
Protecting accounts from credential stuffing with password breach alerting

Kurt Thomas∗ Jennifer Pullman∗ Kevin Yeo∗ Ananth Raghunathan∗

Patrick Gage Kelley∗ Luca Invernizzi∗ Borbala Benko∗ Tadek Pietraszek∗

Sarvar Patel∗ Dan Boneh� Elie Bursztein∗

Google∗ Stanford�

Abstract
Protecting accounts from credential stuffing attacks remains
burdensome due to an asymmetry of knowledge: attackers
have wide-scale access to billions of stolen usernames and
passwords, while users and identity providers remain in the
dark as to which accounts require remediation. In this paper,
we propose a privacy-preserving protocol whereby a client can
query a centralized breach repository to determine whether
a specific username and password combination is publicly
exposed, but without revealing the information queried. Here,
a client can be an end user, a password manager, or an identity
provider. To demonstrate the feasibility of our protocol, we
implement a cloud service that mediates access to over 4
billion credentials found in breaches and a Chrome extension
serving as an initial client. Based on anonymous telemetry
from nearly 670,000 users and 21 million logins, we find that
1.5% of logins on the web involve breached credentials. By
alerting users to this breach status, 26% of our warnings result
in users migrating to a new password, at least as strong as
the original. Our study illustrates how secure, democratized
access to password breach alerting can help mitigate one
dimension of account hijacking.

1 Introduction

The wide-spread availability of usernames and passwords
exposed by data breaches has trivialized criminal access to
billions of accounts. In the last two years alone, breach com-
pilations like Antipublic (450 million credentials), Exploit.in
(600 million credentials), and Collection 1-5 (2.2 billion cre-
dentials) have steadily grown as their creators aggregated
material shared on underground forums [24, 28]. Despite the
public nature of this data, it remains no less potent. Previ-
ous studies have shown that 6.9% of breached credentials
remain valid due to reuse, even multiple years after their ini-
tial exposure [54]. Absent defense in depth techniques that
expand authentication to include a user’s location and de-
vice details [15, 20], hijackers need only conduct a credential

stuffing attack—attempting to log in with every breached
credential—to isolate vulnerable accounts.

While users (or identity providers) can mitigate this hi-
jacking risk by resetting an account’s password, in practice,
discovering which accounts require attention remains a crit-
ical barrier. This has given rise to breach alerting services
like HaveIBeenPwned and PasswordPing that actively source
breached credentials to notify affected users [29, 46]. At
present, these services make a variety of tradeoffs spanning
user privacy, accuracy, and the risks involved with sharing
ostensibly private account details through unauthenticated
public channels. One consequence of these tradeoffs is that
users may receive inaccurate remediation advice due to false
positives. For example, both Firefox and LastPass check the
breach status of usernames to encourage password reset-
ting [16,45], but they lack context for whether the user’s pass-
word was actually exposed for a specific site or whether it was
previously reset. Equally problematic, other schemes implic-
itly trust breach alerting services to properly handle plaintext
usernames and passwords provided as part of a lookup. This
makes breach alerting services a liability in the event they
become compromised (or turn out to be adversarial).

In this paper, we present the design, implementation, and
deployment of a new privacy-preserving protocol that allows
a client to learn whether their username and password ap-
pears in a breach without revealing the information queried.
Our protocol offers two main advantages compared to exist-
ing schemes. First, our design takes into account the threat
of both an adversarial client (e.g., an attacker attempting to
steal usernames and passwords from our service) and an ad-
versarial server (e.g., an attacker harvesting usernames and
passwords sent to the service). We address these risks us-
ing a combination of computationally expensive hashing, k-
anonymity, and private set intersection. Second, these privacy
requirements allow us to check a client’s exact username and
password against a database of breached credentials (versus
only usernames, or only passwords currently), thus reducing
false positives that lead to warning fatigue.

To demonstrate the feasibility of our protocol, we publicly

released a Chrome extension that warns users when they log
in to a website using one of over 4 billion breached usernames
and passwords. While in theory any identity provider or pass-
word manager can integrate with our protocol, we opted for
in-browser alerting first as it scales to the long tail of domains.
Nearly 670,000 users from around the world installed our
extension over a period of February 5–March 4, 2019. During
this measurement window, we detected that 1.5% of over 21
million logins were vulnerable due to relying on a breached
credential—or one warning for every two users. By alerting
users to this breach status, 26% of our warnings resulted in
users migrating to a new password. Of these new passwords,
94% were at least as strong as the original.

Anonymous telemetry reported by our extension reveals
that users reused breached credentials on over 746,000 dis-
tinct domains. The risk of hijacking was highest for video
streaming and adult sites, where 3.6–6.3% of logins relied
on breached credentials. Conversely, users appeared to inter-
nalize password security advice (or were forced to do so via
password composition policies) specifically for financial and
government sites, where only 0.2–0.3% of logins involved
breached credentials. Despite variations across industries, our
analysis reveals that the threat of credential stuffing extends
well into the long tail of the Internet. Absent new forms of au-
thentication, we believe that it is critical to democratize access
to breach alerting so that both users and identity providers
can proactively resecure their accounts.

In summary, we frame our key contributions as follows:

• We develop and publicly release a new protocol for
detecting whether a username and password pair ap-
pears in a data breach without revealing the informa-
tion queried. Our protocol improves on the privacy of
existing schemes while also reducing the risk of false
positives.

• We outline the technical challenges of deploying this
scheme in practice, including the computational over-
head, latency, and cost required to mediate access to over
4 billion breached usernames and passwords.

• Based on a real-world deployment, we find that 1.5% of
logins across the web involve breached credentials. We
caution this is a lower bound as logins are not unique.
Roughly one in two of our 670,000 users received a
warning.

• Users responded to 26% of our warnings by resetting
their password; 94% of new passwords were as strong
or stronger than the original passwords.

2 Background and requirements

To start, we establish the design principles and threat model
that underpin our breach alerting protocol. We compare these

Client Server

CreateRequest(u,p)

LS

CreateResponse(S, Req)

Verdict(Resp, LS)
{true, false}

Req

Resp

Figure 1: Abstract protocol for a breach alerting service. At a
high level, a client generates a request based on some compu-
tation over a username and password. The server then returns
a response that allows the client to arrive at a verdict for
whether their credential is in a breach.

requirements against existing solutions from HaveIBeen-
Pwned and PasswordPing—as well as related cryptographic
protocols like private information retrieval and oblivious
transfer—to highlight the tradeoffs that all of these approaches
make in terms of privacy, overhead, accuracy, and trust.

2.1 Abstract protocol
We provide an abstract protocol for our breach alerting ser-
vice in Figure 1. We reuse these function names and termi-
nology throughout our work. Here, a client with access to
a username and password tuple (u,p) executes some com-
putation via CreateRequest(u,p) that produces a local state
LS and request Req that it sends to the breach alerting ser-
vice. This service stores and regularly updates a database of
unsafe credentials S= {(u1,p1), . . . ,(un,pn)}. Upon receiv-
ing a request, the server accesses its credential store S, runs
CreateResponse(S,Req), and sends the resulting response
Resp to the client. Finally, the client arrives at a verdict
whether the credential queried was exposed through a breach
by calculating Verdict(Resp,LS). Because new breaches
emerge over time, a client should regularly repeat this process
as prior verdicts may no longer be valid.

2.2 Design principles

Democratized access: At present, identity providers indi-
vidually collect breached password data to reset their af-
fected user accounts [5, 61]. This fails to scale to all identity
providers, resulting in patchy protection across services and
incidents. Any breach alerting service should be accessible to
all end users and identity providers, and as such, not require
trust between the parties involved. This means we cannot
rely on authenticated accounts as a form of rate limiting. We
define trust more formally in our threat model in Section 2.3.

Actionable, not informational: Any breach alerting service
should provide users with accurate and actionable security ad-

vice such as re-securing an account via a password reset. An
alert that warns a client about the mere presence of exposed
data such as a client’s email address, phone number, or physi-
cal address lacks a straightforward recovery step and is thus
out of scope for our design. Similarly, an alert merely warning
a client that password material was exposed (rather than the
specific password involved) may lead to false positives.

Breached, not weak: Alerting should only trigger when all
the information necessary to access an account (e.g., a user-
name and password) is exposed. While cracking dictionar-
ies (often composed from breached passwords) may include
a client’s weak, guessable password, any subsequent attack
potentially requires multiple guesses and thus represents a
smaller threat than full credential exposure. We assume that
most online services employ sufficient throttling to make such
bruteforcing impractical. Conversely, attacks against exact
username and password pairs are actively deployed in the
wild. Indeed, Thomas et al. showed that users with non-stale
credentials exposed by third-party breaches were ten times
more likely to become hijacked than a random user [54]. Our
emphasis on breached credentials helps us prioritize scarce
user attention [7] and avoid potential warning fatigue sim-
ilar to other warning models [3]. While migrating users to
stronger passwords in general remains an important task, it is
out of scope for our design.

Near real-time: The time that elapses between a client query-
ing a credential and learning its breach status should be near
real-time in order to facilitate integration directly with ac-
count security flows, password managers, or upon password
entry. This potentially constrains the level of privacy protec-
tions provided by any protocol due to computational overhead
and network latency of any cryptographic primitives involved.

2.3 Threat model

Democratized access hinges on mutual distrust between a
client and the server involved in our breach alerting proto-
col. We develop our threat model with both an adversar-
ial client and adversarial server in mind. In the case of an
adversarial client with access to their own breach dataset
D= {(u1,p1), . . . ,(un,pn)}, the attacker seeks to learn u ∈
S−D (e.g., a new email to spam), p ∈ S−D (e.g., a new
password to add to a cracking dictionary), or a new credential
(u,p) ∈ S−D. In the case of an adversarial server where a
client has access to (u,p), the threat landscape is larger. An
adversarial server may learn the client’s identity u (even if
u ∈ S, this enables tracking), a client’s password p (even if
p ∈ S, this identifies active usage), or the credential (u,p)
(even if (u,p) ∈ S).

To address these threats, we outline the minimum security
and privacy requirements any implementation of the abstract
protocol previously outlined in Figure 1 must satisfy. In the
security notions discussed below, we work with anonymity

sets (denoted K) that describe a set of values (in our case,
user credentials) that are large enough to give clients plausi-
ble deniability about their data even if their membership in
K is revealed. These sets must be carefully defined to avoid
trivial constructions that are insecure. At a high-level, they
must have a sufficiently large support jointly over usernames
and passwords (to aid in plausible deniability regarding both),
should “partition” the space of credentials in a somewhat
uniform manner independent of any actual usernames or pass-
words, and roughly all values in an anonymity set should be
equally likely to be the client’s credentials. (A full discussion
is deferred to Appendix A.)

Requester credential anonymity: A protocol provides re-
quester credential anonymity if for every credential (u1,p1),
there exists a sufficiently large anonymity set K containing
(u1,p1) such that ∀(u2,p2) ∈ K:

CreateRequest(u1,p1)≈ CreateRequest(u2,p2). (1)

For two distributions A and B, we let A≈ B denote the com-
putational indistinguishablity of the two distributions—that
no efficient adversary given samples from A and B can distin-
guish them apart much better than randomly guessing. Thus,
clients with credentials from the same anonymity set cre-
ate requests that are indistinguishable to the server. While a
minimum |K| likely depends on the sensitivities of the client
involved, we set an initial threshold at |K|> 50,000. While
the IP address tied to a client’s request reduces |K|, a client
can rely on a mix network such as Tor to prevent this leakage.
IP address anonymity is out of scope of our threat model.

Responses with bounded leakage: Given a request for
(u,p), the response from a breach alerting service should
bound the information leaked, denoted L, about the mem-
bership of other credentials in S. To do this, we require an
efficient simulator Sim that given only L can act as the server
without being noticed by the client:

CreateResponse(S,Req)≈ Sim(L,Req). (2)

The presence of a successful simulator shows that the client
may learn at most L by looking at responses from the server.
Ideally, we want leakage to consist of only the membership
of the queried credential and the anonymity set:

L= ([(u,p) ∈ S],K) . (3)

We can rephrase this security notion as follows. For any
(u1,p1),(u2,p2) ∈ K such that their membership in S is iden-
tical, i.e., [(u1,p1) ∈ S] = [(u2,p2) ∈ S]:

CreateResponse(S,CreateRequest(u1,p1))

≈ CreateResponse(S,CreateRequest(u2,p2)).
(4)

In other words, our security notion implies that the responses
to credentials with identical leakage will be computationally
indistinguishable.

Inefficient oracle: Learning u, p, or (u,p) ∈ S via the breach
alerting service should be equally or less efficient compared
to guessing attempts performed on the login portal where the
account originates from. Alternatively, a pragmatic attacker
should be better off finding a plaintext copy of the breach. Let
t(f) denote the running time of the function f. We capture this
for a remote attacker as there being a time period T such that:

t(CreateRequest(ui,pi))> T, (5)

for every (ui,pi). This requirement extends to an attacker with
direct access to S due to an insider risk, a court order, or a
breach of the alerting service’s database. We frame this as
merely checking the membership of a credential:

t([(u,p) ∈ S])> T ′. (6)

Ideally, T = T ′, such that local access to S provides no ad-
vantage compared to the access mediated by the protocol.
We consider a protocol where T > 1 second to satisfy this
requirement.

Resistance to Denial of Service: A response from the server
should not require significantly more computation than a
request by a client (including bogus requests). As such,
it should be difficult for an attacker to find a sequence
(u1,p1), . . . ,(un,pn) such that:

∑
i
t(CreateRequest(ui,pi))�∑

i
t(CreateResponse(Reqi))

(7)
Where t(f(·)) denotes the running time of the function f.

Non-threats: Some threats are explicitly outside our threat
model. These include an attacker attempting to confirm
whether a breach they have access to is known to the alerting
service (e.g., D⊆ S), as well as an attacker learning |S|. Such
information may instead be beneficial to have public, allowing
the service to publicly communicate which breaches it covers.
We end noting that we only consider bogus requests from
clients for mounting a denial-of-service attack and assume
that clients follow the protocol honestly. For a discussion
on how we can relax this assumption a little, please refer to
Appendix C.

2.4 Tradeoffs of existing schemes
Existing breach alerting services include HaveIBeenPwned
and PasswordPing, both of which have publicly documented
APIs [29, 46]. Clients for each service include the 1Pass-
word [51] and LastPass [45] password managers. GitHub
relies on a local mirror of HaveIBeenPwned’s password dic-
tionary for detection [39]. Firefox uses HaveIBeenPwned to
warn users when they browse to a site that previously suffered
a data breach, or if users supply their email address to Fire-
fox [16]. We examine the tradeoffs these protocols make in

Query by Setup A
ct

io
na

bl
e,

no
ti

nf
or

m
at

io
na

l

B
re

ac
he

d,
no

tw
ea

k

N
ea

rr
ea

l-
tim

e
R

eq
ue

st
er

cr
ed

en
tia

la
no

ny
m

ity

In
ef

fic
ie

nt
or

ac
le

B
ou

nd
ed

le
ak

ag
e

re
sp

on
se

R
es

is
ta

nt
to

D
en

ia
lo

fS
er

vi
ce

Username Plaintext
Hash

Password
Plaintext
Hash
Hash prefix

Domain Plaintext

Username,
then password

Plaintext, hash
Hash, hash

Table 1: Summary of protocols supported by HaveIBeen-
Pwned and PasswordPing and their tradeoffs according to our
design principles and threat model.

terms of our design principles and threat model, with Table 1
serving as summary.

Query by username: HaveIBeenPwned and PasswordPing
both support querying a specific plaintext username u. Pass-
wordPing also supports querying H(u), the SHA256 hash of a
username. In response, both services provide a list of breaches
that the specified user was affected by and the class of data
exposed (e.g., password, physical address). Lastpass currently
relies on the username-only protocol from PasswordPing for
breach alerting (after user consent).

In terms of our threat model (see Table 1), H(u) creates a
unique, stable identifier of the user that is possibly reversible
via a dictionary attack. This fails our requirement of requester
credential anonymity. Likewise, querying u directly leaks the
user’s identity. Neither H(u) or u provides a computational
hurdle, thus providing an efficient oracle for performing recon-
naissance on victims. Knowledge of which breaches a victim
is involved in can expose the victim to extortion, similar to
recent scams that include breached data to coerce victims into
paying the attacker by misrepresenting wider access [34].

Revisiting our design principles, we find that username-
only protocols fail to satisfy our requirement of actionable
rather than informational breach warnings. Users may have
changed their password, or no longer use the account involved.
Likewise, isolating responses solely to the types of data ex-
posed fails to alert users to breached passwords that they re-
use across multiple sites, where just one of the sites involved

might be breached.

Query by password: PasswordPing allows clients to send a
plaintext password p, or H(p) using SHA1, SHA256, or MD5.
Both PasswordPing and HaveIBeenPwned provide a more
secure alternative, whereby clients supply an N-bit prefix
H(p)[0:N]. The server then returns all known breached pass-
words with that prefix, with the client performing the final ex-
actness check locally. PasswordPing uses a 10-hex character
prefix of a SHA1, SHA256, or MD5 hash; HaveIBeenPwned
uses a 5-hex character prefix of a SHA1 hash. 1Password
currently relies on HaveIBeenPwned and the password-prefix
approach for breach alerting.

As detailed in Table 1, while supplying p explicitly exposes
a client’s non-breached password, revealing even H(p) leads
to a potential pre-computed dictionary attack by an adversarial
server. This threat is simplified by the lack of salt. As such,
both schemes fail to provide requester credential anonymity.
In the prefix-based variant, the same attack reduces the search
space necessary by 2N , with the attacker prioritizing guesses
based on a password’s popularity. With a sufficiently small
N, this meets our criteria for anonymity—though weakly. We
provide a deeper treatment of our rationale in Appendix A.
However, as the response contains multiple passwords per
lookup, this does not satisfy our requirement for bounded
leakage. An adversarial client can enumerate each bucket
to acquire a local copy of all H(p) for offline cracking to
rebuild the underlying password dictionary.1 While there is a
legitimate argument that an attacker could more easily acquire
a plaintext copy of the data breach, ideally any such protocol
should also work for more sensitive breach data that is not
widely accessible.

From a design perspective, we find that password-only pro-
tocols run the risk of alerting users to merely weak passwords.
If u1 in a breach shares the same password as u2 who was not
in any breach, there is no way to curate the security advice to
both users’ circumstances.

Query by domain: Both HaveIBeenPwned and Password-
Ping provide a protocol for determining whether a domain
was part of a breach. Firefox currently uses HaveIBeenPwned
to warn users when they visit a domain that’s previously suf-
fered a breach [12]. This alert specifies that if they had an
account, their data may no longer be secure. While these
domain-only protocols satisfy every requirement laid out in
our threat model (assuming the list of insecure domains is
locally cached rather than queried), they provide neither ac-
tionable advice nor specific insights into breached rather than
weak passwords. For example, a site visitor may have regis-
tered an account after the breach date. Likewise, domain-only
protocols cannot capture the risk of password re-use across
breached and non-breached sites.

1HaveIBeenPwned provides a direct download to every password in its
corpus (hashed via SHA1), so this enumeration step is unnecessary and
something the service argues is outside their threat model.

Query by username, then password: PasswordPing pro-
vides a protocol whereby a client first queries u or H(u) using
SHA-256, in turn receiving a salt s associated with that ac-
count. The client uses this to calculate H(u,p,s) via Argon2,
sending only the N-bit prefix H(u,p,s)[0:N]. PasswordPing
relies on a 10-hex character prefix. The server responds with
all known matching credentials, allowing a client to perform
the confirmation locally. This approach satisfies all of our
design principles. Additionally, due to the use of Argon2, the
hash complexity involved compared to SHA or MD5 satisfies
our requirement of an inefficient oracle. While we can bound
the leakage of this protocol, it leaks information about both a
requester’s identity as well as multiple H(u,p,s) per response
enabling offline attacks. (The s prevents pre-computed dic-
tionary attacks.) This protocol bears a close resemblance to
ours, but we satisfy all the criteria laid out in Table 1 and
show in Section 3.2 how to further protect users’ password
information when querying by username.

2.5 Alternative cryptographic protocols
Our threat model is closely related to several well-studied
cryptographic primitives. These protocols offer stricter pri-
vacy guarantees, but are computationally burdensome for a
network setting in practice. As such, our threat model uses a
relaxed requirement of anonymity. Secure hardware enclaves
would also enable stricter privacy guarantees, but current en-
claves have been shown to be vulnerable to side-channel and
speculative execution attacks [56, 57].

Private Information Retrieval (PIR): PIR protocols, in-
troduced by Chor et al. [9], require that a user be able to
query an item from a server without revealing which item
was queried. While PIR protocols which are secure against
computationally-bounded adversaries [35] exceed our re-
quester anonymity and password secrecy requirements, their
security guarantees are one-sided—they allow the server to
leak arbitrary information about the database to the clients.
Additionally, single-server PIR protocols require commu-
nication that is effectively comparable to the size of the
database [25]. Multi-server PIR protocols reduce this over-
head, and even offer security guarantees against adversarial
clients [22], but require that users trust that there is no risk of
collusion amongst servers.

Oblivious Transfer (OT): 1-out-of-N OT protocols [11, 49]
extend the PIR threat model to also require that a client learns
no information about unaccessed elements of the server’s
database during the query. (Here N refers to the number of
database entries.) While OT appears to capture the ideal re-
quirements for a breach alerting protocol, we note that with-
out weakening its security requirements, OT turns out to be a
powerful crypto primitive [32] and requires communication
overhead proportional to N.

Private Set Intersection (PSI): PSI protocols allow two par-

ties with sets S1 and S2 respectively to compute some func-
tions each of S1∩S2 and learn nothing more about each other’s
sets. We can model our use case as PSI where the client has
a singleton set and the server learns nothing (an additional
requirement needed in our work not typically seen in PSI).
Early works leading to PSI [27,41] are based off of the Diffie-
Hellman assumption which we also leverage in our protocol.
While PSI protocols based on OT have been shown to be the
fastest in practice, they require significant communication
overhead that is unsuitable for a network setting [48]. Ad-
ditionally, they are designed for settings where both parties
have large, balanced sets which does not map to our scenario.

2.6 Ethics

Providing a breach alerting service necessitates access to cre-
dentials that were illicitly obtained and then released. For our
work, we exclusively rely on credential breaches that are now
publicly accessible, which any sophisticated attacker is likely
to already have access to. As such, we argue that making this
information accessible to users and identity providers does
not materially increase the potential for harm—but that any
protocol should have measures in place to protect against
abuse. Passwords exposed by breaches have a history of re-
search applications including improving password strength
meters [14,42,60] and studying password use in the wild [13].
Surveyed users have also expressed a positive attitude to-
wards breach alerting services, particularly in the context of
password resetting [31]. We believe the potential to reduce ac-
count hijacking outweighs any risk of collating already public
credential data.

3 Breach alerting protocol

Our design for a data breach alerting protocol relies on a com-
bination of k-anonymity, private set intersection, and computa-
tionally expensive hashing to address all the risks outlined in
our threat model. Here, we detail the cryptographic primitives
we use to implement our protocol and the data exchanged be-
tween a client and server. We consider two variants: one that
leaks some bits of password material that is secure against
a resource-constrained attacker (e.g., the attacker is unable
to circumvent k-anonymity and expensive hashing); and one
that leaks zero bits of password material, but where clients
must spend twice as much time hashing and receive weaker
bounds on requester anonymity.

3.1 Resource-constrained attacker variant

CreateDatabase: Prior to any client lookup, the server must
construct a secure database containing all known breached cre-
dentials. We outline this process in Algorithm 1. The server

first canonicalizes the username associated with a creden-
tial by removing any capitalization and stripping information
related to email providers (e.g., user@gmail.com becomes
user). This step aids in de-duplication while also enabling
us to detect reuse across sites that exclusively use usernames
rather than email addresses. Post-canonicalization, the server
calculates a computationally expensive hash of both the canon-
ical username and credential password. We rely on Argon2
with a configuration that uses a single thread, 256 MB of
memory, and a time cost of three.2

The server then blinds the 16-byte hash output with a 224-
bit secret key b by mapping the hash to the elliptic curve
NID_secp224r1 and raising the resulting point to the power
b.3 The server saves only a 2-byte prefix of hash unblinded
which it uses for partitioning the entire database, where we de-
note a partition as S′. Here, hashing satisfies our requirement
for an inefficient oracle even in the event that an attacker gains
direct access to the underlying database. Blinding serves as an
additional layer of defense in the event of a breach, but also to
prevent information leakage and ensure requester anonymity
and password secrecy via private set intersection (detailed
shortly). As the key b has no external dependencies, the server
can rotate it regularly by first decrypting old records and then
re-blinding with a new key b′.

CreateRequest: When generating a request, a client repeats
the same hashing and blinding strategy as the server. We
outline this process in Algorithm 2. In contrast to the server,
the client adopts its own secret key a which it initializes per
request. The resulting request includes the 2-byte hash prefix
and the blinded full hash. This 2-byte prefix—while leaking
some bits of password material—provides the client with k-
anonymity over the universe of all username and password
pairs (not just those in breaches). Previous investigations of
password usage estimate that users have roughly 6–8 unique
passwords [19, 47, 59]. With an estimated 3.9 billion Internet
users in the world [55], if we assume each user has just one
unique username, this amounts to an estimated 23.4–31.2
billion unique credential pairs. As a rough approximation then,
a user will share their credential prefix with 357,000–476,000
other credentials. Even if an adversarial server were to pre-
compute a dictionary of the most popular passwords, they
would have to repeat this process for each individual username.
As such, our protocol satisfies our computational requirement
for requester anonymity and password secrecy. In the case
of an adversarial client, any request for a guessed credential
is gated on the successful computation of an expensive hash,
thus satisfying our requirement for an inefficient oracle.

CreateResponse: A server responds to a request according to
Algorithm 3. Given a hash prefix, the server returns all known

2According to libsodium, this amounts to roughly 0.7 seconds on a 2.8
Ghz Core i7 CPU [37].

3We use multiplicative notation to refer to elliptic-curve group operations
in the paper.

unsafe credentials S′ tied to the prefix. While ideally we could
provide the entire blinded contents of S to a client, in practice
this is too computationally expensive as |S| scales to billions
of records. By partitioning S, we can limit the data down-
loaded to a client while ensuring membership correctness, at
the cost of working with anonymity sets rather than perfect se-
crecy. As noted in Section 2.5, the best current constructions
dictate that without partitioning S, we cannot hope to deploy a
scheme with reasonable limits on data downloaded by clients
and computation performed by the server. By avoiding any
client nonce or salt for hashing, retrieval is entirely static for
the server apart from inexpensive blinding (at least compared
to hashing). This satisfies our requirement for resistance to
denial of service.

Providing S′ absent blinding would leak information about
other exposed credentials. Instead, we rely on Diffie-Hellman
private set intersection [27] which is relatively efficient for
a network setting on non-mobile devices [48]. The server re-
turns all known breached credentials blinded with b while pro-
viding a client with an index into the doubly-blinded list Hab.
This requires the commutative properties of elliptic curve
Diffie–Hellman (ECDH) such that the client can decrypt this
result to recover Hb during verification, while the remaining
contents of S′ remain hidden.

More formally, under the random oracle model [4], with
Argon2 modeled as a perfect hash function, our hash-and-
blind scheme implements an oblivious pseudorandom func-
tion (OPRF) against honest-but-curious adversaries under the
decisional Diffie-Hellman assumption. When b is kept se-
cret, outputs of the hash-and-blind scheme on any user inputs
(ui,pi) reveal no information about the hashed and blinded
output on any other (u′,p′). A more technical and detailed
note is laid out in Appendix B. This achieves bounded leakage
and given only the leakage L as defined in Section 2.3, we
can construct a Simulator to simulate the entire response of
the server.

Verdict: Finally, a client determines whether their credential
was exposed in a breach by finishing the private set inter-
section protocol as detailed in Algorithm 4. This process is
entirely local and, absent independent telemetry, never reveals
the verdict of a match to the server.

3.2 Zero-password leakage variant
Our previous approach makes a practical tradeoff between
client hashing overhead and revealing some bits of a client’s
password. (While still protected by a computationally ex-
pensive hash and anonymity sets spanning both usernames
and passwords, this information can be leaked if an attacker
has auxiliary information about the username.) As an alter-
native, we outline a zero-password leakage variant. In Al-
gorithm 2, a client now calculates a hash prefix of only the
username H(u′)[0:n] along with a blinded hash of the entire cre-
dential. Algorithm 1 is modified to create a mapping between

Algorithm 1 CreateDatabase: Store a blinded and strongly
hashed copy of all known breached credentials.

Require: S = {(u1, p1), . . . ,(un, pn)}, b= rand(), and n= 2,
a prefix length

1: function CREATEDATABASE(S,b,n)
2: for (ui, pi) ∈ S do
3: u′i ← CANONCIALIZE(ui)
4: H ← HASH(u′i, pi)
5: Hb ← BLIND(H,b)
6: H[0:n]← BYTESUBSTRING(H,n)
7: PARTITIONSTORE(H[0:n],Hb)
8: end for
9: end function

Algorithm 2 CreateRequest: Client query to determine
whether a blinded username and password with a cleartext
hash prefix was exposed in a breach.

Require: n, a prefix length
1: function CREATEREQUEST(u, p,n)
2: a← RAND()
3: u′i ← CANONCIALIZE(u)
4: H ← HASH(u′, p)
5: Ha ← BLIND(H,a)
6: H[0:n]← BYTESUBSTRING(H,n)
7: LOCALSTORE(a)
8: return HSTSREQUEST(H[0:n],Ha)
9: end function

H(u′i)[0:n] to H(u′i,p
′
i) and to use it to partition the database by

H(u′i)[0:n]. This variant still provides the same protection with
bounded leakage, denial of service resistance, and an ineffi-
cient oracle, and modifies (and reduces) the anonymity set of
credentials to only usernames. For an estimated 3.9 billion
unique usernames, this amounts to |K|= 60,000.4 However,
this variant ensures that all password material from the client
is protected by blinding. In practice, given near real-time con-
straints, this requires that a client spend twice as much time
hashing which is non-negligible.5 For the purposes of our
initial deployment (detailed in Section 5), we opted for the
first variant to understand the computational bounds of clients.
We now plan to migrate to the zero-password leakage variant.

3.3 Expansion to metadata
Our protocol currently does not include information on the
origin of an exposed credential as metadata (e.g., which ser-
vice was compromised). In practice, we believe this is the best
strategy as origin information is both untrustworthy and often

4With no password guessing required, it also enables an attacker to rea-
sonably pre-compute the Argon2 hash of all possible usernames.

5This expense can be amortized if the client reuses their username for
multiple sites with distinct passwords, or if the client regularly polls the
server for the same username to obtain the most recent breach status.

Algorithm 3 CreateResponse: Server response for all infor-
mation known about the cleartext hash prefix.

Require: b = rand()
1: function CREATERESPONSE(H[0:n],Ha)
2: Hab ← BLIND(Ha,b)
3: S′ ← PARTITIONLOOKUP(H[0:n])
4: return HSTSRESPONSE(Hab,S′)
5: end function

Algorithm 4 Verdict: Final client-side verdict for whether a
username or password was exposed in a breach.

Require: a, secret key for original request
1: function VERDICT(Hab,S′,a)
2: Hb ← UNBLIND(Hab,a)
3: return Hb ∈ S′

4: end function

unavailable. For example, large composite breaches such as
Collection 1-5 and Antipublic include hundreds of millions of
credentials, all of which are unattributed [24, 28]. Moreover,
metadata expands the size of data downloaded as part of S′.

For completeness, our protocol can be extended to include
origin information, or any metadata, by encrypting it with the
output of a cryptographically secure key-derivation function
such as HKDF [33] applied to H(u,p). This approach limits
access strictly to clients that prove knowledge of the associ-
ated, strongly hashed username and password. This is easy to
observe; as outlined in Appendix B, the hashed-and-blinded
outputs still hide information about other usernames and pass-
words and hence the derived keys are cryptographically strong
and hide the contents of encrypted metadata. This is only done
once when creating the database and adds very little overhead
to the system. We note that it is crucially important that this
metadata not include sensitive personally identifying informa-
tion as it is not hidden from a compromised service.

3.4 Limitations

Our protocol requires that clients are capable of computing an
expensive hash with 256MB of memory. This is a necessary re-
quirement to hamper attackers, but it may also prove untenable
for resource-constrained devices. Additionally, our approach
requires that clients download a non-negligible amount of data.
For context, with 1 billion credentials uniformly split into 216

prefixes, this equates to roughly 15,000 blinded hashes per
request. At 29-bytes per item, that amounts to roughly 435KB
on average. This grows linearly with the volume of newly
discovered credentials.

4 Implementation

We implemented our protocol as a publicly accessible API
hosted on Google Cloud. The API mediates access to over
4 billion unique usernames and passwords collected using
an approach previously documented by Thomas et al. [54].
Canonicalization further reduces this set to 3.36 billion cre-
dentials. We also developed a Chrome extension as a proof
of concept client that we could share among early testers to
gather telemetry on the frequency and impact of breach notifi-
cations in the wild. In practice, other applications that handles
credentials can integrate with our service by implementing
the client half of our protocol.

4.1 Client

Our Chrome extension monitors when users submit their user-
name and password on a login page and generates a browser
warning for breached credentials detected by our API. We rely
on a JavaScript implementation of Argon2 from libsodium
for all hashing and a web assembly compilation of OpenSSL
for the elliptic curve computation required for private set in-
tersection. Both libraries are open source with multiple years
of vetting. Here, we discuss the details behind our extension,
the design of our warning dialogues, and the telemetry the
extension collects.

Detecting login events: At present, Chrome does not export
an API for detecting login events. Instead, our extension reg-
isters a callback function to interpose on all webRequests
that contain form data. When triggered, the extension re-
lies on heuristics to detect whether the form contains a user-
name or password field, such as matching on field names like
password and passwd. If the heuristic fails to detect both
a username and password, nothing is sent to our API. We
manually tested our detection on the Alexa US Top 50: we
successfully captured login events for 40 pages and failed for
4, while the remaining 6 did not have login forms. For the
failures, login information was either obfuscated (e.g., a byte
blob of all field data), or part of the payload body rather than
form data. We are thus cautious when discussing data from
our real world deployment in Section 6 that not every domain
will be covered by our technique.

Warning design: Our extension modifies the DOM of the
page where a user entered their breached credential to show
a warning similar to Figure 2. In the browser tray, users can
reach an extension popup that displays a stateful warning
–similar to Figure 3. This gives users a way to see past warn-
ings, in the event that they closed their browser tab before re-
viewing the warning (or due to a DOM refresh that overwrites
our modifications). Additionally, this serves as a secure UI
element that runs in isolation of other extensions and pages.
Both styles of warning never reveal information about the
username or password found in a breach. This design deci-

Ignore for this site Close

Learn more

You should change your password now.

Password Checkup detected that your password
for github.com is no longer safe due to a data
breach.

Change your password

Figure 2: In-page warning generated by our extension when
we detect that a credential is no longer secure due to a breach.

sion limits the context we can provide users, but allows us to
avoid storing sensitive credential material that might make
persistent local storage a target for attacks.

In designing our warning, we followed emerging advice
about data breach notifications [23], proven terminology
around data breaches [1,31], and historical studies of browser
warnings related to phishing and unsafe network connec-
tions [3, 18]. In particular, we provided a clear action—
"Change your password"—along with context for the danger
behind the event. At the same time, we minimized unnec-
essary or overly technical information. We also provided a
“Learn More” link that explained in greater detail the root
cause of the warning and security best practices. In particular,
users should (1) reset their password for the affected page;
(2) reset their password wherever it was reused; (3) consider
a password manager; and (4) consider adopting two-factor
authentication. We collected feedback from 550 early testers
from our organization before settling on the final design and
language of our dialogue.

Compared to other browser warnings where the safest ac-
tion is to close the tab, breached passwords require users to
follow a series of unguided, proactive next steps. We empha-
size unguided as there is no canonical account security page
for every site to simplify password resetting. While there are
industry initiatives to create common reset paths [44], these
have yet to materialize. As such, we consider a more formal
usability study of the warning experience—and automating
the password change process—as future work. We provide a
deeper treatment of the effectiveness of our warnings in terms
of successful password resets later in Section 6 (in short, a
quarter of warnings result in a reset during our observation
period).

Identifying user actions: By default, our extension contin-
uously triggers a warning each time the user authenticates
with a breached credential. Given the computation and net-
work overhead involved for each API query, if the extension
detects a breached credential, it caches a 12-byte prefix of
the Argon2 credential hash to avoid generating a new API
query for the same credential. This also reduces the latency
between a user entering a credential and observing a warning

Password Checkup

Password Checkup Extension detected that the
following 1 account has a password that is no
longer safe due to a data breach.

You should change your password now.
Learn more

Ignoregithub.com

Advanced settings

Figure 3: Stateful icon tray warning message to remind users
which accounts need their attention. This avoids the transient
nature of in-page warnings, which we use to provide better
context to users.

on all subsequent logins to the same domain. Conversely, if a
credential was previously not present in a breach, we avoid
caching any verdict and perform a new API query on each
login. In the future, caching here is also possible if the cache
were invalidated upon the server announcing the arrival of a
new breach.

For low-value accounts that a user might deem unnecessary
to secure, we provide an option to ignore our warning on a
per-domain basis as shown in Figure 2 and Figure 3. The
extension manages this state by caching a local copy of the
domain involved and a 12-byte prefix of the Argon2 hash of
the credential that the user ignored (which is necessary in the
event the user has multiple accounts on the domain).

We detect when a user resets their exposed password in
order to provide a positive feedback signal to the user that
their account is no longer at risk. We also purge all cached in-
formation about the now stale credential. To do this, we cache
a 12-byte Argon2 prefix of an account’s username (with only
an 8MB memory requirement)—used only locally— along
with a 12-byte prefix of the Argon2 credential hash. If the
credential hash changes for the same username, this indicates
the user signed in with a new password and that all local state
for the credential should be reset. In the event a user merely
mistyped their breached password, correct password entry
will trigger a new warning and refresh the cache.

Telemetry: We instrument our extension to report anony-
mous telemetry pertaining to the volume of lookups against
our API that result in a breach warning, along with whether
users ignore our warnings or reset their passwords. All of
these events lack any form of user identifier, precluding the
possibility of correlating events or understanding per-user
experiences. Each event also includes the domain of the login

page involved, which we use to estimate our compatibility
with popular sites and to estimate the prevalence of breached
passwords across the Internet. For password changes related
to breached credentials, we also report the strength of the old
and new password to understand whether users as a whole mi-
grate to stronger passwords. We use zxcvbn [60] for strength
estimation as it is entirely client-side and open source. This
telemetry forms the basis of our analysis of the impact of pass-
word breach warnings in the wild, discussed in Section 6. We
disclose the data we collect upfront to users in the description
of our Chrome Webstore listing.6 We had all of our teleme-
try reviewed by a group of internal experts and followed our
organization’s ethics review process.

4.2 Storage
We partitioned our pre-computed, blinded and hashed cre-
dential corpus (totaling roughly 110GB) into 216 slices. We
stored each slice as a static file in Google Cloud Storage. We
restricted access to these files so that only the server handling
requests could fetch content from storage. We also stored the
key material necessary to re-blind client-blinded hashes in the
same storage system.

4.3 Server
The stateless nature of our credential breach protocol allowed
us to implement our serving using Google Cloud Functions.
The primary benefit of this approach is that we could scale
arbitrarily to the volume of incoming requests while also
avoiding dormant compute cycles on pre-requisitioned cloud
instances. This design also allowed us to avoid having to
reason about the side-effects across requests. We implemented
our Cloud Function using the same JavaScript elliptic curve
library as our Chrome extension (recall that hashing is not
part of the server protocol). We avoid application-layer denial
of service attacks—such as sending an arbitrary length string
for the server to blind—by blocking malformed requests that
do not adhere to the fixed-length blinded hash we expect from
a client.

5 Deployment

We made our extension publicly available via the Chrome
Web Store and announced it through major media channels.
In total, 667,716 users installed our extension over a measure-
ment period of February 5, 2019–March 4, 2019 (UTC).

User demographics: Based on aggregate statistics provided
by the Chrome Web Store, 48% of the users who installed our
extension were from North America, 29% from Europe, 17%
from Asia, and the remaining 6% from around the world. In

6 https://chrome.google.com/webstore/detail/password-
checkup/pncabnpcffmalkkjpajodfhijclecjno

Figure 4: Volume of logins scanned by our extension every
100 seconds. Requests to our API scaled from 0.11 queries
per 100 seconds in early testing, to a peak of 2,192 queries
per 100 seconds at the end of our measurement window. The
dips in the graph reflect lower activity during weekends.

terms of operating systems, 71% of users who installed the
extension used Windows, 14% used MacOS, 13% ChromeOS,
and 2% Linux. We note that extensions are unavailable on
mobile devices and thus are not present in our device break-
down.

Scaling to requests: Over the course of our measurement
window, the lookup volume to our API scaled gracefully from
0.11 lookups per 100 seconds during early testing to a peak
of 2,043 lookups per 100 seconds as shown in Figure 4. The
diurnal pattern present reflects the geographic concentration
of users in North America and Europe. The periodic dips
reflect lower login activity over the weekend. By compar-
ing query volume with active user metrics provided by the
Chrome Web store, we estimate that an average user generates
3 API requests (e.g., logins) per weekday, and 1.5 requests per
weekend. Critically, the diurnal cadence and lack of bursty
behavior indicates a lack of large-scale abuse during our mea-
surement window which might otherwise pollute our analysis
later in Section 6.

Client overhead: We present a breakdown of the computa-
tional overhead and network latency incurred by clients that
query our API in Table 2. Overall, a median query took 8.5
seconds to return a verdict, during which a user would con-
tinue browsing uninterrupted. Roughly half of this time was
spent strongly hashing the user’s credential, while the remain-
ing time was spent downloading potential credential matches.
Our username hash (used for locally caching state) took a
median of 100ms and was a negligible part of this delay. For
10% of users, the overall query time exceeded 18 seconds,
half of which was spent in network latency. While part of
this lookup overhead can be optimized—credential hashing in
native code takes an average of 0.7 seconds—the only way to

Duration Median 90% 95%

Argon2 username hash 0.1s 0.3s 0.3s
Argon2 credential hash 4.4s 9.8s 12.7s
End-to-end API query 8.5s 18.8s 26.9s

Table 2: Time spent performing API operations including
hashing and downloading potentially matching breached cre-
dentials.

reduce network latency would be to download fewer breached
records, thus reducing the k-anonymity set of our protocol.
As such, our current privacy constraints likely remain out of
reach for resource-constrained devices, at least for near real
time detection.

Cost modeling: A practical reality of running a breach de-
tection service is cost. In our case, cost is intrinsically tied
to the k-anonymity privacy that we provide. Every 1,000
invocations of our API costs approximately $0.19 at the cur-
rent volume of credentials in our storage and for a 2-byte
k-anonymity prefix. Data serving makes up 94% of this cost,
while the CPU and memory necessary to field requests and
to re-encrypt client credentials makes up only 5%. Based on
our query volume per user, operating our service for an esti-
mated 500,000 users would cost $85,500 a year. Caching the
status of negative breach verdicts would substantially reduce
expenses. Our goal in documenting these details is to provide
other members of the community a benchmark for the costs
of any improved privacy scheme. For our protocol, adding a
single bit of privacy nearly doubles our operating expenses
while also doubling the network latency for clients.

6 Analysis

We analyzed the anonymous telemetry reported during our
measurement window to understand the state of breached
passwords across the Internet. Facets we consider include
the frequency that users log in with a breached password, the
types of sites where reuse is most common, and ultimately
whether displaying warnings helps users to address the risk
of credential stuffing. We provide a high-level statistical sum-
mary of our telemetry in Table 3 . We note that our telemetry
is biased towards the users who installed our extension, which
is a non-random sample of the Internet population.

6.1 Credential stuffing risk and remediation

Frequency of breached credential reuse: Overall, our API
fielded 21,177,237 lookup requests, where a lookup maps to
a single login attempt performed by an anonymous user. We
detected that 316,531 logins involved breached credentials—
roughly 1.5% of all logins. We caution this is a lower bound

Metric Value

Extension users 667,716

Logins analyzed 21,177,237
Domains covered 746,853

Breached credentials found 316,531
Warnings ignored 81,368 (26%)
Passwords reset 82,761 (26%)

Table 3: Summary of the anonymous telemetry data reported
over the course of our analysis window from February 5–
March 4, 2019.

as we only generate telemetry for breached credentials once
before caching the result locally, whereas lookups to non-
breached credentials generate telemetry upon each new login.
Our detection rate is lower than the 6.9% reported by Thomas
et al. [54] for 751 million Google accounts and 1.9 billion
breached credentials. Possible reasons include the user popu-
lation that adopted our extension is more security conscious—
thus avoiding reuse as a behavior—or that dormant accounts
have a higher reuse rate, which by nature our extension can-
not observe as we perform checks at login time. During our
28 day measurement window, if we assume that logins and
warnings are uniformly distributed across users, 47.3% of our
users received a warning. Our anonymous reporting precludes
more detailed per-user statistics. Taken as a whole, our results
reveal that global Internet users regularly access accounts that
are vulnerable to credential stuffing.

Ignoring breached credentials: Users opted to ignore
81,368—or 25.7%—of the breach warnings we surfaced. We
consider three possible explanations. Users may be making an
explicit risk assessment that the value of their account is not
worth the effort of adopting a new password. Alternatively,
users may not be in full control of the account (e.g., a shared
household account) [40]. Finally, as our extension does not
automate the process of password resetting, users may ig-
nore our warning out of frustration due to a lack of guidance.
Regardless of the underlying cause, ignored warnings leave
accounts vulnerable to credential stuffing. That said, there is
an opportunity here for identity providers to take action and
guide users through the password resetting process.

Remediation of breached passwords: Our warnings re-
sulted in users resetting 82,761—or 26.1%—of their breached
passwords. Critically, we find that users used this opportunity
to migrate to stronger passwords. On average, the passwords
we detected as breached had a zxcvbn strength of 1.6. After
remediation, this score increased to an average of 2.9. We
present a more detailed summary of strength before and after
resetting in Figure 5. For context, a score of one indicates
a “weak password” that an attacker can guess in under 106

attempts. A score of two reflects a password that an attacker

Figure 5: Histogram of zxcvbn password strength for pass-
words detected as breached and the password adopted by users
after remediation. Users migrated towards stronger passwords
overall as a result of our warnings.

can guess in under 108 attempts, and a score of three 1010

attempts and is considered “strong”.
Overall, 94% of password changes led to a stronger or

equal zxcvbn score, while just 6% of changes resulted in a
regression to a weaker password. Our results indicate that
users of our extension understand stronger password compo-
sition strategies. Equally important, 39% of new passwords
achieved the highest possible strength score (up from 3%
for the original passwords), a potential sign of the growing
prevalence of password managers that automatically compose
strong passwords. Our results highlight how surfacing action-
able security information can help mitigate the risk of account
hijacking.

6.2 Influence of domains on account security

Category: We examine whether the perceived value of an
account influences the rate that users rely on reused, breached
credentials. To do this, we manually labeled the top 332 do-
mains that received more than 5,000 logins during our mea-
surement period into one of thirteen categories (e.g., finance,
email and messaging, and social networking). We used a catch
all “Other” category for domains that fell outside this cate-
gorization. Combined, logins to these domains accounted for
41% of lookups against our API.

We present a breakdown of the aggregate warning rates
and ignore rates across all domains per category in Table 4.
Domains that we categorized as related to finance or govern-
ments exhibited the lowest rate of reused, breached credentials
(0.2–0.3%). Possible explanations include the password com-
position policies of these domains, the fact that users adhere

Figure 6: CCDF of the percentage of logins per domain that
result in a warning across. We group domains by the volume
of logins we observed, including 100-1,000, 1,000–10,000,
and 10,000+. Popular sites tend to face less of a threat from
credential stuffing, while the long tail of domains remain at
risk.

to popular security advice to have one strong password for
their bank, or that the sites actively identify breaches and
previously forced password resets. In contrast, entertainment
sites like streaming video platforms and adult websites had
the highest warning rate for breached credentials (3.6–6.3%).
Users may adopt disposable passwords due to perceived lack
of risk, or in the case of streaming sites, they may use shared
accounts. Surprisingly, users ignored our breach warnings
nearly uniformly across categories, with the exception of adult
websites. For the latter, users ignored nearly twice as many
of our warnings—potentially to hide the domain from our
persistent warning tray (see Figure 3 earlier).

Popularity: We also consider whether more popular sites are
less vulnerable to credential stuffing. We present a CCDF of
the frequency of warnings per domain versus the volume of
logins to the domain during our analysis window in Figure 6.
We find that just 6% of domains with 10,000+ logins have a
warning rate higher than 3%, compared to 15% of domains
with fewer than 10,000+ logins. We believe this gap in se-
curity results from larger security investments on the part of
popular domains towards proactively resetting passwords and
helping users avoid “weak” passwords. While large identity
providers can equally take advantage of our API, addressing
the long tail of domains affected by credential stuffing likely
requires relying on in-browser warnings.

7 Related Work

Account hijacking threats: Credential stuffing represents
just one dimension of account hijacking threats. Other risks
include large-scale phishing [10, 54], credential or token theft

Category Domains Total visits Breakdown Warning rate Ignore rate

Finance 90 1,684,851 8.0% 0.3% 18.6%
Email, messaging 47 1,519,795 7.2% 0.5% 14.0%
Social networking 15 1,191,546 5.6% 0.8% 17.8%
Shopping 29 1,007,103 4.8% 1.2% 16.4%
Technology 34 624,702 2.9% 0.7% 16.9%
Business 12 585,797 2.8% 0.7% 20.3%
Education 16 261,563 1.2% 0.9% 26.5%
Gaming 11 201,646 1.0% 0.5% 18.6%
Entertainment 9 168,565 0.8% 6.3% 27.1%
Travel 14 138,968 0.7% 1.8% 19.6%
Government 5 60,967 0.3% 0.2% 16.9%
News 5 54,864 0.3% 1.9% 20.7%
Adult 3 50,408 0.2% 3.6% 38.5%
Other 42 429,786 2.0% 1.0% 17.8%

Table 4: Breakdown of reused, breached passwords for domains receiving more than 5,000 logins, aggregated by business sector.
Finance and govt. domains had the lowest usage of breached passwords, compared to entertainment and adult-related domains.

from local machines [53], and even targeted attacks [38, 43].
Users have internalized these risks and adopted a security
model of joint responsibility between themselves and identity
providers [50]. The most prominent solutions to these threats
include users adopting two-factor authentication, or identity
providers expanding authentication to include other passive
factors such as a user’s device and location [15, 20]. The
protections we propose in this work are complementary to a
defense in depth authentication model, where breach detection
represents one additional factor in risk modeling.

Password reuse behaviors: Text passwords continue to be
the prevailing mechanism for online authentication. Given
the human constraints of memorizing a large number of
unique text strings, people have adopted various strategies—
including reuse and weak patterns—for managing their grow-
ing number of online identities [21, 26, 52, 58]. Florencio and
Herley published the first large-scale study of password be-
havior, where they found both weak and reused passwords
were a frequent flaw [19]. More recently, Wash et al. [59] and
Pearman et al. [47] observed the password usage behaviors of
hundreds of participants over multiple weeks. They estimated
that 32% of all entered passwords involved exact reuse. Wash
et al. found that users reused their most popular password on
an average of 9 sites. Examining breach data directly, Das
et al. found that 43–51% of users reused the same password
on multiple sites [13]. While automated password filling has
become more commonplace—participants used these means
57% of the time [47]—both Pearman et al. and Wash et al.
found password managers have yet to be adopted as a tool
for password generation. All of these factors compound the
threat of credential stuffing, where inverting a single weak
password hash can grant an attacker access to multiple sites.

Improving breach alerting protocols: In a contemporane-
ous work, Li et al. presented a framework for reasoning about

leakages resulting from the password-based prefixes used by
our protocol and HaveIBeenPwned [36]. The authors show
how a password-only prefix (or an attacker with access to the
plaintext username in a username-password prefix) can lever-
age a partition’s underlying password distribution to reduce
the number of guesses necessary to potentially learn a user’s
password. To address this, the authors outline a zero-password
leakage variant that relies on private set membership in con-
junction with a username hash prefix for partitioning, akin to
our own model from Section 3.2. Their work provides further
motivation for a zero-password leakage protocol, despite its
additional computational complexity as we outlined.

8 Conclusion

In this paper, we demonstrated the feasibility of a privacy-
preserving protocol that allows a client to query whether their
login credentials were exposed in a breach, without revealing
the information queried. Our protocol relies on a combina-
tion of computationally expensive hashing, k-anonymity, and
private set intersection. Our approach improves on existing
protocols by taking into account both an adversarial client and
server, while also minimizing the chance of false positives. We
envision this service being used by end users, password man-
agers, and by identity providers. As a proof-of-concept, we
created a cloud service that mediates access to 4 billion user-
names and passwords publicly exposed by breaches. We then
released a Chrome extension that would query credentials
entered at login time against our service. Based on telemetry
produced by nearly 670,000 users, we estimated that 1.5% of
credentials used across the web are vulnerable to credential
stuffing (based on a sample of 21 million logins).

Addressing this problem requires action from both users
and identity providers. In the context of our study, 26% of the

warnings we generated for breached passwords resulted in
users adopting a new password—94% of which were stronger
or as strong as the original. Both the volume of user inter-
est and response rate surfaced during our study demonstrate
that there is an appetite on the part of users to secure their
accounts from credential stuffing. We hope that by making
our protocol public, other researchers can improve on the
privacy protections, computational bounds, and cost models
that we establish. Our protocol is a first step in democratizing
access to breach alerting in order to mitigate one dimension
of account hijacking.

9 Acknowledgements

We would like to thank Oxana Comanescu, Sunny Consolvo,
Ali Zand, and our anonymous reviewers for their feedback
and support in designing our breach alerting protocol. We
also thank Greg Zaverucha for a discussion on Brown-Gallant
attacks. This work was partially supported by funding from
the NSF.

References

[1] Lillian Ablon, Paul Heaton, Diana Catherine Lavery,
and Sasha Romanosky. Consumer attitudes toward data
breach notifications and loss of personal information.
In Proceedings of the Workshop on the Economics of
Information Security, 2016.

[2] Tolga Acar, Lan Nguyen, and Greg Zaverucha. A tpm
diffie-hellman oracle. IACR Cryptology ePrint Archive
2013/667, 2013.

[3] Devdatta Akhawe and Adrienne Porter Felt. Alice in
warningland: A large-scale field study of browser se-
curity warning effectiveness. In Proceedings of the
USENIX Security Symposium, 2013.

[4] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In Proceedings of the ACM Conference on Computer
and Communications Security, 1993.

[5] Borbala Benko, Elie Bursztein, Tadek Pietraszek, and
Mark Risher. Cleaning up after password dumps. https:
// security.googleblog.com/2014/09/cleaning-up-after-
password-dumps.html, 2014.

[6] Daniel J Bernstein. Curve25519: new diffie-hellman
speed records. In International Workshop on Public Key
Cryptography, pages 207–228. Springer, 2006.

[7] Rainer Böhme and Jens Grossklags. The security cost
of cheap user interaction. In Proceedings of the New
Security Paradigms Workshop, 2011.

[8] D. Brown and R. Gallant. The Static Diffie-Hellman
problem. IACR Cryptology ePrint Archive 2004/306,
2004.

[9] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In Pro-
ceedings of the Annual Symposium on Foundations of
Computer Science, 1995.

[10] Marco Cova, Christopher Kruegel, and Giovanni Vigna.
There is no free phish: an analysis of "free" and live
phishing kits. In Proceedings of the Workshop on Offen-
sive Technologies, 2008.

[11] Claude Crépeau. Equivalence between two flavours of
oblivious transfers. In Conference on the Theory and
Application of Cryptographic Techniques, 1987.

[12] Luke Crouch. When does firefox alert for breached
sites? https:// blog.mozilla.org/ security/2018/11/14/
when-does-firefox-alert-for-breached-sites/ , 2018.

[13] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of pass-
word reuse. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2014.

[14] Xavier De Carné De Carnavalet, Mohammad Mannan,
et al. From very weak to very strong: Analyzing
password-strength meters. In Proceedings of the Net-
work and Distributed System Security Symposium, 2014.

[15] Periwinkle Doerfler, Maija Marincenko, Juri Ranieri,
Angelika Moscicki Yu Jiang, Damon McCoy, and Kurt
Thomas. Evaluating login challenges as a defense
against account takeover. In Proceedings of the Web
Conference, 2019.

[16] Peter Dolanjski. Testing firefox monitor, a new security
tool. https://blog.mozilla.org/ futurereleases/2018/06/
25/ testing-firefox-monitor-a-new-security-tool/ , 2018.

[17] Adam Everspaugh, Rahul Chaterjee, Samuel Scott, Ari
Juels, and Thomas Ristenpart. The pythia PRF service.
In Proceedings of the USENIX Security Symposium,
2015.

[18] Adrienne Porter Felt, Alex Ainslie, Robert W Reeder,
Sunny Consolvo, Somas Thyagaraja, Alan Bettes, He-
len Harris, and Jeff Grimes. Improving ssl warnings:
Comprehension and adherence. In Proceedings of the
Conference on Human Factors in Computing Systems,
2015.

[19] Dinei Florencio and Cormac Herley. A large scale study
of web password habits. In Proceedings of the Interna-
tional World Wide Web Conference, 2006.

[20] David Mandell Freeman, Sakshi Jain, Markus Dürmuth,
Battista Biggio, and Giorgio Giacinto. Who are you? a
statistical approach to measuring user authenticity. In
Proceedings of the Symposium on Network and Dis-
tributed System Security, 2016.

[21] Shirley Gaw and Edward W. Felten. Password manage-
ment strategies for online accounts. In Proceedings of
the Symposium on Usable Privacy and Security, 2006.

[22] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal
Malkin. Protecting data privacy in private information
retrieval schemes. Journal of Computer and System
Sciences, 2000.

[23] Maximilian Golla, Miranda Wei, Juliette Hainline, Lydia
Filipe, Markus Dürmuth, Elissa Redmiles, and Blase Ur.
What was that site doing with my facebook password?:
Designing password-reuse notifications. In Proceedings
of the ACM Conference on Computer and Communica-
tions Security, 2018.

[24] Andy Greenberg. Hackers are passing around a
megaleak of 2.2 billion records. https://www.wired.com/
story/collection-leak-usernames-passwords-billions/ ,
2019.

[25] Iftach Haitner, Jonathan J Hoch, and Gil Segev. A linear
lower bound on the communication complexity of single-
server private information retrieval. In Proceedings of
the Theory of Cryptography Conference, 2008.

[26] Eiji Hayashi and Jason Hong. A diary study of password
usage in daily life. In Proceedings of the Conference on
Human Factors in Computing Systems, 2011.

[27] Bernardo A Huberman, Matt Franklin, and Tad Hogg.
Enhancing privacy and trust in electronic communities.
In Proceedings of the ACM Conference on Electronic
Commerce, 1999.

[28] Troy Hunt. Password reuse, credential stuffing and an-
other billion records in Have I been pwned. https://www.
troyhunt.com/password-reuse-credential-stuffing-and-
another- 1- billion- records- in- have- i- been- pwned/ ,
2017.

[29] Troy Hunt. Have i been pwned? https : / /
haveibeenpwned.com/ , 2019.

[30] Stanisław Jarecki and Xiaomin Liu. Fast secure com-
putation of set intersection. In Proceedings of the Inter-
national Conference on Security and Cryptography for
Networks, 2010.

[31] Sowmya Karunakaran, Kurt Thomas, Elie Bursztein, and
Oxana Comanescu. Data breaches: user comprehension,
expectations, and concerns with handling exposed data.

In Proceedings of the Symposium on Usable Privacy
and Security, 2018.

[32] Joe Kilian. Founding crytpography on oblivious trans-
fer. In Proceedings of the Symposium on Theory of
Computing, 1988.

[33] Hugo Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In Proceedings of the
Annual Cryptology Conference, 2010.

[34] Brian Krebs. Sextortion scam uses recipient’s hacked
passwords. https:// krebsonsecurity.com/ 2018/ 07/
sextortion-scam-uses-recipients-hacked-passwords/ ,
2018.

[35] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private
information retrieval. In Foundations of Computer Sci-
ence, 1997. Proceedings., 38th Annual Symposium on,
pages 364–373. IEEE, 1997.

[36] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. https:// rist.tech.cornell.
edu/papers/c3.pdf , 2019.

[37] libsodium. The Argon2 function. https:// libsodium.
gitbook . io / doc / password _ hashing / the _ argon2i _
function, 2019.

[38] William R Marczak, John Scott-Railton, Morgan
Marquis-Boire, and Vern Paxson. When governments
hack opponents: a look at actors and technology. In
Proceedings of the USENIX Security Symposium, 2014.

[39] Neil Matatall. New improvements and best practices for
account security and recoverability. https://github.blog/
2018-07-31-new-improvements-and-best-practices-
for-account-security-and-recoverability/ , 2018.

[40] Tara Matthews, Kerwell Liao, Anna Turner, Marianne
Berkovich, Robert Reeder, and Sunny Consolvo. She’ll
just grab any device that’s closer: A study of everyday
device & account sharing in households. In Proceed-
ings of the Conference on Human Factors in Computing
Systems, 2016.

[41] Catherine Meadows. A more efficient cryptographic
matchmaking protocol for use in the absence of a con-
tinuously available third party. In Proceedings of the
IEEE Symposium on Security and Privacy, 1986.

[42] William Melicher, Blase Ur, Sean M Segreti, Saranga
Komanduri, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Fast, lean, and accurate: Modeling
password guessability using neural networks. In Pro-
ceedings of the USENIX Security Symposium, 2016.

[43] Ariana Mirian, Joe DeBlasio, Stefan Savage, Geof-
frey M. Voelker, , and Kurt Thomas. Hack for hire:
Exploring the emerging market for account hijacking.
In Proceedings of The Web Conf, 2019.

[44] Theresa O’Connor. A well-known url for changing
passwords. https:// wicg.github.io/ change-password-
url/ index.html, 2018.

[45] Password Ping. LastPass selects PasswordPing for
compromised credential screening. https : / / www.
passwordping.com/ lastpass-selects-passwordping-for-
compromised-credential-screening/ , 2017.

[46] Password Ping. Block attacks from compromised cre-
dentials. https://www.passwordping.com/ , 2019.

[47] Sarah Pearman, Jeremy Thomas, Pardis Emani Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Serge Egelman, and Alain Forget. Let’s go in
for a closer look: Observing passwords in their natural
habitat. In Proceedings of the 2017 ACM Conference
on Computer and Communications Security, 2017.

[48] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on ot extension. In
Proceedings of the USENIX Security Symposium, 2014.

[49] Michael O. Rabin. How to exchange secrets by oblivious
transfer. Technical report, Tech. rep. TR-81, AikenCom-
putation Laboratory, Harvard University, Cambridge,
MA, 1981.

[50] Richard Shay, Iulia Ion, Robert W Reeder, and Sunny
Consolvo. "My religious aunt asked why I was trying
to sell her viagra": experiences with account hijacking.
In Proceedings of ACM Conference on Human Factors
in Computing Systems, 2014.

[51] Jeff Shiner. Finding pwned passwords with 1pass-
word. https:// blog.1password.com/ finding-pwned-
passwords-with-1password/ , 2019.

[52] Elizabeth Stobert and Robert Biddle. The password
life cycle: User behaviour in managing passwords. In
Proceedings of the Symposium on Usable Privacy and
Security, 2014.

[53] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob
Gilbert, Martin Szydlowski, Richard Kemmerer, Christo-
pher Kruegel, and Giovanni Vigna. Your botnet is my
botnet: Analysis of a botnet takeover. In Proceedings of
the ACM Conference on Computer and Communications
Security, 2009.

[54] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri
Ranieri, Luca Invernizzi, Yarik Markov, Oxana Co-
manescu, Vijay Eranti, Angelika Moscicki, et al. Data

breaches, phishing, or malware?: Understanding the
risks of stolen credentials. In Proceedings of the ACM
Conference on Computer and Communications Security,
2017.

[55] International Telecommunications Union. Statistics.
https:// www.itu.int/ en/ ITU-D/ Statistics/ Pages/ stat/
default.aspx, 2019.

[56] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In Proceed-
ings of the USENIX Security Symposium, 2018.

[57] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In Proceedings of the USENIX
Security Symposium, 2017.

[58] Emanuel von Zezschwitz, Alexander De Luca, and Hein-
rich Hussmann. Survival of the shortest: A retrospective
analysis of influencing factors on password composi-
tion. In Proceedings of the International Conference on
Human-Computer Interaction, 2013.

[59] Rick Wash, Emilee Rader, Ruthie Berman, and Zac
Wellmer. Understanding password choices: How fre-
quently entered passwords are re-used across websites.
In Proceedings of the Symposium on Usable Privacy
and Security, 2016.

[60] Daniel Lowe Wheeler. zxcvbn: Low-budget password
strength estimation. In Proceedings of the USENIX
Security Symposium, 2016.

[61] Victoria Woollaston. Facebook and netflix reset pass-
words after data breaches. http:// www.wired.co.uk/
article/ facebook-netflix-password-reset, 2016.

A Anonymity Sets

In this section, we describe properties of anonymity sets (from
Section 2.3) in more detail. Recall that anonymity sets are
large sets of user credentials that provide plausible deniability
about client data even if information about their membership
in this set is revealed. Defining and arguing with anonymity
sets is challenging and must be done carefully so as to avoid
some trivialities. To avoid constructions with vacuous security,
we require anonymity sets to have the following properties.

Large marginal supports: Our anonymity sets containing
tuples (u,p) must additionally have sufficiently large marginal
supports over both usernames and passwords. This ensures
that despite there being several possible tuples (u,p), there

is sufficiently large ambiguity about whether membership
implies a specific username or password. A trivial anonymity
set, for example, might have several possible credentials with
different passwords all tied to the same username.

More mathematically, given an anonymity set K of size |K|,
we require that the size of the following sets:

SuppUser(K) := {u : (u,p) ∈ K} ,
SuppPwd(K) := {p : (u,p) ∈ K} ,

both have large cardinalities comparable to that of |K|. Ob-
serve that |SuppUser(K)| indicates how many bits of infor-
mation about the username is leaked (smaller sets narrow the
set of possible users and leak a lot of information). This is
similarly true for |SuppPwd(K)| for passwords.

Hashing both usernames and passwords with cryptograph-
ically strong hash functions satisfies these requirements. In
fact, it is possible that both sets have cardinalities as large
|K| itself which would imply that for every possible common
password there might be a username such that (u,p)∈K. This
is true in our scheme modeling Argon2 as a random oracle.

Schemes that only hash passwords, as noted previously in
Section 2.4, might still satisfy a weaker anonymity property.
They hide usernames, but depending on how they truncate
hashes, password-only schemes might allow for small or large
SuppPwd sets. Thus, they might satisfy these requirements,
but only weakly at least with respect to passwords. Further-
more, it is not true that for every password there is a username
which might be part of the client’s credentials, unlike our
scheme. We also note that our trivial example, of having sev-
eral passwords all tied to the same username, violates our
requirement by having |SuppUser(K)|= 1.

Uniformity requirement: This is a more challenging require-
ment to model mathematically. Intuitively, however, it states
that anonymity sets should partition the space of usernames
and passwords in a somewhat uniform manner. In other words,
over random choices of the system parameters, it should be
equally likely for any (u,p) to end up in any anonymity set.
A trivial anonymity set violating this requirement would, as
an example, only truncate usernames, thereby trivially leak-
ing some information about the username. Truncation does
not make it equally likely that any (u,p) can end up in any
anonymity set.

Under the reasonable assumption that our hash function
is independent of the domain of typical usernames and
passwords and does not have any “weak inputs”—domains
of inputs where it does not behave like an ideal hash
function—this condition is easily satisfied. It is highly improb-
able that related credentials such as username, username0,
username123, will all end up in the same anonymity set.

B Security of the Hash-and-Blind operation

In this section, we outline the security properties satisfied
by the hash-and-blind operation, which is an important part
of our protocol. Consider a keyed function F(k,x) := H(x)k

where H : {0,1}∗→G is a hash function mapping strings to
a group element. In our construction, H is Argon2, and G is
the elliptic curve NID_secp224r1.

The work of Jarecki et al. [30] shows that F(k, ·) imple-
ments an oblivious pseudorandom function in the random
oracle model assuming the hardness of the decision Diffie-
Hellman assumption in G. In this section, we do not elabo-
rate on the details of the proof, but we state what is meant
by a pseudorandom function and how F(k, ·) can be evalu-
ated obliviously—without the secret key k holder knowing
which input they’re evaluating on. Pseudorandomness helps
us achieve bounded leakage and protects the credentials not
queried by the user; obliviousness enables us to implement the
Diffie-Hellman blinding based private set intersection within
our protocol.

Pseudorandomness: Informally, a function F(k, ·) with out-
puts in Y is said to be pseudorandom if the function be-
haves like a random function when evaluated on new in-
puts. More formally, given outputs F(k,x1), . . . ,F(k,xQ) for
Q queries x1, . . . ,xQ of an adversary’s choice, for any other
x′ 6∈ {x1, . . . ,xQ}, we require that F(k,x′) be computationally
indistinguishable from a random element in Y as long as k is
chosen uniformly at random and remains hidden.

When applied to our construction, it implies that a client
that sees several possible H(ui,pi)

b still cannot distinguish
H(u′,p′)b from a random element in G if b is hidden.
Hash-and-blind therefore protects the contents of the server
database when interacting with clients. For the sake of com-
pleteness, we add that this protocol is only secure against
honest-but-curious adversaries which assumes that a client
might be curious to learn more than it is allowed to, but
chooses to honestly follow the protocol.

Obliviousness: A function is said to be evaluated in an obliv-
ious manner if there is a protocol between a client holding
an input x and a server holding a function f such that at
the end of the protocol, the client learns f (x) and the server
learns nothing. In our construction, f (x) = H(x)b for some
value b. The protocol between the client and server is fairly
straightforward (and somewhat implicit in our construction):
the client chooses a uniform random value a, sends H(x)a,
receives H(x)ab, and reconstructs

f (x) =
(
H(x)ab

)1/a
= H(x)b.

Correctness is fairly straightforward. To see why this is
oblivious, observe that for any two inputs x1 and x2, the distri-
butions H(x1)

r and H(x2)
s for uniformly drawn values r and s

are identical. This implies that the server learns nothing about
the client’s input x.

When applied to our construction, it states that the compo-
nent H(u,p)a computed in Algorithm 2 allows the client to
obliviously evaluate the PRF without revealing to the server
information about the credential (u,p).

We end this section with a couple of notes. First, a caveat
noting that some information about (u,p) does end up being
leaked via the anonymity set, which we capture through our
notion of leakage. A direct composition of proofs of security
involving anonymity sets and obliviousness might be tricky
and will require careful work. Deriving keys from these PRF
outputs will additionally require careful applications of KDFs
with the right domain separators to avoid re-use of crypto
components.

Second, Everspaugh et al. [17] propose an OPRF service
that is closely related to our construction here. Our require-
ments out of an OPRF differs on a couple of key points which
does not enable us to use such a service directly: 1) we do not
require the notion of partial obliviousness in their construc-
tion which adds significant computational overheads to their
service, and 2) our clients use of an OPRF does not require an
immediate evaluation of the PRF, but rather its application to a
database to obliviously evaluate its inputs and return potential
matches.

C Security Against the Brown-Gallant attack

As noted in Appendix B and previously in this paper, we con-
sider clients that are honest-but-curious and do not deviate
from the protocol. In particular, the pseudorandomness prop-
erty used implicitly in the protocol to protect the contents of
the server from the client assumes that queries are computed
honestly by applying the hash function to an input.

A malicious client that chooses arbitrary points on the
curve and specifically previous queries can end up computing
P,Pb,Pb2

, . . . ,Pb` for any point P on the curve with ` queries.
While this is outside our threat model, in this section, we con-
sider mitigations against such clients because clients behaving
in this manner can setup a Static Diffle-Hellman oracle which
can weaken the underlying security of the elliptic curve group
as demonstrated by Brown and Gallant [8].

One straightforward defense against this threat would in-
volve frequent rotating of b as discussed in Section 3.1. The
attack necessarily requires sequential queries by the same
client relying on previous values. By rate-limiting clients

to t queries, it can be worked out (along the lines of Acar et
al. [2]) that our security goes below the target security level by
log(t)/2 bits, which for reasonable values of t = 230 reduces
security by a small factor of 15 bits.

As further noted in Acar et al. [2], these attacks crucially
require additional conditions to be met. Namely, that `, the
number of queries to the oracle, must be divide ord±1 where
ord is the order of the elliptic curve group. We calculate that:

ord(NID_secp224r1)−1 = 22 ·36 ·5 ·17 ·2153 · p1,

ord(NID_secp224r1)+1 = 2 ·7 ·19 ·641707280681 · p2,

where p1 is a 195-bit prime number and p2 is a 176-bit prime
(see Table 5). From this, we can conclude that in the case
of NISTP224, in the worst case, with an adversary with 247

queries, our security estimate goes down to 88.5 bits of secu-
rity.

The fact that this additional condition is necessary leads
to another mitigation technique: choosing curves such that
ord±1 are not very smooth. Curve25519 [6] satisfies these
requirements. We note that ord(Curve25519)−1 is factored
into: 2 ·3 ·11 · p3 · p4 (where p3 and p4 are 107- and 137-bit
primes respectively, see Table 5) and ord(Curve25519)+1 is
factored into: 2 ·5 ·7 ·103 · p5 · p6 (where p5 and p6 are 60- and
180-bit primes respectively, see Table 5) . This would require
at least 260 queries for this class of attacks to be effective,
rendering them ineffective as the key would have been rotated
before they were complete.

p1 50520606258875818707470860153287666
700917696099933389351507

p2 15794301546906829235981715192896817
0360745244072702747

p3 198211423230930754013084525763697
p4 27660262428164223993721868055713982

6668747

p5 684245902131068969
p6 14669369145206204403805804145867288

30413895967152734051

Table 5: Large prime factors.

