
Results
We evaluated MuZero both on classical board games - to 
allow direct comparisons against AlphaZero - as well as 
Atari, a widely used domain for model-free agents.
MuZero reached State of the Art performance in all of 
these domains, matching AlphaZero's performance in 
board games and exceeding previous agents in Atari.

2 Data Generation
In each state, we run a Monte Carlo Tree Search using the 
learned model as described above; then we sample the 
action to play proportional to the visit counts at the root.

Reanalyze
Using existing trajectories, we re-run the MCTS to update 
the stored search statistics, generating new targets for 
the policy prediction. The new search statistics are only 
used to train the policy, the trajectory is unchanged.

The bootstrap values in the n-step return value targets 
are computed in the learner using a target network.

Mastering Atari, Go, Chess and Shogi 
by Planning with a Learned Model

Julian Schrittwieser*, Ioannis Antonoglou*, Thomas Hubert*, Karen Simonyan, Laurent Sifre, Simon 
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, David Silver*

*These authors contributed equally to this work.

3 Learning
We keep a replay buffer of recent trajectories from 
which we sample training positions according to 
prioritized replay.

We then unroll our network for 5 steps starting from the 
sampled position. On each step, the network receives 
the action executed in that position as an input, and has 
to predict reward, value and policy targets.

The target for the reward is the real reward observed in 
that transition; for the policy it is the visit distribution of 
the MCTS; the value is regressed towards the N-step 
return:

Ablations
Scaling with search time in Go
To confirm that MuZero performs as well as AlphaZero, 
we first investigated the scaling behaviour in Go.

1 Planning with a Learned Model
Representation
Maps from observations to hidden state of the 
network

Dynamics
Computes the next hidden state, given the current 
hidden state and action.

Prediction
Predicts policy and value given a hidden state.

We use these three functions to plan with Monte Carlo 
Tree Search (MCTS) as illustrated in the diagram 
above, where policy and value predictions are 
combined according to the UCB formula:

MCTS in Single Player Games
Value Rescaling
Single player games usually have rewards and values of 
arbitrary scale. To obtain a value of the same order of 
magnitude as the prior for use in the UCB formula, we 
rescale the value:

Here, the min and max can be computed over the 
entire search tree, or only over the current node and 
its children.

Intermediate Rewards
In contrast to board games like Go or Chess, single 
player games also commonly have intermediate 
rewards during an episode.

We extend the MCTS to store predicted rewards at 
every tree node, and the backpropagation to include 
rewards and discounting.

Towards Real World 
Problems

Atari

Chess

Shogi

Go

Motivation
Bring the power of planning with 
MCTS and deep networks to an 
increasingly larger set of domains. 
Take advantage of planning with a 
learned model to learn more efficiently.

In Atari, we performed experiments in two different 
regimes to better compare against existing algorithms.

In the large data regime, we trained using 0.1 samples per 
state, for a total of 20 billion environment frames, to 
show scaling to maximum performance.

In the small data regime, we restricted to the standard 
200 million frames by sampling each state on average 
2.0 times during training, and generated 80% of the 
training data using reanalyze. 

In both settings, MuZero achieved a new State of the Art.

Next, we confirmed the 
benefit of search during 
training on the example of 
Ms. Pacman.
We observe faster learning 
and increasing final 
performance as the number 
of simulations per search is 
increased.

As expected, we observe 
increasing performance 
with longer search time, up 
to very long searches (two 
orders of magnitude more 
search time than during 
training) where eventually 
the model predictions start 
to degrade.

As search time is scaled up, 
the model is unrolled 
several times longer than 
during training. Despite this, 
performance scales well 
and remains stable even 
when unrolling three times 
longer than during training.

Policy Improvement after Training in Atari
We also investigate the
impact of search after 
training. We still observe an 
improvement in score with 
more search, but in 
contrast to Go the 
improvement is much 
smaller - due to the simpler
nature of Atari, at the end of 
training even the policy network alone has learned to 
play many games perfectly, which leaves no room for 
further improvement through search.

Policy Improvement during Training in Ms. Pacman


