized. To mitigate this user experience 
issue, the AP accepts TLS sessions that don’t have valid client 
certificates, and presents an HTML deny page when required.

Mobile Devices
The policies to suppress certificate prompts discussed above 
don’t exist on major mobile platforms. Instead of relying on cer-
tificates, we use a strong device identifier natively provided by 
the mobile operating systems. For iOS devices, we use the identi-
fier ForVendor, while Android devices use the device ID reported 
by the Enterprise Mobility Management application.

Special Cases and Exceptions
While we’ve been able to transition the vast majority of Web 
applications to the Access Proxy over the past few years, some 
special use cases either don’t naturally fit the model or need 
some sort of special handling.

Non-HTTP Protocols
A number of enterprise applications at Google employ non-
HTTP protocols that require end-to-end encryption. In order to 
serve these protocols through the AP, we wrap them in HTTP 
requests.

Wrapping SSH traffic in HTTP over TLS is easy thanks to the 
existing ProxyCommand facility. We developed a local proxy 
which looks a lot like Corkscrew, except the bytes are wrapped 
into WebSockets. While both WebSockets and HTTP CON-
NECT requests allow the AP to apply the ACLs, we opted to 
use WebSockets over CONNECT because WebSockets natively 
inherit user and device credentials from the browser.

In the cases of gRPC and TLS traffic, we wrapped the bytes 
in an HTTP CONNECT request. Wrapping has the obvious 
downside of imposing a (negligible) performance penalty on the 
transported protocol. However, it has the important advantage of 
separating device identification and user identification at differ-
ent layers of the protocol stack. Inventory-based access control 
is a relatively new concept, so we frequently find that existing 
protocols have native support for user authentication (e.g., both 
LOAS and SSH provide this), but extending them with device 
credentials is non-trivial.

Because we perform device identification on the TLS layer in the 
wrapping CONNECT request, we don’t need to rewrite applica-
tions to make them aware of the device certificate. Consider the 
SSH use case: the client and server can use SSH certificates to 
perform user authentication, but SSH doesn’t natively support 
device authentication. Furthermore, it would be impossible to 
modify the SSH certificate to also convey device identification, 
because SSH client certificates are portable by design: they 
are expected to be used on multiple devices. Similar to how we 
handle HTTP, the CONNECT wrapping ensures we properly 
separate user and device authentication. While we use the TLS 
client certificate to authenticate the device, we might use the 
username and password to authenticate the user.

Remote Desktop
Chrome Remote Desktop, which is publicly available in the 
Chrome code base [5], is the predominant remote desktop solu-
tion at Google. While wrapping protocols in HTTP works in 
many cases, some protocols, like those powering remote desktop, 
are especially sensitive to the additional latency imposed by 
being routed through the AP. 

In order to ensure that requests are properly authorized, Chrome 
Remote Desktop introduces an HTTP-based authorization 
server into the connection establishment flow. The server acts 
as an authorizing third party between the Chromoting client and 
the Chromoting host, while also helping the two entities share a 
secret, operating similarly to Kerberos.

We implemented the authorization server as a simple back end 
of the AP with a custom ACL. This solution has proven to work 
very well: the extra latency of going through the AP is only paid 
once per remote desktop session, and the Access Proxy can apply 
the ACLs on each session creation request.
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Third-Party Software
Third-party software has frequently proved troublesome, as 
sometimes it can’t present TLS certificates, and sometimes it 
assumes direct connectivity. In order to support these tools, we 
developed a solution to automatically establish encrypted point-
to-point tunnels (using a TUN device). The software is unaware 
of the tunnel, and behaves as if it’s directly connected to the 
server. The tunnel setup mechanism is conceptually similar to 
the solution for remote desktop: 

◆◆ The client runs a helper to set up the tunnel.

◆◆ The server also runs a helper that acts as a back end of the AP.

◆◆ The AP enforces access control policies and facilitates the 
exchange of session information and encryption keys between 
the client and server helpers.

Lessons Learned
ACLs Are Complicated
We recommend the following best practices to mitigate the dif-
ficulties associated with ACLs:

◆◆ Ensure the language is generic. The AP’s ACL has changed 
numerous times, and we’ve had to add new feeds (e.g., user and 
group sources). Expect that you’ll need to regularly change the 
available features, and ensure that the language itself won’t 
hamper these changes.

◆◆ Launch ACLs as early as possible. The reasons for doing so 
are twofold: 

○○ Ensures that users become trained on the ACLs and poten-
tial reasons for denial sooner rather than later.

○○ Ensures that developers begin to adjust their code to 
meet the requirements of the AP. For example, we had to 
implement a cURL replacement to handle user and device 
authentication.

◆◆ Make modifications self-service. As previously mentioned, a 
single team that manages service-specific configuration doesn’t 
scale to support multiple teams.

◆◆ Create a mechanism to pass data from the AP to the back 
ends. As mentioned above, the AP can securely pass additional 
data to the back end to allow it to perform fine-grained access 
controls. Plan for this required functionality early. 

Emergencies Happen
Have well-tested plans in place to handle inevitable emergen-
cies. Be sure to consider two major categories of emergencies: 

◆◆ Production emergencies: Caused by outages or malfunctions 
of critical components in the request serving path

◆◆ Security emergencies: Caused by urgent needs to grant/ 
revoke access to specific users and/or resources

Production Emergencies
In order to ensure the AP survives most outages, design and 
operate it according to SRE best practices [3]. To survive poten-
tial data source outages, all of our data is periodically snapshot-
ted and available locally. We also designed AP repair paths that 
don’t depend on the AP.

Security Emergencies
Security emergencies are more subtle than production emer-
gencies, as they’re easy to overlook when designing the access 
infrastructure. Be sure to factor ACL push frequency and TLS 
issues into user/device/session revocation. 

User revocation is relatively straightforward: revoked users are 
automatically added to a special group as part of the revocation 
process, and one of the early global rules (see “The ACL lan-
guage,” above) in the ACL guarantees that these users are denied 
access to any resource. Similarly, session tokens (e.g., OAuth and 
OpenID Connect tokens) and certificates are sometimes leaked 
or lost and therefore need to be revoked. 

As discussed in the first BeyondCorp article [1], device identi-
fiers are untrusted until the device inventory pipeline reports 
otherwise. This means that even losing the certificate authority 
(CA) key (which implies inability to revoke certificates) doesn’t 
imply losing control, because new certificates aren’t trusted 
until they are properly catalogued in the inventory pipeline.

Given this ability, we decided to ignore certificate revocation 
altogether: instead of publishing a certificate revocation list 
(CRL), we treat certificates as immutable and simply down-
grade the inventory trust tier if we suspect the corresponding 
private key is lost or leaked. Essentially, the inventory acts as a 
whitelist of the accepted device identifiers, and there is no live 
dependency on the CRL. The major downside of this approach 
is that it might introduce additional delay. However, this delay 
is relatively easy to solve by engineering fast-track propagation 
between the inventory and the Access Proxy.

You need a standard, rapid-push process for ACLs in order to 
ensure timely policy enforcement. Beyond a certain scale, you 
must delegate at least part of the ACL definition process to 
service owners, which leads to inevitable mistakes. While unit 
tests and smoke tests can usually catch obvious mistakes, logic 
errors will trickle through safeguards and make their way to 
production. It’s important that engineers can quickly roll back 
ACL changes to restore lost access or to lock down unintended 
broad access. To cite our earlier zero-day vulnerability plugin 
example, our ability to push ACLs rapidly was key to our incident 
response team, as we could quickly create a custom ACL to force 
users to update.
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Engineers Need Support
Transitioning to the BeyondCorp world does not happen over-
night and requires coordination and interaction among multiple 
teams. At large enterprise scale, it’s impossible to delegate the 
entire transition to a single team. The migration will likely 
involve some backwards-incompatible changes that need suf-
ficient management support. 

The success of the transition largely depends on how easy it is 
for teams to successfully set up their service behind the Access 
Proxy. Making the lives of developers easier should be a primary 
goal, so keep the number of surprises to a minimum. Provide 
sane defaults, create walkthrough guides for the most common 
use cases, and invest in documentation. Provide sandboxes for 
the more advanced and complicated changes—for example, you 
can set up separate instances of the Access Proxy that the load 
balancer intentionally ignores but that developers can reach (e.g., 
temporarily overriding their DNS configuration). Sandboxes 
have proven extremely useful in numerous cases, like when we 
needed to make sure that clients would be able to handle TLS 
connections after major changes to the X.509 certificates or to 
the underlying TLS library.

Looking Forward
While our front-end implementation of BeyondCorp has been 
largely quite successful, we still have a few pain points. Perhaps 
most obvious, desktops and laptops use certificates to authenti-
cate, while mobile devices use a different device identifier. Cer-
tificate rotations are still painful, as presenting a new certificate 
requires a browser restart to ensure that existing sockets are 
closed. 

To address both of these issues, we’re planning to migrate 
desktops and laptops to the mobile model, which will remove the 
need for certificates. To carry out the migration, we plan to build 
a desktop device manager, which will look quite similar to the 
mobile device manager. It will provide a common identifier in the 
form of a Device-User-Session-ID (DUSI) that’s shared across 
all browsers and tools using a common OAuth token-granting 
daemon. Once the migration is complete, we’ll no longer need to 
authenticate desktops and laptops via a certificate, and all con-
trols can migrate to use the DUSI consistently across all OSes.

Conclusion
Google’s implementation of the Access Proxy as a core compo-
nent of BeyondCorp is specific to our infrastructure and use 
cases. The design we ultimately implemented is well aligned 
with common SRE best practices and has proven to be very 
stable and scalable—the AP has grown by a number of orders of 
magnitude over the course of its deployment. 

Any organization seeking to implement a similar security model 
can apply the same fundamental principles of creating and 
deploying a solution similar to the AP. We hope that by sharing 
our solutions to challenges like multi-platform authentication 
and special cases and exceptions, and the lessons we learned 
during this project, our experience can help other organizations 
to undertake similar solutions with minimal pain.
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