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Building models that can be rapidly adapted to numerous tasks using only a handful of annotated exam-

ples is an open challenge for multimodal machine learning research. We introduce Flamingo, a family

of Visual Language Models (VLM) with this ability. Flamingo models include key architectural innova-

tions to: (i) bridge powerful pretrained vision-only and language-only models, (ii) handle sequences of

arbitrarily interleaved visual and textual data, and (iii) seamlessly ingest images or videos as inputs.

Thanks to their flexibility, Flamingo models can be trained on large-scale multimodal web corpora con-

taining arbitrarily interleaved text and images, which is key to endow them with in-context few-shot

learning capabilities. We perform a thorough evaluation of the proposed Flamingo models, exploring

and measuring their ability to rapidly adapt to a variety of image and video understanding benchmarks.

These include open-ended tasks such as visual question-answering, where the model is prompted with

a question which it has to answer, captioning tasks, which evaluate the ability to describe a scene or

an event, and close-ended tasks such as multiple choice visual question-answering. For tasks lying any-

where on this spectrum, we demonstrate that a single Flamingo model can achieve a new state of the

art for few-shot learning, simply by prompting the model with task-specific examples. On many of these

benchmarks, Flamingo actually surpasses the performance of models that are fine-tuned on thousands

of times more task-specific data.
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Input Prompt Completion

This is a chinchilla.
They are mainly found

in Chile.

This is a shiba. They
are very popular in

Japan.
This is −→

a flamingo. They are
found in the

Caribbean and South
America.

What is the title of this
painting? Answer: The

Hallucinogenic
Toreador.

Where is this painting
displayed? Answer:

Louvres Museum, Paris.

What is the name of
the city where this was

painted? Answer:
−→ Arles.

Output: "Underground" Output: "Congress" Output: −→ "Soulomes"

2+1=3 5+6=11 −→ 3x6=18

Output: A propaganda
poster depicting a cat
dressed as French
emperor Napoleon
holding a piece of

cheese.

Output: A pink room
with a flamingo pool

float.

Output: −→
A portrait of Salvador

Dali with a robot
head.

Les sanglots longs des
violons de l’automne
blessent mon coeur
d’une langueur

monotone.

Pour qui sont ces
serpents qui sifflent sur

vos têtes?
−→ Je suis un cœur qui

bat pour vous.

pandas: 3 dogs: 2 −→ giraffes: 4

I like reading , my favourite play is
Hamlet. I also like

, my favorite book is −→ Dreams from my
Father.

What happens to the
man after hitting the

ball? Answer:
−→ he falls down.

This is a picture of two teddy

bears on the moon.

What are they doing?

They are having a conversation.

What object are they using?

It looks like a computer.

Is this surprising?

Yes, it is surprising.

Why is this picture surprising

to you?

I think it is surprising because

teddy bears are not usually

found on the moon.

What is the common thing

about these three images?

They are all flamingos.

What is the difference between

these three images?

The first one is a cartoon, the

second one is a real flamingo,

and the third one is a 3D

model of a flamingo.

This is an apple with a sticker

on it.

What does the sticker say?

The sticker says "iPod".

Where is the photo taken?

It looks like it’s taken in a

backyard.

Do you think it is printed or

handwritten?

It looks like it’s handwritten.

What color is the sticker?

It’s white.

Figure 1 | Examples of inputs and outputs obtained from our 80B parameter model, Flamingo. Like
large-scale language models, Flamingo can be rapidly adapted to various image and video understanding tasks
by simply prompting it with a few examples (top). Out of the box, Flamingo is also capable of rich visual
dialogue (bottom). More qualitative examples can be found in Section 5.
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Figure 2 | Overview of the results of the Flamingo models. Left: Our largest model, dubbed Flamingo,
outperforms state-of-the-art fine-tuned models on six out of the 16 tasks we consider despite not using any
fine-tuning at all. For all 16 tasks where published few-shot results are available, Flamingo outperforms them
by a large margin and sets the new few-shot state of the art. Center: Flamingo performance improves with the
number of shots. Right: The performance of the Flamingo models increases with the model scale. Note: We
omit RareAct, our 16th benchmark, as it is a zero-shot benchmark with no available fine-tuning results.

1. Introduction

One key aspect of intelligence is the ability to quickly learn how to perform a new task given a short

instruction (Griffiths et al., 2019; Markman, 1989). While initial progress has been made towards a

similar capability in computer vision, the most used paradigm still consists of first pretraining on a

large amount of supervised multimodal data collected from the web, before fine-tuning the model on

the task of interest (Lu et al., 2019; Wang et al., 2021; Zellers et al., 2022). However, fine-tuning

often requires many thousands of annotated data points in order to succeed. On top of the annotation

burden, this approach often requires careful per-task hyperparameter tuning and is also resource

intensive. Recently, multimodal vision-language models trained with a contrastive objective (Jia

et al., 2021; Radford et al., 2021) have enabled zero-shot adaptation to novel tasks, without the

need for fine-tuning. However, because these models simply provide a similarity score between a

text and an image, they can only tackle limited use cases such as classification, where a finite set of

outcomes is provided beforehand. They crucially lack the ability to generate language, which makes

them less suitable to more open-ended tasks such as captioning or visual question-answering. Others

have explored visually conditioned language generation (Cho et al., 2021; Tsimpoukelli et al., 2021;

Wang et al., 2022, 2021; Xu et al., 2021) but have not yet shown good performance in low data

regimes. In this paper, we introduce Flamingo, a Visual Language Model (VLM) that sets a new state

of the art in few-shot learning on a wide range of open-ended vision and language tasks, simply by

being prompted with a few input/output examples, as illustrated in Figure 1. Of the 16 tasks we

consider, Flamingo also surpasses the fine-tuned state of the art in 6 of the cases, despite using orders

of magnitude less task-specific training data (see Figure 2).

To achieve this, Flamingo takes inspiration from recent work in large-scale generative language

models (LMs) which are good few-shot learners (Brown et al., 2020; Chowdhery et al., 2022; Hoffmann

et al., 2022; Rae et al., 2021). A single large LM can indeed achieve strong performance on many
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tasks using only its text interface: a few examples of a task are provided to the model as a prompt,

along with a query input, and the model generates a continuation to produce a predicted output for

the task on that query. In principle, the same can be done for many image and video understanding

tasks such as classification, captioning, or question-answering: these can be cast as text prediction

problems with visual input conditioning. The difference from a LM is that the model must be able to

ingest a multimodal prompt containing both image and/or videos interleaved with text. The Flamingo

model has this capability – it is a visually-conditioned autoregressive text generation model able to

ingest a sequence of text tokens interleaved with images and/or videos, and produce text as output.

Flamingo models fuse large LMs with powerful visual embeddings – each separately pretrained and

frozen – by adding novel architecture components in between.

A crucial aspect for the performance of large LMs is that they are trained on a large amount

of text data. This training provides general-purpose generation capabilities that allows these LMs

to perform well when prompted with task examples. Similarly, we demonstrate here that the way

we train the Flamingo models matters greatly for their final performance. They are trained on a

carefully chosen mixture of complementary large-scale multimodal data coming only from the web,

without using any data annotated for machine learning purposes. After this training is done, a Flamingo

model can be directly adapted to vision tasks via simple few-shot learning without any additional

task-specific tuning.

1.1. Challenges of multimodal generative modelling

Although similar in spirit to large language models, the multimodality of our setting poses a number

of challenges not present in the language-only domain. In the following we detail some of these

challenges and briefly describe how we overcome them with Flamingo.

Unifying strong single-modal models. Training a multimodal vision and language model, starting

from a pretrained LM, has the potential to save the immense computational resources used to train

the LM in the first place. However, a LM trained only on text has no built-in means of incorporating

inputs from other modalities. Introducing such inputs to a pretrained LM is one challenge in our

setting: it is crucial to keep the pretrained model’s language understanding and generation capabilities

fully intact, avoiding any destabilising interventions, while still leveraging the model’s full capacity

and depth on the inputs from the new modality. To address this difficulty, we propose to interleave

cross-attention layers with regular language-only self-attention layers that are kept frozen during

training. To minimize the effect of these newly added layers at initialization, we introduce specific

gating mechanisms which greatly improve stability and final performance.

Supporting both images and videos. The 2D spatial structure and high dimensionality of images

and videos (of even modest resolution) is not immediately amenable to the homogeneous treatment

as a 1D sequence commonly used in unimodal text generation. Transformer models in particular,

which the latest LMs build on, would suffer from memory limitations with the naive addition of

high-dimensional visual data into the sequence – computation scales quadratically with the sequence

length (number of tokens), for example. Even when based on Transformer architectures, state-of-

the-art vision architectures often rely on local 2D priors to improve efficiency by making use of

inductive biases not suitable for text (Liu et al., 2021). A unified treatment of static images and

videos poses additional difficulties. To address this challenge we use a Perceiver-based (Jaegle et al.,

2021) architecture that can produce a small fixed number of visual tokens (around a hundred) per

image/video, given a large varying number of visual input features (up to several thousand). We show

that this approach makes it possible to scale to large inputs while still retaining model expressivity.
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Obtaining heterogeneous training data to induce good generalist capabilities. Training large

models with billions of parameters successfully requires huge datasets. Paired image / caption

datasets (Jia et al., 2021; Radford et al., 2021) alone may not be general enough to induce few-shot

learning and task induction capabilities à la GPT-3. Several large-scale datasets for language have

been collected semi-automatically by scraping billions of web pages at a large scale (Brown et al.,

2020; Rae et al., 2021; Raffel et al., 2019), but an equivalent multimodal dataset which induces

similar few-shot abilities has yet to be collected. To overcome this challenge, we explore how to

obtain a multimodal dataset by scraping text and images from web pages. Examples from the latter

consist of text with interleaved images, corresponding to the page layout when viewed in a browser.

However, despite the generality of such data, the images and text are often only weakly related. To

address this issue, we combine this dataset with standard paired image/text and video/text datasets,

where the visual and language are typically more strongly related. We demonstrate that this careful

mixture of datasets is essential for Flamingo’s general few-shot task induction capability and to ensure

highly relevant generated outputs for visual inputs.

1.2. Contributions

The contributions of this work are the following:

1. We introduce the Flamingo family of Visual Language Models (VLMs) which can perform various

multimodal tasks (such as captioning, visual dialogue, classification or visual question answering)

from only a few input/output examples. This is enabled by the following contributions:

(a) A novel architecture for accepting arbitrarily interleaved visual data and text as input and

generating output text in an open-ended manner.

(b) Architectural innovations and training strategies that effectively leverage large pretrained

vision-only and language-only models, preserving the benefits of these initial models

while efficiently fusing the modalities. Starting from Chinchilla, a 70B state-of-the-art

LM (Hoffmann et al., 2022), we train Flamingo, an 80B parameter VLM.

(c) Efficient ways to adapt to visual inputs of varying size, making Flamingo applicable to

images and videos.

2. We quantitatively evaluate how Flamingo models can be adapted to various tasks via few-shot

learning. We notably reserve a large set of held-out benchmarks which have not been used

for validation of any design decisions or hyperparameters of the approach. We use these to

estimate unbiased few-shot performance.

3. Flamingo sets a new state of the art in few-shot learning on a wide array of 16 multimodal

language and image/video understanding tasks. In 6 out of these 16 tasks, Flamingo also

outperforms the fine-tuned state of the art, despite using only 32 task-specific examples which

is around 1000 times less task-specific training data than current state-of-the-art. With a larger

annotation budget, Flamingo can also be effectively fine-tuned to set a new state of the art on five

additional challenging benchmarks: VQAv2, VATEX, VizWiz, MSRVTTQA, and HatefulMemes.

2. Related work

We review relevant related work. First, we give a survey of the field of large-scale language modelling,

which has significantly influenced our approach. Next, we give a review on joint vision and language

modelling and contrast our work with the recent myriad of vision-language models. As getting the

right training data is key, we cover the literature exploring multimodal training data from the web,

and how our training data differs. Finally, we give an overview of few-shot learning approaches.
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2.1. Language modelling

The field of language modelling has made substantial progress in recent years, following the introduc-

tion of Transformers (Vaswani et al., 2017), which improved the modelling of long-range dependencies

over RNN-based approaches, while significantly increasing the throughput of models and therefore

the amount of data seen during training. The paradigm of first pretraining the model on a vast amount

of noisy data, then adapting the model for downstream usage has become standard, following earlier

work on language modelling with RNNs from Graves (2013); Howard and Ruder (2018); Jozefowicz

et al. (2016); Mikolov et al. (2010). Pretraining may use a masked language modelling loss (BERT

and T5, Devlin et al., 2018; Raffel et al., 2019) or a next-token prediction loss (Sutskever et al., 2011).

Our approach consists of training a visual language model on a large-scale vision and text dataset

scraped from the web, a multimodal equivalent of C4 (Raffel et al., 2019) and The Pile (Gao et al.,

2020).

In the last two years, following the success of GPT-3 (Brown et al., 2020), vast improvements have

been obtained by increasing the size of language models. This trend has been justified by the findings

of Kaplan et al. (2020), who show that language modelling performance is strongly correlated with

model size. Recently, Hoffmann et al. (2022) have refined these findings, showing that the number of

data tokens should scale at the same rate as the model size to maximise computational efficiency.

Based on these findings, they introduced the Chinchilla family of models, which we build upon, using

the 70B parameter Chinchilla model as the base LM for our largest Flamingo model.

Large-scale pretrained language models may be adapted in different ways to specific downstream

tasks. GPT-3 popularized the use of in-context learning, which entails prompting an autoregressive

language model with a few pairs of (input, expected output), followed by a query input. This approach is

appealing in that no further training is required for downstream usage. Other downstream adaptation

techniques typically involve adding to or modifying a limited number of parameters of the model

based on data from a downstream task—limiting the dimension of the optimisation problem can

prevent catastrophic forgetting (McCloskey and Cohen, 1989) of the pretraining task. One notable

approach involves directly learning a prefix or prompt in embedding space (Lester et al., 2021; Li

and Liang, 2021). Alternatively, Zaken et al. (2021) explores fine-tuning a fraction of the original

language model, or the biases only. Finally, Houlsby et al. (2019) adds a few adapter layers on top

and in the middle of the model and trains only these adapters, similar to the way we modify the

computational graph of the original language model in our approach. Adapter techniques come in

many different forms in the multimodal setting; we detail them in the next section.

2.2. Joint vision and language modelling

These LM breakthroughs have been influential for vision and language modelling. We cover three

families of related models. For simplicity, we omit the field of language conditioned visual generation.

Multimodal BERT-based approaches. BERT (Devlin et al., 2018) inspired a large number of follow-

up multimodal works. Numerous works such as Chen et al. (2020); Fu et al. (2021); Gan et al. (2020);

Hendricks et al. (2021); Li et al. (2020,); Lu et al. (2019); Singh et al. (2021); Su et al. (2019); Tan

and Bansal (2019); Wang et al. (2021,); Zellers et al. (2021, 2022); Zhu and Yang (2020) often apply

a pretrained object detector on images or videos to obtain visual region proposals, treated as visual
words. VideoBERT (Sun et al., 2019) instead tokenizes video frames as visual words using 9-means.

These visual tokens are later embedded and fed, together with text tokens, into a bi-directional

transformer. In addition to the MLM loss (Devlin et al., 2018), a masked region modelling loss

(MRM) (Chen et al., 2020; Lu et al., 2019) is often applied by masking visual tokens. A cross-modal
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matching loss (Chen et al., 2020; Lu et al., 2019; Singh et al., 2021; Tan and Bansal, 2019; Zhu

and Yang, 2020) can also be used to predict whether pairs of vision and text inputs are matching.

We differ from this family of models as Flamingo models do not require fine-tuning on new tasks.

Moreover, Flamingo models can generate text which is not natively the case for BERT-style models.

Contrastive dual encoder approaches. More recently, a large family of vision-language models,

based on contrastive learning (Alayrac et al., 2020; Bain et al., 2021; Jain et al., 2021; Jia et al.,

2021; Li et al., 2021; Miech et al., 2020; Pham et al., 2021; Radford et al., 2021; Yao et al., 2021;

Yuan et al., 2021; Zhai et al., 2021) have emerged. They often encode vision and text inputs with

separate encoders, producing individual vision and language vectors embedded into a joint space

using a contrastive loss. The strength of contrastive approaches is their capability to learn a highly

generic visual representation, and to do so efficiently at scale. Moreover, when pretrained on a large

and diverse dataset (Jia et al., 2021; Miech et al., 2020; Pham et al., 2021; Radford et al., 2021; Zhai

et al., 2021), strong zero-shot vision-text retrieval and classification performance can be obtained.

Unfortunately, as they are only trained to match visual data to text description, these models can

only be adapted to close-ended tasks. Finally, it is challenging to adapt contrastive models using

a handful of examples. In fact, Radford et al. (2021) indicated that using as few as two training

examples per-class actually decreased the CLIP zero-shot performance. In contrast, Flamingo models

can significantly improve with as few as four examples. In our work, we leverage contrastive learning

as a technique to pretrain our vision encoder on billions of web images with text descriptions.

Visual language models (VLM). Most similar to our work are the visual language models able

to generate text in an autoregressive manner (Donahue et al., 2015; Hu et al., 2021; Luo et al.,

2020; Vinyals et al., 2015). The first application (Donahue et al., 2015; Vinyals et al., 2015) was

visual captioning where the goal is to describe an image with text. VirTex (Desai and Johnson, 2021)

proposed captioning as a pretext task to learn a visual representation from text descriptions. Related

to our approach, CM3 (Aghajanyan et al., 2022) also proposes to go beyond the generation of a single

caption for images but instead, generate the content of HTML web pages containing images. Recently,

several concurrent works (Cho et al., 2021; Li et al., 2022; Wang et al., 2022, 2021; Zhu et al., 2021)

also propose to formulate numerous vision tasks as text generation problems, including classification,

visual question answering, visual entailment, visual captioning, visual grounding and even object

detection (Chen et al., 2021). They simplified prior work relying on cumbersome task-specific heads.

Training large-scale language models is data-hungry and highly computationally demanding (Hoff-

mann et al., 2022). As a consequence, building on top of a powerful pretrained text-only language

model has been explored in concurrent work. VisualGPT (Chen et al., 2021) showed the benefit of

initializing the weights of a VLM with a pretrained language-only model for data-efficient training.

Tsimpoukelli et al. (2021) pushed this idea even further by freezing the pretrained LM weights. The

conditioning of the model on vision is similar to the idea of prefix tuning (Lester et al., 2021; Li and

Liang, 2021; Zhou et al., 2021; Zhu et al., 2021) (also called prompt tuning) where the prefix is

encoded by a trainable visual encoder. The benefit of building on top of a strong frozen language

model is that it may enable the visual language model to retain similar powerful language-only

abilities such as few-shot language adaptation, external knowledge retrieval, or dialogue capabilities.

Several works followed this idea with architectural differences in the conditioning of the frozen

language model. For instance, MAGMA (Eichenberg et al., 2021) adds bottleneck adapters (Houlsby

et al., 2019; Sung et al., 2021) within the frozen language model; ClipCap (Mokady et al., 2021)

proposes to use a vision-to-prefix transformer to map the vision features into a prefix instead of using

a simple linear layer mapping. VC-GPT (Luo et al., 2022) moves away from the visual prefix tuning

approach. They instead explore conditioning the frozen language model by grafting new learnt layers
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to the frozen language model. Finally, PICA (Yang et al., 2021) and Socratic Models (Zeng et al.,

2022) propose to use off-the-shelf vision-language models (Radford et al., 2021; Zhang et al., 2021)

to communicate the content of images using language descriptions to GPT-3 (Brown et al., 2020).

The Flamingo models share numerous ideas with some of the aforementioned VLMs: (i) we rely

on a frozen pretrained language model, (ii) we also make use of a transformer-based mapper between

the vision encoder and the frozen language model, (iii) we train cross-attention layers interleaved

with the frozen language model layers. We differ from existing work as:

• Flamingo models can be rapidly adapted, without fine-tuning, to new tasks using few-shot

examples, outperforming several fully supervised task-specific state-of-the-art models.

• The architecture of Flamingo models is versatile enough to ingest sequences of arbitrarily

interleaved text, videos, and images.

2.3. Web-scale vision and language training datasets

Manually annotated vision and language datasets are costly to obtain and thus relatively small

(10k-100k) in scale (Antol et al., 2015; Chen et al., 2015; Marino et al., 2019; Wang et al., 2019; Xiao

et al., 2021; Young et al., 2014). Several recent works instead leveraged web scraping to automatically

generate aligned visuals and text. For example, some approaches pair images (Changpinyo et al.,

2021; Jia et al., 2021; Sharma et al., 2018; Thomee et al., 2016) or videos (Bain et al., 2021) with

available alt-text or video descriptions. Miech et al. (2019); Zellers et al. (2021, 2022) explored the

use of video with speech transcribed in text as supervision. These works only considered pairs of

single images/videos and text descriptions as training data. In addition to this type of paired data, we

show the importance of also training on entire multimodal webpages containing interleaved images

and text as a single sequence. CM3 (Aghajanyan et al., 2022) follows a similar approach, additionally

generating the full HTML markup from pages, while we simplify the text prediction task for the base

LM by scraping only the natural language text from the title and main body of the webpage. Finally,

we emphasize that Flamingo achieves state-of-the-art performance across a wide range of benchmarks

without training on commonly used and curated datasets such as VQAv2, COCO or ImageNet. Instead,

Flamingo is trained solely on task-agnostic web scraped data.

2.4. Few-shot learning in vision

Few-shot learning has been extensively studied in computer vision (Fei-Fei et al., 2006; Hariharan

and Girshick, 2017). With just a few examples, models can rapidly adapt to new tasks. Several

benchmarks have been created to measure progress in this area such as miniImagenet (Vinyals

et al., 2016), Omniglot (Lake et al., 2011), Meta-Dataset (Triantafillou et al., 2019), Dax-Blicket

Fast Binding dataset (Tsimpoukelli et al., 2021) or ORBIT (Massiceti et al., 2021). One category of

approaches to few-shot learning is based on analysing the similarities between query and support

examples (Doersch et al., 2020; Snell et al., 2017; Tian et al., 2020; Vinyals et al., 2016). Another,

based on optimisations using gradient updates, aims at finding a good model initialization that is

well-suited for adaptation (Bertinetto et al., 2018; Finn et al., 2017; Zintgraf et al., 2019). In contrast,

other work (Bertinetto et al., 2016; Gordon et al., 2018; Requeima et al., 2019) use support examples

to directly generate model weights adapted to the novel task. A final category is based on the idea

of “in-context” few-shot prompts for language models (Brown et al., 2020) and it has recently been

extended to images and language (Tsimpoukelli et al., 2021; Yang et al., 2021). This category is the

basis of our work. We follow the in-context learning paradigm and also propose the first model for

in-context few-shot video learning.
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Figure 3 | Overview of the Flamingo model. The Flamingo models are a family of visual language model
(VLM) that can take as input visual data interleaved with text and can produce free-form text as output. Key to
its performance are novel architectural components and pretraining strategies described in Section 3.

3. Approach

This section describes our approach to building the Flamingo model: a visual language model that

accepts text interleaved with images/videos as input and outputs free-form text. Despite its apparent

simplicity, this API is sufficiently expressive to tackle a diverse range of tasks. In particular, it handles

both open-ended tasks such as visual question-answering or captioning, which require generating

text, and close-ended tasks such as classification, which require choosing the best category or answer

amongst a set. Most importantly, it is amenable to few-shot in-context learning where examples of

annotated visual and text pairs are provided in an interleaved prompt to steer the model to a desired

task behavior, without having to change or adapt the model weights (see Section 3.3).

The architectural components shown in Figure 3 are key to the performance of Flamingo models,

and these are chosen according to two objectives. The first objective is to leverage pretrained models

without having to spend compute training them from scratch. On the vision side, we pretrain a

vision encoder with a contrastive text-image approach, à la CLIP (Radford et al., 2021). The role

of this model is to extract semantic spatial features that describe attributes that one would want to

query about a visual datum: color, shape, nature, positions of objects, etc. On the language side,

we start from an existing autoregressive language model (LM) trained on a large and diverse text

corpus (Hoffmann et al., 2022). By doing so, Flamingo models gain strong generative language

abilities and access to a large amount of knowledge stored in the LM weights. The second objective is

to bridge these pretrained models harmoniously. To do so, we freeze the weights of these models

so that their initial capacity remains unchanged. We then link them via two learnable architecture

components. First, the Perceiver Resampler (Section 3.1.1) receives spatio-temporal features from the

Vision Encoder (obtained from either image or video) and outputs a fixed-size set of visual tokens.
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Second, those visual tokens are used to condition the frozen LM using freshly initialised cross attention

layers (Section 3.1.2) that are interleaved between the pretrained LM layers. These new layers offer

an expressive way for the LM to incorporate visual information for the next-token prediction task.

An important aspect of the Flamingo models is that they can model the likelihood of text G

interleaved with a sequence of images/videos F as illustrated in Figure 3. More formally, we model

the visually conditioned text likelihood as follows

>(G |F) =

!
∏

ℓ=1

>(Gℓ |G<ℓ, F≤ℓ), (1)

where Gℓ is the ℓ-th language token composing the input text, G<ℓ is the set of preceding tokens, F≤ℓ
is the set of images/videos preceding token Gℓ in the interleaved sequence and > is parametrized

by a Flamingo model. This setting is formalized in more details in Section 3.1.3. Such interleaved

modeling is enabled in the Flamingo architecture by cross attention causal masks (see Figure 6) that

specify the conditional dependencies within the multimodal sequence accordingly. The ability to

handle interleaved text and visual sequences makes it natural to use Flamingo models for in-context

few-shot learning, analogously to GPT-3 with few-shot text prompting. To condition a Flamingo

model for a new multimodal task, one simply composes a few-shot prompt by alternating visual inputs

and expected text responses, followed by a final “test” image or video (Figure 8). Once this prompt is

provided to the model, one can either sample output text, or evaluate the probability of a fixed set of

completions (see Section 3.3). The model is trained by maximizing the likelihood of Equation (1) on

a diverse mixture of datasets described in Section 3.2.

3.1. Flamingo models architecture

This section goes into the details of our architecture. We first describe the visual stack of our method,

that handles the input F, and the text generative decoder producing the sequence G. We then formalize

how the visual data is interleaved with the text and how this influences the language generation

process.

3.1.1. Visual processing and the Perceiver Resampler

Vision encoder: from pixels to features. Our model’s vision encoder is a pretrained Normalizer-

Free ResNet (NFNet) (Brock et al., 2021) – we use the F6 model. We chose this family of visual

backbones thanks to their excellent trade-off between performance and efficiency given our hardware.

We pretrain the vision encoder using a contrastive objective on our datasets of image and text pairs,

using the two-term contrastive loss from Radford et al. (2021). Contrastive similarities are computed

as the dot product of the mean pooling of the image encoder output, and the mean pooled output of

a BERT model (Devlin et al., 2018). The performance of our contrastive pretrained model is given in

Section 4.2.3 and more details about the contrastive training are given in Appendix C.2.2. During

the main training phase of the Flamingo models, we leave the vision encoder frozen as it performs

favorably when compared to training the vision model directly from our text generation objective

(see ablations in Section 4.4). The output of the final stage is a 2D spatial grid of features - 5 , which

is then flattened to 1D as shown in Figure 4. Our model also handles video inputs. In this setting,

frames are sampled at 1 FPS, encoded independently to obtain a sequence of ) feature maps - 5 which

are then concatenated before being fed to downstream components (Figure 4).

Perceiver Resampler: from varying-size large feature maps to few visual tokens. The Perceiver

Resampler module connects the vision encoder to the frozen language model as shown in the overall
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def perceiver_resampler(

    x_f,  # The [T, S, d] visual features (T=time, S=space)

    time_embeddings,  # The [T, 1, d] time pos embeddings.

    x,  # R learned latents of shape [R, d]

    num_layers,  # Number of layers

):

  """The Perceiver Resampler model."""

  # Add the time position embeddings and flatten.

  x_f = x_f + time_embeddings

  x_f = flatten(x_f)  # [T, S, d] -> [T * S, d]

  # Apply the Perceiver Resampler layers.

  for i in range(num_layers):

    # Attention.

    x = x + attention_i(q=x, kv=concat([x_f, x]))

    # Feed forward.

    x = x + ffw_i(x)

  return x

Time

+

+

X

Figure 4 | The Perceiver Resampler module maps a variable size grid of spatio-temporal visual features
coming out of the Vision Encoder to a fixed number of output tokens (five in the figure), independently of
the input image resolution or the number of input video frames. This transformer has a set of learned latent
vectors as queries, and the keys and values are a concatenation of the spatio-temporal visual features with the
learned latent vectors. More details can be found in Section 3.1.1.

architecture in Figure 3. It takes as input a variable number of image or video features from the vision

encoder and produces a fixed number of visual outputs as illustrated in Figure 4 (hence the name

Resampler). The motivation for re-sampling the visual input to a fixed and small number (in practice

64) of outputs is to significantly reduce the computational complexity of vision-text cross attention,

particularly important when dealing with multiple long videos. In similar spirit to Perceiver (Jaegle

et al., 2021) and DETR (Carion et al., 2020), we learn a predefined number of latent input queries.

These latent queries are fed to a transformer stack and cross attend to the flattened visual features

- 5 . These visual features are obtained by first adding a learnt temporal position encoding to each

spatial grid of features corresponding to a given frame of the video (an image being considered

as a single-frame video). Note that we only use temporal encodings and no spatial grid position

encodings; we did not observe improvements from the latter, potentially because CNNs implicitly

encode space information channel-wise (Islam et al., 2021). The visual features are then flattened

and concatenated as illustrated in Figure 4. The number of output tokens of the Resampler is thus

equal to the number of learnt latent queries. Unlike in DETR and Perceiver, the keys and values

computed from the learnt latents are concatenated to the keys and values obtained from - 5 , which we

found to perform slightly better. We show later in the ablation studies (Section 4.4), that using such a

vision-language resampler module outperforms a plain transformer and an MLP. More architectural

details are provided in Table 13.

3.1.2. Conditioning a frozen language model on visual representations

As illustrated in Figure 5, text generation is performed by a Transformer decoder, conditioned on the

visual representations - produced by the Perceiver Resampler. We build this model by interleaving
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def gated_xattn_dense(

    y,  # input language features

    x,  # input visual features 

    alpha_xattn, # xattn gating parameter – init at 0.

    alpha_dense, # ffw gating parameter – init at 0.

):

  """Applies a GATED XATTN-DENSE layer."""

  # 1. Gated Cross Attention

  y = y + tanh(alpha_xattn) * attention(q=y, kv=x)

  # 2. Gated Feed Forward (dense) Layer

  y = y + tanh(alpha_dense) * ffw(y)

  # Regular self-attention + FFW on language

  y = y + frozen_attention(q=y, kv=y)

  y = y + frozen_ffw(y)

  return y  # output visually informed language features

Vision 
input

Y

X

…
…

Figure 5 | gated xattn-dense layers. We insert new cross-attention layers, whose keys and values are
obtained from the vision features while using language queries, followed by dense feed forward layers in
between existing pretrained and frozen LM layers in order to condition the LM on visual inputs. These layers
are gated so that the LM is kept intact at initialization for improved stability and performance.

pretrained blocks obtained from a text-only language model, and blocks trained from scratch that use

the output of the Perceiver Resampler as one input. The pretrained text-only model is a decoder-only

model trained on MassiveText (Rae et al., 2021), an English-only mixture of datasets obtained by

scraping various Internet sources. Our largest Flamingo model relies on the 70B Chinchilla model

trained by Hoffmann et al. (2022).

Interleaving new gated xattn-dense layers within a frozen pretrained LM. We wish to

preserve the information contained in the text-only language model weights; we therefore freeze the

pretrained blocks during training following Tsimpoukelli et al. (2021). In order to provide sufficient

expressivity to the VLM and make it able to condition well on visual inputs, we insert gated cross-
attention dense (gated xattn-dense illustrated in Figure 5) blocks in between the original layers,

that are trained from scratch. Those blocks are made of a cross-attention layer, that attends the visual

inputs with specific cross-attention masks (detailed in the next section), followed by an extra dense
feed-forward (FFW) layer. As in GPT-2-style (Radford et al., 2019) attention layers, we apply layer

normalization (Ba et al., 2016) to the keys, values, and queries input to the attention, as well as to

the dense FFW inputs. The layer normalization layers include the learnt biases and offsets (with

parameters shared between the keys and values). To ensure that at initialization, a forward pass

through the conditioned model yields the same results as the original language model, we use a

tanh-gating mechanism (Hochreiter and Schmidhuber, 1997). It consists in multiplying the output of

a newly added layers by tanh(U) right before adding it to the input representation from the residual

connection, where U is a layer-specific learnable scalar initialized at 0 (similar to Bachlechner et al.,

2021). Thus, at initialization, the branch going through the added layers is skipped, and the model

output matches the pretrained language model one. During training, the model smoothly transitions

from a fully trained text-only model to a visual language model (as displayed in Appendix C.4). This

gating mechanism improves both the stability of training and the final performance (see ablations

in Section 4.4). These layers are inserted at a certain depth frequency (see Table 1); this controls

the ratio of fresh parameters over pretrained frozen parameters, which is key to regulate the model

expressivity, memory usage and time complexity. Different frequencies of the added cross attention

layers with the compute-performance trade-off is discussed in the ablation studies presented in
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Figure 6 | Interleaved visual data and text support. Given text interleaved with images/videos, e.g. coming
from a webpage, we first process the text by inserting <image> tags at the location of the visual data in
the text as well as special tokens (<BOS> for “begining of sentence” or <EOC> for “end of chunk”). The
images are processed independently by the Vision Encoder and Perceiver Resampler to extract visual tokens.
Following our modeling choice motivated in Section 3.1.3, each text token only cross-attends to the visual
tokens corresponding to the last preceding image. The function q illustrated above indicates for each token
what is the index of the last preceding image (and 0 if there are no preceding images). In practice, this selective
cross-attention is achieved via a masked cross attention mechanism – illustrated here with the dark blue entries
(non masked) and light blue entries (masked).

Section 4.4. In these ablation studies, we also compare the proposed solution against other recent

conditioning approaches (Desai and Johnson, 2021; Luo et al., 2022) and demonstrate that it offers a

better trade off between added expressivity and retention of information acquired during pretraining.

3.1.3. Multi-visual input support: per-image/video attention masking

Interleaved sequence of visual data and text. We consider interleaved image/video and text

examples: each example holds a sequence of text G, a sequence of images/videos F, and the sequence

of positions of the images in the text. Based on the visual data positions, we define a function

q : [1, !] ↦→ [0, #] that assigns to each text position the index of the last image/video appearing

before this position, (or 0 if no visual data appears before the position). The function q defines

which visual inputs we consider usable to predict token ℓ in Equation (1): the set of preceding tokens

G<ℓ , (G1, . . . , Gℓ−1), and the set of preceding images/videos F≤ℓ , {F7 |7 ≤ q(ℓ)}.

Multi-image attention. In practice, the multi-image attention is implemented within the gated

xattn-dense layer by first imposing that all text tokens G cross-attend to the full concatenation of

all visual tokens coming from the visual sequence F, followed by masking to respect the image-causal

modelling introduced in Equation (1). The visual tokens are taken at the output of the Perceiver

Resampler and the masking effectively limits the number of visual tokens that a certain text token

sees. Typically, we allow each token to attend to the tokens of the image that appeared just before

it in the interleaved sequence, i.e. the image F7 such that q(ℓ) = 7 as illustrated in Figure 6. We

found this scheme to work better than allowing a text token to cross-attend to all previous images

directly (as shown in Section 4.4). Although the model can only directly attend to a single image at

any given point, there is still a causal dependency on all previous images in the sequence via causal

self-attention in the text decoder.

An important advantage of this single-image cross-attention scheme is that it allows the model to

seamlessly generalise to any number of images, regardless of how many are used during training.

Indeed, the proposed attention scheme does not depend on the number of images that one cross
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Figure 7 | Training datasets. Mixture of training datasets of different nature. # corresponds to the number
of visual inputs for a single example. For paired image (or video) and text datasets, # = 1. ) is the number of
video frames with ) = 1 being the special case of images. �,,, � are height, width and color channels.

attends to. In our case, at training time we use only up to 5 images per sequence when training on

our interleaved datasets, but at evaluation our model is able to generalise to sequences of at least

32 “shots” (pairs of images and corresponding text). Moreover, for simplicity we currently perform

the full cross-attention before masking the unused outputs, however a careful and more efficient

implementation would only compute cross-attentions of the corresponding text tokens against a single
image representation. Finally, we believe this scheme provides a useful inductive bias for traditional

visual understanding tasks involving making predictions about a single image.

3.2. Training on a mixture of vision and language datasets

As illustrated in Figure 7, we train the Flamingo models on a mixture of three kinds of datasets: an

interleaved image and text dataset derived from webpages (described in Section 3.2.1), image and

text pairs, as well as video and text pairs (both described in Section 3.2.2). It is important to note

that we only train on datasets collected from the web that were not annotated for machine learning

purposes. In particular, we do not include any downstream task-specific datasets in the training

mixture, in order to guarantee the generality of the approach.

3.2.1. Interleaved image and text dataset

Our model has the ability to handle interleaved text and image training data. To feed it such data,

crucial for its few-shot capabilities, we collect the MultiModal MassiveWeb (M3W) dataset: we extract

both text and images from the HTML of approximately 43 million webpages, determining the positions

of images relative to the surrounding text based on the relative positions of the text and image elements

in the Document Object Model (DOM). In total, M3W contains 185 million images (≈ 4.3 per page)

and 182 GB of text (≈ 4.4 KB per page). An example processed webpage appears in Figure 7. We

detail the collection of M3W in Appendix A.1.

We obtain a training example from a given webpage as follows (see Figure 6). We process the

text by inserting <image> tags at the locations of the images in the webpage. These tags signal to

the model the original locations within the text of the images on the page, and are added in plain

text so that they do not require any additional special new tokens in the language model. Before any

<image> tag, and at the end of the document (before <EOS>), we also add a special <EOC> (end
of chunk) token. This token is added to the vocabulary of the underlying LM with its embedding

randomly initialised and learnt, and is used during sampling and inference to denote the end of the

text sequence prediction for a given image. From each document, we sample a random subsequence

of ! = 256 tokens and take up to # = 5 images included in the sampled sequence (using only the

first # within that sampled subsequence if there are more, or padding to # if fewer). Based on the

position of the images with respect to the text, we deduce the function q (a length ! sequence), which
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indicates for each token the index of the last preceding image. This sequence is used to compute the

cross-attention mask described in Section 3.1.3. We provide further details about this processing in

Appendix A.1.2. In particular, we explain how we can perform a form of “data augmentation” when

constructing q.

In summary, the output of these preprocessing steps is an instance consisting of three parts:

1. images: floats, shape [# = 5, ) = 1, � = 320,, = 320, � = 3]

2. text: integers (tokens), shape [! = 256]

3. indices: (q(7))1≤7≤!, integers in [0, #], shape [! = 256]

3.2.2. Visual data paired with text

Along with our interleaved image and text dataset, we use several paired vision and text web datasets

for training. One dataset is ALIGN (Jia et al., 2021), composed of 1.8 billion images paired with

alt-text. ALIGN is large, but noisy and limited to images. The images are often poorly described by the

corresponding alt-text annotation. For this reason, we augment it with two datasets: LTIP (Long Text

& Image Pairs) consists of 312 million images, and VTP (Video & Text Pairs) consists of 27 million

short videos (approximately 22 seconds on average). Both datasets are paired with more descriptive

captions. For instance, the average number of tokens of an ALIGN text description is 12.4 per image,

while it is 20.5 for the LTIP dataset. The LTIP and VTP datasets were collected by crawling fewer than

ten websites targeting high-quality and rich image descriptions. These single-image and single-video

datasets are preprocessed analogously to theM3W data preprocessing described previously, adding the

<image> tag at the beginning of the sequence (immediately after <BOS>), and the <EOC> token after

the text (before <EOS>). We deduplicated these datasets against all our benchmarks (against both the

training and the evaluation sets) using image similarity, as detailed in Appendix A.3. Datasheets for

LTIP and VTP are respectively given in Appendix A.2.1 and Appendix A.2.2. A preprocessed instance

from one of these datasets again consists of three parts:

1. images: floats, shape [# = 1, ), � = 320,, = 320, � = 3] () = 1 for images; ) = 8 for videos)

2. text: integers (tokens), shape [!] (! is dataset-dependent ! = 32 or ! = 64)

3. indices: integers 1, shape [!] (trivial for these datasets that have a single visual input # = 1)

3.2.3. Training objective and optimisation strategy

We train our models by minimizing a weighted sum of dataset specific expected negative log likelihood

of text given some visual inputs:

"
∑

;=1

_; · E(F,G)∼D;

[

−

!
∑

ℓ=1

log >(Gℓ |G<ℓ, F≤ℓ)

]

, (2)

where D; and _; is the ;-th dataset and the positive scalar weighting its influence in the loss, respec-

tively. As the different datasets have different properties (e.g., quality of text, level of correspondence

between text and visuals or image versus videos), we found that tuning these weights was very

important to overall performance (similar to what was found in the Gopher paper (Rae et al., 2021)).

In practice, at each step of optimisation we go over each dataset D; in turn, sample a batch of size �;

of visual language sequences from it, compute the gradient of the loss with respect to the minibatch

and weight it by _;. We then accumulate the gradients over all " datasets before triggering an update

step. We found this gradient accumulation strategy to be crucial for high performance compared to a

round-robin approach (Cho et al., 2021) as shown in the ablation study (Section 4.4.1).
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<BOS><image>Question: What’s the cat wearing? Answer: sunglasses<EOC><image>Question: How many animals? Answer: 3<image> 
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Visual Question Answering Task (input=vision+text, output=text)
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<BOS><image>Output: A cat wearing sunglasses.<EOC><image>Output: Elephants walking in the savanna.<EOC><image>Output:

Vision to Text tasks (input=vision, output=text)

Figure 8 | Few-shot interleaved prompt generation. Given some task-specific few-shot examples (a.k.a.
support examples) and a query for which Flamingo models have to make a prediction, we build the prompt
by interleaving the image before each corresponding text. We introduce some formatting to do this, e.g.
we prepend “Output:” to the expected response for all vision to text tasks or use a formatting prompt
“Question: {question} Answer: {answer}” for visual question answering tasks.

3.3. Task adaptation with few-shot in-context learning

Once Flamingo is trained, we use it to tackle a visual task by conditioning it on an interleaved prompt,

as illustrated in Figure 8.

In-context learning with Flamingo models. We evaluate the ability of our models to rapidly adapt

to new tasks using in-context learning, following an analogous approach to the one used in GPT-

3 (Brown et al., 2020). In detail, we are given a set of support examples in the form of (7;064, B4FB) or

(D734=, B4FB) (where the 7;064 or D734= is the input visual and the B4FB is the expected response and/or

also contains additional task information e.g. a question) and a single visual query for which we want

our model to make a prediction. Given this, we build a multimodal prompt by concatenating the

support examples followed by the visual query as illustrated by Figure 8. Unless specified otherwise,

we choose the concatenation order at random.

Open-ended and close-ended evaluations. In an open-ended setting, the model’s sampled text

following the query image is then taken as its prediction for the image, stopping at the first <EOC>
(“end of chunk”) token prediction. Unless specified otherwise, we always use beam search with a

beam size of 3. In a close-ended setting, all possible outputs are independently appended to the query

image, and we score each of the resulting sequences using the log-likelihood estimated by our model.

These scores are then used to rank the candidate outputs in decreasing order, from most confident to

least confident.

Zero-shot generalization. In the absence of few-shot examples, approaches commonly rely on

prompt engineering (Radford et al., 2021) to condition the model at inference using a suitable natural

language description of the task. Validation of such prompts can significantly impact performance but
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requires access to a number of annotated examples and cannot therefore be considered truly zero-shot.

Furthermore, Perez et al. (2021) have shown that such validation procedures are generally not robust

with access to only a handful of samples during validation. To report zero-shot performance in our

work, we instead build a prompt with two examples from the downstream tasks where we remove
their corresponding images or videos. For example, for the task illustrated at the top of Figure 8, the

prompt would be “<BOS>Output: This is a cat wearing sunglasses.<EOC>Output: Three

elephants walking in the savanna.<EOC><image> Output:” and no support images would be

fed to the model. We observed that only showing one, instead of two, text examples in the prompt is

highly detrimental as the model is biased towards producing text output similar to the single provided

text example. Providing more than two text examples helps but only marginally. We hence stick

with two text examples for practical reasons. In practice, we believe this is not more cumbersome

than finding a good natural text description for a given task. This relates to recent findings on the

aspects of demonstrations that are key drivers of performance (Min et al., 2022). For close-ended

tasks, where we use the model to score different possible answers, we observe it is not necessary to

provide a single text example in the zero-shot prompt.

Retrieval-based In-Context Example Selection (Yang et al., 2021). When the size of the support

set exceeds a certain limit, it can become difficult to leverage all the examples with in-context learning:

first because it becomes excessively expensive to fit all the examples in the prompt, and second there

is a risk of poor generalization when the prompt size exceeds the size of the sequence used during

training (Press et al., 2022). In such situations, it is appealing to use a form of prompt selection to

both limit the sequence length as well as potentially improve the prompt quality which can in turn

lead to better performance (Liu et al., 2021). In particular, we follow the Retrieval-based In-Context

Example Selection (RICES in short) approach introduced by Yang et al. (2021). In details, given a

query image we retrieve similar images in the support set by comparing the visual features extracted

from our frozen pretrained visual encoder. We then build the prompt by concatenating the top-# most

similar examples. Since LM are sensitive to the ordering in the prompt due to recency bias (Zhao

et al., 2021), we order the examples so that the most similar support example appears right before

the query. We notably show the effectiveness of this approach in classification settings with multiple

hundreds of classes (see Section 4.2.2) where we are given one or more images/videos per class,

yielding a number of examples that would not otherwise all fit in the prompt.

Prompt ensembling. We also explore ensembling the outputs of the model across multiple prompts.

This can notably be combined with RICES where ensembling can be done over multiple permutations

of the ranked nearest neighbors. Specifically, for a given answer, we ensemble the log likelihoods

estimated by the model over 6 random permutations of the selected few-shot prompts.

17



Flamingo: a Visual Language Model for Few-Shot Learning

Requires Frozen Trainable Total

model sharding Language Vision gated xattn-dense Resampler count

Flamingo-3B ✗ 1.4B 435M 1.2B (every) 194M 3.2B

Flamingo-9B ✗ 7.1B 435M 1.6B (every 4th) 194M 9.3B

Flamingo ✓ 70B 435M 10B (every 7th) 194M 80B

Table 1 | Parameter counts for Flamingo models. We focus on increasing the parameter count of the frozen
LM and the trainable vision-text gated xattn-dense modules while maintaining the frozen vision encoder
and trainable Resampler to a fixed and small size across the different models. The frequency of the gated

xattn-dense with respect to the original language model blocks is given in parenthesis.

4. Experiments

We first introduce our experiment setting in Section 4.1. We then report the results of the Flamingo

models on few-shot learning in Section 4.2. In Section 4.3, we provide the results of the Flamingo

models in the fine-tuning regime. Finally we provide an ablation study validating our design choices

in Section 4.4.

4.1. Training and evaluation setting

4.1.1. Models

We perform experiments across three model sizes, where we scale the frozen language model from

1.4B to 7B and 70B; and adapt the parameter count of other components accordingly. We keep

the pretrained vision encoder frozen across all experiments and use a NFNet-F6 model trained

contrastively (see Section 4.1.4), unless explicitly stated otherwise in the ablation study. We use a

Perceiver Resampler with approximately 200M parameters across all three model sizes.

The decision on how many gated xattn-dense layers to interleave is mainly driven by a

trade-off between memory constraints and downstream performance. We identified the optimal

trade-off at small model scales, before transferring our findings to the large model architecture.

We obtain three models, Flamingo-3B, Flamingo-9B and Flamingo-80B, detailed below:

• The Flamingo-3B model builds on top of a 1.4B frozen language model from Hoffmann et al.

(2022). Before each transformer block, we add a gated xattn-dense layer attending to

the visual inputs; this accounts for 1.4B additional learned parameters.

• The Flamingo-9B model builds on top of a 7B frozen language model from Hoffmann et al.

(2022). Starting from the very first layer and before every fourth transformer blocks, we add a

gated xattn-dense layer attending to the visual inputs; this accounts for 1.8B additional

learned parameters.

• The Flamingo-80B model builds on top of the frozen Chinchilla 70B language model (Hoff-

mann et al., 2022). Starting from the very first layer and before every seventh transformer

blocks, we add a gated xattn-dense layer attending to the visual inputs; this accounts for

10B additional learned parameters. For simplicity, we refer to this model as simply Flamingo
throughout the paper.

We report the parameter count of each component of our models, as well as model sharding require-

ments, in Table 1 and provide more Transformer architecture details in Appendix C.1. The Flamingo
model card (Mitchell et al., 2019) is also given in Appendix B.
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Dataset dev Gen.
Custom
prompt

Task description Eval set Metric

Im
a
g
e

ImageNet-1k [103] ✓ Object classification Val Top-1 acc.
MS-COCO [18] ✓ ✓ Scene description Test CIDEr
VQAv2 [3] ✓ ✓ Scene understanding QA Test-dev VQA acc. [3]
OKVQA [75] ✓ ✓ External knowledge QA Val VQA acc. [3]
Flickr30k [149] ✓ Scene description Test (Karpathy) CIDEr
VizWiz [40] ✓ Scene understanding QA Test-dev VQA acc. [3]
TextVQA [108] ✓ Text reading QA Val VQA acc. [3]
VisDial [22] Visual Dialogue Val NDCG
HatefulMemes [60] ✓ Meme classification Seen Test ROC AUC

Kinetics700 2020 [110] ✓ Action classification Val Top-1/5 avg

V
id
e
o

VATEX [132] ✓ ✓ Event description Test CIDEr
MSVDQA [140] ✓ ✓ Event understanding QA Test Top-1 acc.
YouCook2 [161] ✓ Event description Val CIDEr
MSRVTTQA [140] ✓ Event understanding QA Test Top-1 acc.
iVQA [145] ✓ Event understanding QA Test iVQA acc. [145]
RareAct [81] ✓ Composite action retrieval Test mWAP
NextQA [139] ✓ Temporal/Causal QA Test WUPS
STAR [138] Multiple-choice QA Test Top-1 acc.

Table 2 | Summary of the evaluation benchmarks. dev benchmarks were used to validate general design
decision of the Flamingo models. Gen. stands for generative task where we sample text from the VLM. If a task
is non-generative it means that we use VLM to score answers among a given finite set. For most of our tasks we
use a common default prompt, hence minimizing task-specific tuning (see Section 4.1.3).

4.1.2. Evaluation benchmarks

Our goal is to develop models that can rapidly adapt to diverse and challenging tasks in the few-shot

setting. For this, we consider a wide array of popular image and video benchmarks summarized in

Table 2. In total we chose 16 multimodal image/video and language benchmarks spanning tasks that

requires some language understanding (visual question answering, captioning, visual dialogue) as

well as two standard image and video classification benchmarks (ImageNet and Kinetics). Note that

for the video datasets collected from YouTube (i.e. all video datasets except NextQA and STAR), we

evaluated our model on all the publicly available video as of April 2022.

dev benchmarks. In order to validate design decisions of our model during the course of the

project (see Section 4.4), we selected seven benchmarks as our development set (referred as dev). To

maximise its relevance, we choose the most challenging and widely studied benchmarks for captioning,

visual question answering and classification tasks on both images and videos.

Dataset splits for the dev benchmarks. Concretely, estimating few-shot learning performance of

a model consists in adapting it on a set of support samples and evaluating it on a set of query samples.

As a result, any evaluation set should be composed of two disjoint subsets containing respectively

the support and the query samples. For the dev benchmarks that are used both to validate design

decisions and hyperparameters, as well as to report final performance, we therefore use four subsets:

• validation support: contains support samples for validation;

• validation query: contains query samples for validation;

• test support: contains support samples for final performance estimation;

• test query: contains query samples for final performance estimation.

19



Flamingo: a Visual Language Model for Few-Shot Learning

In practice, for the test query subset, we use the subset that prior works report results on, for

apple-to-apple comparison. While the validation set would be a natural choice for the validation query
subset, we note that this is not possible for all benchmarks, since some benchmarks do not have an

official validation set (e.g. OKVQA) and for others, the validation is commonly used to report final

performance in place of the test set (e.g. ImageNet or COCO). For simplicity, we use a subset of the

original train set as the validation query subset. Finally, we also use additional disjoint subsets of

the train set as respectively the validation support subset and the test support subset. We describe in

Appendix C.3 how many samples we use for each subset.

Unbiased few-shot performance estimation. Few-shot learning performance estimates on the

dev benchmarks may be biased; in the sense that along the progress of this work, design decision

were made based on the performance obtained on these benchmarks. We note that this is the case for

prior work which also make use of these benchmarks to validate and ablate their own design decisions.

To account for this bias and provide unbiased few-shot learning performance estimates, we report

performance on a remaining set of 11 benchmarks. Among those, some spans the same open-ended

image and video tasks as our dev benchmarks (captioning and video question answering). But we also

look at more specific benchmarks in order to explore less explored capabilities. This notably includes:

TextVQA (Singh et al., 2019) that specifically assesses OCR capability through question answering,

VisDial (Das et al., 2017) which is the only visual dialogue benchmark, HatefulMemes (Kiela et al.,

2020) which is the only vision and text classification benchmark, NextQA (Xiao et al., 2021) which

specially focuses on causality and temporal relation, STAR (Wu et al., 2021) which is the only

multiple-choice question answering task and finally RareAct (Miech et al., 2020), the only benchmark

measuring compositionality in action recognition. We emphasize that we do not proceed to any
validation of design decisions on these benchmarks and use them solely to estimate unbiased few-shot

learning performance after Flamingo training is done.

4.1.3. Few-shot learning evaluation hyperparameters

In few-shot learning, hyperparameter selection implicitly increases the number of shots as it requires

additional validation examples. If those are not taken into account, as is often the case in practice, few-

shot performance can be overestimated (Perez et al., 2021). Similarly, cross-validation of benchmark-

specific hyperparameters such as the prompt should be considered as a particularly basic few-shot

learning method, where one selects the task-specific prompt over the set of shots; but other learning

approaches might be more effective in making use of these labelled examples. From this perspective,

as pointed out by Perez et al. (2021), the results reported for methods such as CLIP (Radford et al.,

2021) or ALIGN (Jia et al., 2021) cannot be considered as true zero-shot. In fact, it is unclear

how many “shots” were used or would have been needed to obtain the important gains reported

when using prompt engineering. Given the negative results reported by Perez et al. (2021) in

terms of the robustness of cross-validation and unless mentioned otherwise, all benchmarks are

run using a single set of evaluation hyperparameters, including the prompts. Thus our few-shot

learning performance is always "true" in the sense described by Perez et al. (2021). We optimize

hyperparameters jointly across the validation subsets of the dev benchmarks and do not proceed to any

benchmark-specific cross-validation of hyperparameters. In particular (except for HatefulMemes and

RareAct), we always use the prompt “Output: {output}” for all non question answering tasks and

“Question: {question} Answer: {answer}” for all question answering / visual dialogue tasks.

In particular for VisDial (Das et al., 2017), we use the previously described prompt to encode each

questions/answers of the dialogue and the provided image caption is prepended to the dialogue history

without any prompt. For HatefulMemes (Kiela et al., 2020), we use a specific prompt to incorporate the

OCR information provided as input which is: “is an image with written: "{meme_text}"
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on it. Is it hateful? Answer: {answer}”, where the answer is either yes or no. Note

that this is the only dataset where we explicitly provide OCR text meme_text as input to Flamingo

models. In particular, for TextVQA, we do not make use of the provided OCR transcripts and instead

directly rely on the off-the-shelf OCR ability of the Flamingo models. For RareAct which is a zero-shot

benchmark, we change the verb names to the third person, add an article before each noun and use

the prompt “Caption: a person {verb + object}”.

4.1.4. Training details for the Flamingo models

Data augmentation and preprocessing. Empirically we find that it is effective to stochastically

prepend the paired dataset text samples with a single space character, with probability 0.5. We

attribute this to the fact that our subword tokenizer maps the beginning of various words to a different

token depending on whether it is preceded with a space or not. This allows us to enforce invariance

to this tokenizer artifact, without degrading significantly correctness of the punctuation which is

already lacking in many of these samples and leads to substantial improvement across tasks.

The visual inputs are resized to 320 × 320 while preserving their aspect ratios, padding the image

with the mean value if required. Note that this is higher than the 288 × 288 resolution used for the

contrastive pretraining of our Vision Encoder (Appendix C.2.1). The increase in resolution during

the final stage training was motivated by Touvron et al. (2019) that show one can obtain improved

performance at a higher test-time resolution when using CNNs. This increase in resolution also comes

with a moderated computational and memory cost as no backpropagation is performed on the frozen

Vision Encoder. We also employ random left/right flip and color augmentation.

For interleaved datasets (Section 3.2.1) we also employ augmentation by lightly randomizing

the selected image indices q with a hyperparameter ><4FB when sampling examples from the M3W
dataset. This augmentation is detailed in Appendix A.1.2 and our choice of ><4FB =

1
2 is ablated in

Section 4.4. For video training, we temporally sample a clip of 8 frames sampled at one frame per

second (fps) from each training video. Although our model was trained with a fixed number of 8

frames, at inference time, we input our model with 30 frames at 3 fps. This is achieved by linearly

interpolating the learnt time position embedding at test time.

Loss and optimisation. All our models are trained using the AdamW optimizer with global norm

clipping of 1, no weight decay to the Perceiver Resampler and a weight decay of 0.1 to the other

trainable parameters. The learning rate is increased linearly from 0 to 10−4 up over the first 5000

steps then held constant for the duration of training (no improvements were observed from decaying

the learning rate). Unless specified otherwise we train our models for 5009 steps. Four datasets are

used for training: M3W, ALIGN, LTIP and VTP with weights _; of 1.0, 0.2, 0.2 and 0.03 respectively.

Batch sizes depend on the setting and are given in the next sections.

Infrastructure and implementation. Our model and associated infrastructure were implemented

using JAX (Bradbury et al., 2018) and Haiku (Hennigan et al., 2020). All training and evaluation

was performed on TPUv4 instances. The largest model containing 80 billion parameters is trained on

1536 chips for 15 days and sharded across 16 devices. Megatron type sharding (Shoeybi et al., 2019)

is used to enable 16-way model parallelism for all Embedding / Self-Attention / Cross-Attention /

FFW layers, while the NFNet vision layers were unsharded. ZeRO stage 1 (Rajbhandari et al., 2020)

is used to shard the optimizer state. All trained parameters and optimizer accumulators are stored

and updated in float32; all activations and gradients are computed in bfloat16 after downcasting

of parameters from float32 to bfloat16. Frozen parameters are stored and applied in bfloat16.
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Method FT Shot
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Zero/Few

shot SOTA
✗

(X)

[39]

43.3

(16)

[124]

38.2

(4)

[134]

32.2

(0)

[64]

35.2

(0)

- - -

[64]

19.2

(0)

[145]

12.2

(0)

-

[153]

39.4

(0)

[87]

11.6

(0)

- -

[94]

66.1

(0)

[94]

40.7

(0)

Flamingo-3B

✗ 0 41.2 49.2 73.0 27.5 40.1 28.9 60.6 11.0 32.7 55.8 39.6 46.1 30.1 21.3 53.7 58.4

✗ 4 43.3 53.2 85.0 33.0 50.0 34.0 72.0 14.9 35.7 64.6 41.3 47.3 32.7 22.4 53.6 -

✗ 8 44.6 55.4 90.6 37.0 54.5 38.4 71.7 19.6 36.8 68.0 40.6 47.6 32.4 23.9 54.7 -

✗ 16 45.6 56.7 95.4 40.2 57.1 43.3 73.4 23.4 37.4 73.2 40.1 47.5 31.8 25.2 55.3 -

✗ 32 45.9 57.1 99.0 42.6 59.2 45.5 71.2 25.6 37.7 76.7 41.6 OOC 30.6 26.1 56.3 -

Flamingo-9B

✗ 0 44.7 51.8 79.4 30.2 39.5 28.8 61.5 13.7 35.2 55.0 41.8 48.0 31.8 23.0 57.0 57.9

✗ 4 49.3 56.3 93.1 36.2 51.7 34.9 72.6 18.2 37.7 70.8 42.8 50.4 33.6 24.7 62.7 -

✗ 8 50.0 58.0 99.0 40.8 55.2 39.4 73.4 23.9 40.0 75.0 43.4 51.2 33.6 25.8 63.9 -

✗ 16 50.8 59.4 102.2 44.5 58.5 43.0 72.7 27.6 41.5 77.2 42.4 51.3 33.5 27.6 64.5 -

✗ 32 51.0 60.4 106.3 47.2 57.4 44.0 72.8 29.4 40.7 77.3 41.2 OOC 32.6 28.4 63.5 -

Flamingo

✗ 0 50.6 56.3 84.3 35.6 46.7 31.6 67.2 17.4 40.7 60.1 39.7 52.0 35.0 26.7 46.4 60.8

✗ 4 57.4 63.1 103.2 41.7 56.0 39.6 75.1 23.9 44.1 74.5 42.4 55.6 36.5 30.8 68.6 -

✗ 8 57.5 65.6 108.8 45.5 60.6 44.8 78.2 27.6 44.8 80.7 42.3 56.4 37.3 32.3 70.0 -

✗ 16 57.8 66.8 110.5 48.4 62.8 48.4 78.9 30.0 45.2 84.2 41.1 56.8 37.6 32.9 70.0 -

✗ 32 57.8 67.6 113.8 52.3 65.1 49.8 75.4 31.0 45.3 86.8 42.2 OOC 37.9 33.5 70.0 -

Pretrained

FT SOTA
✔

(X)

54.4

[39]

(10K)

80.2

[150]

(444K)

143.3

[134]

(500K)

47.9

[32]

(27K)

76.3

[165]

(500K)

57.2

[70]

(20K)

67.4

[162]

(30K)

46.8

[57]

(130K)

35.4

[145]

(6K)

138.7

[142]

(10K)

36.7

[138]

(46K)

75.2

[87]

(123K)

54.7

[147]

(20K)

25.2

[139]

(38K)

75.4

[60]

(9K)

-

Table 3 | Comparison to the state of the art on multimodal benchmarks. A single Flamingo model reaches
state-of-the-art on a wide array of image and video tasks with in-context learning from as few as 4 examples
per task, beating previous zero-shot or few-shot method by a large margin. More importantly, using only 32

examples and without adapting any model weight, Flamingo outperforms the current best methods on 7 tasks,
that are fine-tuned on thousands of annotated examples. Best few-shot numbers are in bold. Best numbers
overall are underlined. See also Figure 2 that illustrate the table. OOC: out-of-context, which happens when
the few-shot prompt is longer than the maximum sequence length the model has been trained on.

4.2. Few-shot learning with Flamingo models

This section explores the evaluation of the Flamingo-3B, Flamingo-9B and Flamingo models. In

Section 4.2.1 we describe the main results of the paper, i.e. how a single Flamingo model can be

quickly adapted to a wide array of image / video and language tasks with a handful of annotated

examples via in-context learning. Section 4.2.2 explores how the Flamingo models, despite their

open-ended nature, can also be made competitive for use in close-ended classification tasks. Finally

Section 4.2.3 provides the results of our in-house contrastive pretraining.

4.2.1. State-of-the-art few-shot learning on vision-language tasks

Main results. Results are given in Table 3. Overall, Flamingo outperforms by a large margin all best
previous zero-shot or few-shot methods on the 16 considered benchmarks. This is achieved with as

few as four examples per task, hence opening up a practical and high-performing way to adapt vision

models to new tasks. More importantly, Flamingo is often competitive compared to the state of the

art methods which are additionally fine-tuned on up to hundreds of thousands annotated examples.

On six tasks, Flamingo actually surpasses the best individual fine-tuned SotA despite using a single set
of weights and only up to 32 task specific examples, orders of magnitude less than the fine-tuned

approaches. Note that in Table 3, we reported the SotA methods published in publicly available papers

and discarded winning entries of challenges such as TextVQA, VisDial or HatefulMemes, often not

published or using ensembles of numerous approaches. Finally, despite the fact we have used the dev

benchmarks to do design decisions, our results generalize well to the other benchmarks, confirming

the generality of our approach.
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Figure 9 | Overall impact of model scaling and number of shots. The performance of Flamingo models
increases with their parametric size and with the number of in-context shot. Performance is reported by
averaging the SotA relative score across the 16 benchmarks from Section 4.2.1.

Scaling with respect to parameters and shots. A general trend we observe is that, similarly to

what was observed in GPT-3 (Brown et al., 2020), the larger the model, the better the few-shot

performance. We also observe that the overall performance improves with the number of shots. This

is illustrated in Figure 9, that plots the average, on the 16 tasks, of the relative performance of each

model with respect to the state-of-the-art performance of fine-tuned models. We further find that

the largest model better exploits the increase in the number of shots. Interestingly, even though our

Flamingo models were trained with sequences limited to only 5 images on M3W, they are still able to

benefit from 8, 16 and even 32 images or videos at inference. This demonstrates the flexibility of our

proposed Flamingo architecture for processing a variable number of videos or images. Finding how

to benefit more from more shots with in-context learning is a promising future direction.

4.2.2. Few-shot learning on classification tasks

In this section we consider applying the Flamingo models to well studied classification benchmarks

like ImageNet or Kinetics700. Results are given in Table 4. We observe the similar pattern as in the

previous section: larger model tend to perform better. Second, given that few-shot classification tasks

often come up with more examples to leverage (1000 for ImageNet), using methods to scale to larger

support sets is beneficial. RICES (Retrieval In-Context Example Selection (Yang et al., 2021) described

in Section 3.3) is much better than simply selecting the examples randomly in the prompt. Indeed,

Flamingo can get a 9.2% improvement on ImageNet when selecting 16 support examples out of 5000

using RICES compare to choosing the same elements randomly. Ensembling multiple prompts further

boost results. However we also note that Flamingo models are still below the current dominant

contrastive paradigm for such close-ended tasks. In particular, Flamingo models underperform the

same contrastive model they use for the vision encoder (see Limitation Section 6.1 for more details).

Finally, state-of-the-art zero-shot models on ImageNet such as BASIC (Pham et al., 2021) and LiT (Zhai

et al., 2021) are particularly optimized on classification tasks as trained on JFT-3B (Zhai et al., 2021),

which is a dataset with image and labels. A future direction could be to improve the performance of

VLMs such as the Flamingo models for such classification tasks.

4.2.3. Zero-shot performance of the pretrained contrastive model

A crucial part of our approach is the Vision Encoder, pretrained separately using contrastive learning

and kept frozen when training Flamingo models. We report zero-shot image classification results

on ImageNet, Kinetics700 and retrieval results results Flick30K and COCO. The classification results
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Model Method Prompt size shots/class
ImageNet
top 1

Kinetics700
avg top1/5

SotA Fine-tuned - full 91.0 [137] 89.0 [144]

SotA Contrastive - 0 85.7 [90] 69.6 [94]

NFNetF6 Our contrastive - 0 77.9 62.9

8 1 70.9 55.9
Flamingo-3B RICES 16 1 71.0 56.9

16 5 72.7 58.3

8 1 71.2 58.0
Flamingo-9B RICES 16 1 71.7 59.4

16 5 75.2 60.9

Random 16 ≤ 0.02 66.4 51.2

8 1 71.9 60.4
Flamingo-80B RICES 16 1 71.7 62.7

16 5 76.0 63.5

RICES+ensembling 16 5 77.3 64.2

Table 4 | Few-shot results on classification tasks. The Flamingo models can also be used for standard
classification tasks. In particular, we explore having access to support sets bigger than what our current prompt
can accommodate (using up to 5000 support examples). In that regime, large gains are obtained by using the
RICES method (Yang et al., 2021) as well as prompt ensembling. We also observe the same trend as with the
vision-language benchmarks: bigger models do better and more shots help.

Flickr30K COCO

image-to-text text-to-image image-to-text text-to-image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Florence [150] 90.9 99.1 - 76.7 93.6 - 64.7 85.9 - 47.2 71.4 -

ALIGN [56] 88.6 98.7 99.7 75.7 93.8 96.8 58.6 83.0 89.7 45.6 69.8 78.6

CLIP [94] 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.7 62.4 72.2

Ours 89.3 98.8 99.7 79.5 95.3 97.9 65.9 87.3 92.9 48.0 73.3 82.1

Table 5 | Zero-shot contrastive pretraining evaluation. Zero-shot image-text retrieval evaluation of our
pretrained contrastive model compared to the state-of-the-art dual encoder contrastive models.

are presented in Table 4 while the retrieval results are given in Table 5. For the retrieval tasks, our

model outperforms the current state-of-the-art contrastive dual encoder approaches CLIP, ALIGN and

Florence. However, we underperform the zero-shot state-of-the-art on Kinetics700 (Radford et al.,

2021, CLIP) and the zero-shot state-of-the-art on ImageNet (Pham et al., 2021, BASIC). However, as

noted earlier, BASIC is particularly optimized for classification. It is trained on the JFT-3B (Zhai et al.,

2021) dataset which has images with labels rather than captions. We have noticed training on image

and short text descriptions similar to labels significantly help for ImageNet but is detrimental for

retrieval benchmarks which require to capture rich scene text description instead. Since our goal is to

use the Vision Encoder as a feature extractor for the Flamingo models in order to provide capture

the whole scene and not just the main object, we favor retrieval metrics over classification ones. We

provide more details about the contrastive pretraining including model ablations in Appendix C.2.1.
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4.3. Fine-tuning Flamingo as a pretrained vision-language model

While not the main focus of our work, it is important to verify how the Flamingo models can be

adapted to a task when given more data. For this reason we explore fine-tuning our largest model,

Flamingo, for a given target task given no limit on the annotation budget. To fine-tune Flamingo on

a downstream task, we train it on data batches from the downstream task of interest in the same

format as the single-image/video datasets described in Section 3.2.

Freezing and hyperparameters. When fine-tuning Flamingo, we keep the underlying LM layers

frozen and train the same Flamingo layers as during pretraining. We also increase the resolution of

the input images from 320 × 320 to 480 × 480. Unlike in the pretraining phase, we also fine-tune the

base visual encoder, finding that this typically improves results, likely due in part to the higher input

resolution.

We choose certain hyperparameters on a per-task basis by grid search on a validation subset of

the training set (or on the official or standard validation set where available). These hyperparameters

include the learning rate (ranging from 3 × 10−8 to 1 × 10−5) and decay schedule (exponential decay

by factors of 10×), number of training steps, batch size (either 8 or 16), and whether visual data

augmentation (color augmentation, random horizontal flips) is used.

Results. In Table 6, we present our results for per-task Flamingo fine-tuning. When provided access

to a large-scale task-specific dataset with many thousands of examples, we find that we can indeed

improve results over our previously presented in-context few-shot learning results, setting a new

state of the art on five tasks: VQAv2, VATEX, VizWiz, MSRVTTQA, and HatefulMemes. For example,

on VQAv2, we observe improved results at 82.0%, outperforming our results achieved with 32-shot

in-context learning (67.3%) as well as the previous state of the art (81.3%, Yan et al. (2021)).

Although these fine-tuning results come at high computational cost relative to the previously

presented in-context few-shot learning results – among other challenges like hyperparameter tuning –

they further demonstrate the power of VLM pretraining for visual understanding even in the presence

of large amounts of task-specific training data.

In some cases our results likely trail the state of the art due in part to the fact that we simply

optimise log-likelihood and do not make use of common task-specific metric optimisation tricks, such

as CIDEr optimisation (Liu et al., 2017; Rennie et al., 2017) for COCO captioning, and fine-tuning on

dense annotations for VisDial (Murahari et al., 2020). For example, Murahari et al. (2020) report a

10% relative improvement in NDCG on VisDial from such dense annotation fine-tuning.

4.4. Ablation studies

We perform all ablations using the Flamingo-3B model on the validation subsets of the dev multi-

benchmark using 4 shots. We perform the ablation using batch size of 256 for M3W, 512 for ALIGN,

512 for LTIP and 64 for VTP. Models are trained for 1 million gradient steps (meaning 250,000

gradient updates, for the base model as we accumulate gradients over four datasets). All results

are reported in Table 7. For each run, we provide an Overall score to better measure the overall

quality of the trained models. This Overall score is produced by first normalizing each benchmark

score with their respective reported state-of-the-art numbers from Table 3 and Table 4. These SotA

normalized scores are then averaged across all 7 benchmarks to produce the Overall score. The

higher the Overall score the better the model.
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test-dev test-std test test test-dev test-std test valid test-std valid valid test-std test seen
🦩 Flamingo - 32 shots 67.6 - 113.8 65.1 49.8 - 31.0 56.8 - 86.8 36.0 - 70.0

SimVLM [134] 80.0 80.3 143.3 - - - - - - - - - -

OFA [129] 79.9 80.0 149.6 - - - - - - - - - -

Florence [150] 80.2 80.4 - - - - - - - - - - -
🦩 Flamingo Fine-tuned 82.0 82.1 138.1 84.2 65.7 65.4 47.4 61.8 59.7 118.6 57.1 54.1 86.6

80.2 80.4 143.3 76.3 - - 46.8 75.2 74.5 138.7 54.7 73.7 75.4
Restricted SotA†

[150] [150] [134] [165] - - [57] [87] [87] [142] [147] [92] [60]

81.3 81.3 149.6 81.4 57.2 60.6 - - 75.4 - - - 84.6
Unrestricted SotA

[143] [143] [129] [165] [70] [70] - - [133] - - - [164]

Table 6 | Comparison to SotA when fine-tuning Flamingo. We fine-tune Flamingo on all nine tasks where
Flamingo was SotA overall with few-shot learning. Flamingo sets a new SotA on five of these tasks sometimes
even beating methods that resorts to known performance optimization tricks such as model ensembling (on
VQAv2, VATEX, VizWiz and HatefulMemes). Best numbers among the restricted SotA are in bold. Best numbers
overall are underlined. Restricted SotA†: only includes methods that use a single model (not ensembles) and do not

directly optimise the test metric (no CIDEr optimisation).

4.4.1. Importance of the training data mixture

Improvements from additional datasets. Our final model is trained on the combination of four

large-scale datasets described in Section 3.2: ALIGN (Jia et al., 2021), Long Text & Image Pairs (LTIP),

Video & Text Pairs (VTP), and M3W (M3W). To highlight the contributions of the different types of

training data, we investigate how removing datasets from the training mix affects the performance in

row (i) of Table 7. Removing the M3W dataset results in important decreases in final scores on all tasks

from the validation subsets multi-benchmark, resulting in an important drop in overall score, from

68.4 to 46.9 . This demonstrates that interleaved data is crucial to develop the few-shot capability of

the model. Removing the two paired image and text datasets (align and Long Text & Image Pairs)

from the training set also negatively impacts the performance across tasks, resulting in a 11.9% drop

in overall score. In particular, we find that including aligned text and image pairs during training

is crucial for captioning and classification tasks. Adding Video & Text Pairs to the combination of

image and text training datasets results in further improvement on the overall score. Though it comes

with a minor decrease in performance on the some image tasks, including the collected aligned video

and text dataset at train time leads to significant improvements on the three video tasks. Namely,

removing the VTP dataset from training data decreases the CIDEr score on the VATEX dataset by

7.4%, the MSVD-QA top-1 score by 1.8% and the averaged top1-top5 accuracy on Kinetics by 3.4%.

Although our model has never been trained on interleaved video and text data, we achieve high

few-shot performance on video tasks. We observed that when trained on some dataset combinations,

our model occasionally does not produce the final <EOC> token in the few-shot setting and instead

predicts additional prompts for the target task. We therefore trim the prediction to the text preceding

the prompt keywords before quantitative evaluation.

Optimisation strategy with multiple datasets. Finally, we ablate the co-training optimisation

strategy on this heterogeneous mixture of data in the row (ii) of Table 7. We compare our gradient

accumulation approach described in Section 3.2, against a round robin approach that was notably

used in Cho et al. (2021) to train a VLM model on a heterogeneous data mixture. In short, the round

robin approach sequentially alternates between the different datasets, and a gradient step is taken

between each dataset. This leads to significantly worse results as the overall score dropped by almost

8.7%. We view gradient accumulation over different heterogeneous datasets as a mean to stabilize the
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Ablated Flamingo 3B Changed Param. Step COCO OKVQA VQAv2 ImageNet MSVDQA VATEX Kinetics Overall

setting value value count ↓ time ↓ CIDEr↑ top1↑ top1↑ top1↑ top1↑ CIDEr↑ top1-top5↑ score↑

Flamingo 3B model (short training) 3.2B 1.74s 86.5 42.1 55.8 59.9 36.3 53.4 49.4 68.4

(i) Training data All data

M3W 3.2B 0.68s 58.0 37.2 48.6 35.7 29.5 33.6 34.0 50.7

w/o VTP 3.2B 1.42s 84.2 43.0 53.9 59.6 34.5 46.0 45.8 65.4

w/o LTIP/ALIGN 3.2B 0.95s 66.3 39.2 51.6 41.4 32.0 41.6 38.2 56.5

w/o M3W 3.2B 1.02s 54.1 36.5 52.7 24.9 31.4 23.5 28.3 46.9

(ii) Optimisation Grad. accumulation Round Robin 3.2B 1.68s 76.1 39.8 52.1 50.7 33.2 40.8 39.7 59.7

(iii) Tanh gating ✓ ✗ 3.2B 1.74s 78.4 40.5 52.9 54.0 35.9 47.5 46.4 64.0

(iv)
Cross-attention gated

xattn-dense
Vanilla xattn 2.4B 1.16s 80.6 41.5 53.4 59.0 32.9 50.7 46.8 65.2

architecture Grafting 3.3B 1.74s 79.2 36.1 50.8 47.5 32.2 47.8 27.9 57.4

(v)
Cross-attention
frequency Every

Single in middle 2.0B 0.87s 71.5 38.1 50.2 44.0 29.1 42.3 28.3 54.6

Every 4th 2.3B 1.02s 82.3 42.7 55.1 57.1 34.6 50.8 45.5 65.9

Every 2nd 2.6B 1.24s 83.7 41.0 55.8 59.6 34.5 49.7 47.4 66.2

(vi) Resampler Perceiver
MLP 3.2B 1.85s 78.6 42.2 54.7 53.6 35.2 44.7 42.1 63.3

Transformer 3.2B 1.81s 83.2 41.7 55.6 59.0 31.5 48.3 47.4 65.1

(vii)
Resampler

Medium
Small 3.1B 1.58s 81.1 40.4 54.1 60.2 36.0 50.2 48.9 66.4

size Large 3.4B 1.87s 84.4 42.2 54.4 60.4 35.1 51.4 49.4 67.3

(viii) Multi-Img att. Only last All previous 3.2B 1.74s 70.0 40.9 52.0 52.3 32.1 46.8 42.0 60.8

(ix) ><4FB 0.5
0.0 3.2B 1.74s 85.0 41.6 55.2 60.3 36.7 50.6 49.9 67.8

1.0 3.2B 1.74s 81.3 43.3 55.6 57.8 36.8 52.7 47.8 67.6

(x) Vision encoder NFNet-F6
CLIP ViT-L/14 3.1B 1.58s 76.5 41.6 53.4 49.5 33.2 44.5 42.3 61.4

NFNet-F0 2.9B 1.45s 73.8 40.5 52.8 49.8 31.1 42.9 36.6 58.9

(xi) LM pretraining MassiveText C4 3.2B 1.74s 81.3 34.4 47.1 60.6 30.9 53.9 46.9 62.5

(xii) Freezing Vision ✓
✗ (random init) 3.2B 4.70s* 74.5 41.6 52.7 45.2 31.4 35.8 32.6 56.6

✗ (pretrained) 3.2B 4.70s* 83.5 40.6 55.1 55.6 34.6 50.7 41.2 64.5

(xiii) Freezing LM ✓
✗ (random init) 3.2B 2.42s 74.8 31.5 45.6 59.5 26.9 50.1 43.4 58.2

✗ (pretrained) 3.2B 2.42s 81.2 33.7 47.4 60.7 31.0 53.9 49.9 62.9

(xiv)
Co-train LM

✗
✓ (random init) 3.2B 5.34s* 69.3 29.9 46.1 59.9 28.1 45.5 46.9 57.4

on MassiveText ✓ (pretrained) 3.2B 5.34s* 83.0 42.5 53.3 60.9 35.1 51.1 50.1 67.2

Table 7 | Ablation studies. Each row in this ablation study table should be compared to the baseline Flamingo
run reported at the top of the table. The step time measures the time spent to perform gradient updates on all
training datasets. (*): Due to higher memory usage, these models were trained using four times more TPU
chips. The obtained accumulation step time was therefore multiplied by four.

training as it reduces the gradient variance between each update. Interestingly, gradient accumulation

is also the best approach for the contrastive pretraining of the Vision Encoder (see Appendix C.2.2).

4.4.2. Key architectural components and training details

Tanh cross-attention gating. We ablate the use of the 0-initialized tanh gating when merging the

cross-attention output to the frozen LM output in row (iii) of Table 7. Without it, we see a drop of

4.4% on our overall score. Moreover, we have noticed that disabling the 0-initialized tanh gating lead

to training instabilities, with high peaks randomly observed in the losses.

Visual conditioning architectures for the frozen LM. We ablate the architecture used to condition

the frozen LM on the vision data. We report the different conditioning architecture results in row

(iv) of Table 7. vanilla xattn, refers to the original cross-attention architecture from the original

Transformer decoder architecture (Vaswani et al., 2017), where a cross-attention layer is interleaved

between a self-attention (here from the frozen LM) and an MLP layer (also from the frozen LM).

In particular it does not add an extra dense feed forward layer as in our gated xattn-dense.

Although used in recent work (Carion et al., 2020; Desai and Johnson, 2021), the vanilla xattn

approach under-performs our proposed gated xattn-dense variant. Note that we added tanh

gating to the vanilla xattn approach as we found it to be also beneficial for that architecture

hence giving a more fair comparison. We also compared to the recent grafting approach from Luo

et al. (2022). In this approach, the frozen LM is used as is with no additional layers inserted, and

a stack of interleaved self-attention and cross-attention layers that take the frozen LM output are
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learnt from scratch.1 Overall, interleaving the added cross-attention layers within the frozen LM

outperforms by 11% the alternative method that grafts the layers on top of the frozen LM.

Compute/capacity vs. performance trade-off of cross-attention. We ablate here the frequency

at which we add new gated xattn-dense blocks to the frozen transformer LM blocks. Results are

reported in row (v) of Table 7. Although adding cross-attention at every layer leads to the best overall

results, it also significantly increases the number of trainable parameters and time complexity of the

model. Notably, halving the number of cross-attention by inserting gated xattn-dense every

second blocks accelerates the training throughput of 40% and reduces the number of parameters

by almost 20%. This incurred a moderate decrease of 2.2% in our overall score. This speedup and

reduction in the number of trainable parameters are especially important in the regime of larger LMs.

In fact, for a 70B frozen LM, halving the number of cross-attention layers reduces the parameter

count from roughly 140B to 105B. However, reducing too aggressively the number of added layers

is detrimental to performance as demonstrated by the 13.8% decrease in the overall score for the

extreme case where a single gated xattn-dense is added to the middle of the network. In the

light of this trade-off, we decide on a frequency for the bigger models by trying to maximize the

number of added layers under our hardware constraints (both in terms of memory and time costs).

This leads to our choice of adding a gated xattn-dense every fourth layers for our Flamingo-9B
model and down to every seventh for our Flamingo-80B model. In these cases even though the

frequency is decreased the overall added parameter count increases (because the original language

model is deeper and wider) as shown in Table 1.

Resampler architecture and size. We ablate the architectural design of the Resampler in row (vi)

and (vii) of Table 7. Given a parameter budget, we compare our proposed Perceiver Resampler to the

use of a vanilla Transformer and an MLP (row (vi)). We show that both of these approaches lead

to a significantly worse overall score, while also decreasing the training throughput. The Perceiver

Resampler is more efficient as it compresses the large number of visual features to as few as 64

visual tokens. We also ablate the size of our Resampler with three options: Small, Medium (default

value for all Flamingo models), and Large (row (vii)). We see that the best performance is achieved

with a medium size Resampler. Moreover, when scaled together with the frozen LM, we observed

that increasing the size of the Perceiver Resampler lead to instable trainings. We thus made the

conservative choice of keeping the same medium Resampler size for all our Flamingo models.

Effect of how many images are cross-attended to. In the interleaved image-text scenario, we

ablate whether or not a text following an image should only be able to attend to the single most

recent previous image, or to all the previous images (row (viii) of Table 7). We can see that the

single image case leads to significantly better results (8.2% better in the overall score). One potential

explanation is that when attending to all previous image, there is no explicit way of disambiguating

between different images in the cross-attention inputs. Nonetheless, recent work has shown that

such disambiguation is still possible implicitly through the causal attention mechanism (Haviv et al.,

2022). We also explored more explicit ways to enable this while attending to all previous images

by modifying the image tags to include an index (<image 1>, <image 2>, etc.) and/or learning

absolute index embeddings added to the cross-attention features for each image. These strategies

were not as robust as our method when the number of images per sequence changes between train

1Luo et al. (2022) also learn an additional embedding from scratch with a residual connection to add the logits produced

by the frozen embedding; in our case, we found this did not work as well as simply using the frozen embedding, as in our

main models, so we report the latter.

28



Flamingo: a Visual Language Model for Few-Shot Learning

and test time. Such a property is desirable to reduce the number of images per sequence during

training for better efficiency (we use # = 5 at train time) while still generalizing to many images for

few-shot evaluation (we go up to # = 32 at test time). For these reasons, we keep the single image

cross-attention strategy for the Flamingo models. Note that while text tokens cannot explicitly attend

to all previous images due to this masking strategy, they can still implicitly attend to them from the

language-only self-attention that propagates all previous images’ features via the previous text tokens.

M3W image placement data augmentation. Given a webpage, we don’t know in advance if the

text of the page will mention the previous or the next image in the two-dimensional layout of the

page DOM. For this reason, we explore a data augmentation on M3W controlled by ><4FB which

indicates whether a given text token attends to the previous or the next image (see more details

in Appendix A.1.2). The default value ><4FB =
1
2 means that for each webpage sampled, we decide

uniformly at random whether the model attends to the previous or next image. ><4FB = 0 means the

model always attends to the previous image while ><4FB = 1 means the model always attends to the

following image. The results (row (ix) of Table 7) show that using this randomization is beneficial.

4.4.3. Importance of pretraining and freezing models

Vision encoder pretraining. We evaluate the effect of different pretraining on the vision condi-

tioning and the text generating part of the models. Results are given in row (x) of Table 7. We

first compare our NFNet-F6 vision module, trained with a contrastive vision-language objective on

our data mixture (details in Appendix C.2.1), to the publicly available CLIP (Radford et al., 2021)

model2 based on the ViT-L/14 (Dosovitskiy et al., 2020) backbone architecture. Our model has a

+7% advantage on the CLIP ViT based model, which highlights the importance of picking a powerful

vision backbone. Indeed, we hypothesize that this improvement is likely due to our better contrastive

model compared to CLIP (as shown in Section 4.2.3). This trend is also confirmed when we switch

to a smaller NFNet-F0 backbone (that is worse than our NFNet-F6 and CLIP when looking at the

contrastive evaluation) as it incurs a 9.5% decrease in performance.

Language model pretraining. To measure the importance of text pretraining, we compare the

performance of using a frozen decoder-only Transformer either pretrained on MassiveText (our main

model) or pretrained on the C4 dataset (Raffel et al., 2019) (row (xi) of Table 7). Using the C4

dataset (which is smaller and less filtered than MassiveText) for training leads to a significant loss in

performance (−5.9% overall). We note that the performance notably decreases for tasks that involve

more language understanding such as visual question answering tasks (OKVQA, VQAv2 and MSVDQA)

while it remains on par for tasks that do not require much language abilities (ImageNet or Kinetics).

This highlights the importance of pretraining the LM on a high quality text-only dataset.

Freezing model components prevents catastrophic forgetting. During the Flamingo models

training, we freeze the pretrained components (Vision Encoder and LM layers) while training newly

added components from from scratch. We ablate this choice by unfreezing the Vision Encoder and

the LM layers during training starting either from our initialized weights or from scratch. Results are

reported in rows (xii) and (xiii) of Table 7 for the Vision Encoder and for the LM layers, respectively.

If trained from scratch, the performance decreases by a large margin in both cases (−11.8% for the

Vision Encoder and −10.2 for the LM), highlighting again the importance of pretraining. Interestingly,

starting from our good initialization while also allowing unfreezing the weights also leads to a drop

2https://github.com/openai/CLIP
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in performance (−3.9% when unfreezing the Vision Encoder and −5.5% when unfreezing the LM).

This is an instance of “catastrophic forgetting” (McCloskey and Cohen, 1989), in which the model

progressively forgets its pretraining while training on a new objective. The information acquired

during the pretraining on vision and on text turns out to improve downstream performance on

multimodal vision and language tasks, and should not be lost. Freezing model parts avoids this issue.

Alternative to freezing the LM by co-training on MassiveText. Another approach for preventing

catastrophic forgetting is to co-train on MassiveText (Rae et al., 2021), the dataset that was used

to pretrain the language model. Specifically, we add MassiveText to the training mixture, with a

weight _; of 1.0 (best performing after a small grid search), using a sequence length of 2048 and

the exact same setting as the pretraining of Chinchilla (Hoffmann et al., 2022) for computing the

text-only training loss. In order to co-train on MassiveText, we need to unfreeze the language model

but we keep the vision encoder frozen. We perform two ablations in row (xiv) of Table 7: starting

from a pretrained language model (with a learning rate multiplier of 0.1 of the LM weights) versus

initializing from scratch (with the same learning rate everywhere). In both cases, the overall scores

are worse than our baseline which starts from the language model, pretrained on MassiveText, and is

kept frozen throughout training. This indicates that the strategy of freezing the language model to

avoid catastrophic forgetting is strong. Even more importantly, freezing the LM is computationally

cheaper as no gradient updates of the LM weights are required and we do not need to train on

an additional dataset. This computational argument is even more relevant for our largest model,

Flamingo-80B, where we freeze almost 90% of the overall weights.

5. Qualitative results

We provide some selected samples covering different interaction modalities in Figures 10, 11, and 12.

Unlike the quantitative benchmark results (which use beam search with beam width 3 for decoding),

all qualitative results presented in this section use greedy decoding for faster sampling.

Figure 10 shows the simplest form of interaction where a single image is provided followed by a

text prompt either in the form of a question or the start of a caption. Even though the model is not

trained in the question and answer form, the capabilities of the pretrained language model allows this

adaptation. In many of these examples, Flamingo can do at least one step of implicit inference. Some

of the objects are not named in the prompt but their properties are asked directly. In order to answer

these questions, the model needs to infer the referred object then recall the relevant knowledge to

form the answer. Previously, it has been shown that contrastively trained vision networks can learn

some text reading capabilities. We observed that Flamingo preserves this capability in the full model,

in some cases for text that is rather small with respect to the size of the image.

Since our model can accept inputs in the form of arbitrary sequences of visuals and language,

we tested its abilities to hold an extended dialogue with interleaved images and text. Figure 11

shows some samples which are generated by prompting the model with a brief dialogue (Appendix D)

followed by user interaction including image insertions. Even after several rounds of interaction

Flamingo can still successfully attend to the image and reply to questions that can not be guessed by

language alone. We observed that multiple images can be separately attended, simple comparisons

and inferences are handled properly.

Lastly, we investigated similar capabilities with video inputs as they present some extra challenges

compared to images. Figure 12 shows some selected samples. As seen in the figure, in some cases

Flamingo can successfully integrate information from multiple frames (e.g. videos scanning through a

scene or text) and respond to requests involving temporal understanding (e.g. "after").
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Question: What do you think the

capacities of these are? Answer:

Question: What is odd about this

image? Explain why it is

unusual. Answer:

Question: What country is this?

Why do you think so? Answer:

C
o
m
p
le
ti
o
n

The floppy disk is 1.44MB

and the CD is 700MB.

The image is odd because the

elephant is in the back of the

truck. It is unusual because

elephants are not usually

transported in the back of a

truck.

It is Canada. I think so

because the flag is the

Canadian flag.

In
p
u
t
P
ro
m
p
t

Question: What nutrients is the

fruit in the image rich in?

Answer:

Question: What is the purpose of

this? Answer:

Question: What season is this?

Explain why. Answer:

C
o
m
p
le
ti
o
n

Vitamin C, potassium, and

fiber.

To keep the mosquitoes out

of the bed.

This is winter season. The

Christmas tree and the

presents are the main

reasons why it is winter.

In
p
u
t
P
ro
m
p
t

Question: What is the title of the

book? Answer:
The ingredients of this dish are The soundtrack includes

C
o
m
p
le
ti
o
n

The House Book.
: beef, potatoes, carrots,

broccoli, and lemon.

the songs "Let It Go" and "For

the First Time in Forever" by

Tony Award® winner Idina

Menzel, who plays Elsa [...]

Figure 10 | Selected single image samples. Gray boxes are user input and the pink boxes are Flamingo
output.
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This is a dog. It’s a white
fluffy dog.

What season is this?

It looks like a summer day.

Why do you think so?

The grass is green and
the dog is not wearing a
sweater.

What breed is the dog?

It’s a Samoyed.

Is the dog running?

No, it’s sitting.

Can you describe the pose
of its back legs?

The back legs are bent
and the dog is sitting on
its haunches.

Which city is this?

This is a street sign in New
York City.

Which street corner is it?

It is the intersection of
Madison Avenue and East
42nd Street.

Which subway station is
nearby?

The closest subway sta-
tion is Grand Central Sta-
tion.

How about the nearest
park?

The nearest park is Bryant
Park.

There is another sign.
What does it say?

It says "One way".

I would like you to read
the color and then say the
color it is written in. For
example:

Color is "Purple" and it is
written in red.

Color is "Green" and it is
written in blue.

Color is "Yellow" and it is
written in green.

Color is "Black" and it is
written in yellow.

Well done! Do you know
the name of the test these
images come from?

I think it is called the
Stroop test.

Can you explain how hu-
mans perform in this test?

Humans are slower when
the color of the word and
the color of the word are
different.

How about you?

I am not affected by this
difference.

What is the difference be-
tween these two images?

The first one is a triangle
and the second one is a
hexagon.

Which one has larger in-
ternal angles?

The hexagon has larger in-
ternal angles.

What color are they?

They are both red.

What is in this picture?

It’s a bowl of soup with a
monster face on it.

What is the monster made
out of?

It’s made out of vegetables.

No, it’s made out of a kind
of fabric. Can you see
what kind?

It’s made out of a woolen
fabric.

This is a picture of a dog.
It looks like it is a little bit
naughty.

What happened here?

It looks like the dog is de-
stroying the sofa.

How does the person
thinking about it?

The person is angry.

What is the person holding?

It looks like a cup of coffee.

How is the weather outside?

It looks like a sunny day.

What is the name of the
company on this card?

It’s Homebase.

What is its web url?

It’s homebase.co.uk.

What are they doing?

They are a home improve-
ment retailer.

What do you think the
robot is doing here?

The robot is picking up a
ball.

What color is the ball?

It’s red.

I want the ball to be hid-
den. Is there something
the robot can use for that?

The robot can use a cloth
to hide the ball.

What color is the cloth?

The cloth is blue.

Figure 11 | Selected dialogue samples. Gray boxes are user input and the pink boxes are Flamingo output. For
dialogue, Flamingo is provided with a custom prompt (hidden from the visualization but shown in Appendix D)
containing a dialogue with 3 random images, but it is not fine-tuned for dialogue in any other way.

32



Flamingo: a Visual Language Model for Few-Shot Learning

Input Prompt Completion

Question: What is
happening here?

Answer:
−→

The dachschund
puppy is being

weighed on a scale.

Question: What object
is the avatar picking

up? Answer:
−→ A sword.

Question: What is the
object being lifted?

Answer:
−→ The object is a small

plastic bowl.

Question: What are the
three objects in this
video? Answer:

−→ A scissors, a pen, and
a rubber band.

Question: What is
written here? Answer:

−→ Flamingo.

What happens to the
man after hitting the

ball? Answer:
−→ he falls down.

Figure 12 | Selected video samples. These are all of the frames the model sees. (Best viewed with zoom.)

6. Discussion

6.1. Limitations, failure cases and opportunities

Here, we describe some limitations and failure cases of our models; as well as opportunities for further

improving our models and extending their abilities.

Classification performance. Although our visual language models have important advantages over

contrastive models (e.g., few-shot learning and open-ended generation capabilities), their performance

lags behind that of contrastive models on classification tasks. We believe this is because the contrastive

training objective directly optimizes for text-image retrieval, and in practice, the evaluation procedure

for classification can be thought of as a special case of image-to-text retrieval (Radford et al., 2021).

This is not the case for the language modeling objective we use to train our visual language models and

this may contribute to the observed performance gap on classification tasks. In particular, Zhao et al.

(2021) have shown that language models suffer from various biases arising from the training data

distribution, the set of samples used in the prompt, and their order. They also show that such issues

can be mitigated with calibration techniques, provided one can assume a certain prior distribution

(e.g., uniform) over the label space. This assumption doesn’t hold in general, and further research is

needed to develop techniques to address these issues in the few-shot setting. More generally, seeking

objectives, architectures, or evaluation procedures that could bridge the gap between these two

classes of models is a promising research direction.

Legacies of language models. Our models build on powerful pretrained causal language models,

and as a side effect, directly inherit their weaknesses. For instance, causal modeling of the conditioning

inputs is strictly less expressive than bidirectional modeling. In this direction, recent work has shown

that non-causal masked language modeling adaptation (Wang et al., 2022) followed by multitask

33



Flamingo: a Visual Language Model for Few-Shot Learning

In
p
u
t
P
ro
m
p
t

Question: What is on the phone

screen? Answer:

Question: What can you see out

the window? Answer:

Question: Whom is the person

texting? Answer:

O
u
tp
u
t

A text message from a friend. A parking lot. The driver.

Figure 13 | Hallucinations and ungrounded guesses in open-ended visual question answering. Left: The
model occasionally hallucinates by producing answers that seem likely given the text only, but are wrong given
the image as additional input. Middle: Similar hallucinations can be provoked by adversarially prompting the
model with an irrelevant question. Right: A more common pitfall arises when the model makes ungrounded
guesses when the answer cannot be determined based on the inputs. Few-shot examples and more sophisticated
prompt design may be used to mitigate these issues. More broadly, addressing these issues is an important
research direction towards improving our models’ applications in open-ended visual dialogue settings.

fine-tuning (Sanh et al., 2022; Wei et al., 2021; Xu et al., 2022) can efficiently improve the zero-shot

performance of causal decoder-only language models. Furthermore, transformer-based language

models tend to generalize poorly to test sequences significantly longer than the training ones (Press

et al., 2022). In settings where the expected text output is too long, the ability of the models to

leverage enough shots for few-shot learning can be affected. For instance, for the VisDial dataset (Das

et al., 2017), a single shot consists of an image followed by a long dialogue composed of 21 different

sentences. A sequence of 32 VisDial shots is thus composed of at least 32× 21 = 672 sentences, which

in practice means that the prompt length ranges from 4096 to 8192 tokens. This is significantly

longer than the maximum sequence length (2048) our LMs have been trained on (Hoffmann et al.,

2022). Empirically, we observe a large drop of roughly 30% in relative performance on VisDial

when going from 16-shots to 32-shot, likely due to this limitation. On another note, while our

ablations demonstrate the importance of the language model priors inherited from frozen language

models, we suspect that they may play a role in occasional hallucinations and ungrounded guesses

observed in open-ended dialogue settings. We provide and analyze examples of such behaviours in

Figure 13. Finally, language modeling suffers from poor sample efficiency during pretraining (Brown

et al., 2020). Mitigating this issue has the potential to greatly accelerate progress in the field, by

improving turnaround of large-scale training runs and in turn increasing feasibility of more systematic

exploration of design decisions at larger scales. Further discussion on typical weaknesses observed for

large LMs can be found in (Brown et al., 2020; Rae et al., 2021).

Trade-offs of few-shot learning methods. In the paper, we use in-context learning as our “go-to”

few-shot learning method (see Section 4.2). This method has notable advantages over gradient-based

approaches such as fine-tuning (see Section 4.3). Indeed, in-context learning requires almost no

hyperparameter tuning, works reasonably well in the very low data regime (dozens of examples), and

only requires inference, simplifying deployment. In contrast, gradient-based approaches require care-

fully tuned design choices to avoid overfitting (either by proper learning rate schedule or architecture
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design (Houlsby et al., 2019)) and often need more data (thousands) to work well. This motivated

our focus on in-context learning; however, this approach also has drawbacks we discuss next.

Inference compute cost. The compute cost of in-context learning with transformer models scales

linearly with the number of shots if one can reuse the few-shot prompt for multiple query samples

(by caching the keys and values) and quadratically otherwise. In contrast, gradient-based few-shot

learning approaches (Houlsby et al., 2019) have constant complexity with respect to the number of

shots during inference.

Prompt sensitivity. In-context learning has also been shown to be disconcertingly sensitive to various

aspects of the demonstrations, such as the order of the samples (Zhao et al., 2021) or their format.

Leveraging more shots. When using in-context learning, performance plateaus rapidly as the number

of few-shot samples increases beyond 32. This proves a striking contrast with typical gradient-based

methods, for which the amount of correctly paired training data is a critical factor of performance. We

note that RICES (Retrieval In-Context Example Selection (Yang et al., 2021) described in Section 3.3)

effectively mitigates this issue for classification tasks (Section 4.2.2), but still faces similar issues

beyond a small number of example per class.

Task location. Recent work on understanding what makes in-context learning effective sheds some

light on a possible explanation for why more shots do not always help (Min et al., 2022; Reynolds

and McDonell, 2021). In more detail, Brown et al. (2020) raise the question of whether in-context

learning actually “learns” new tasks at inference time based on the provided input-output mappings,

or simply recognizes and identifies tasks learned during training. On this question, the findings of

Reynolds and McDonell (2021) suggest that the latter is the key driver of performance across diverse

settings, and refer it as task location. Similarly, Min et al. (2022) show that the mapping from input

to output generally has limited impact on few-shot performance, as opposed to specifying the overall

format of the examples. In line with these findings, we also observe non-trivial zero-shot performance

using prompt without any images, hence also highlighting that the format of the task matters a lot.

Intuitively, a handful of samples may often be enough to perform task location well, but the model

may generally not be able to leverage further samples at inference time to refine its behaviour.

In summary, there is no “golden” few-shot method that would work well in all scenarios. In

particular, the best choice of few-shot learning approach highly depends on characteristics of the

application, an important one being the number of annotated samples. On this point, in our work,

we demonstrate high effectiveness of in-context learning for the data-starved regime (i.e. below 32

samples). There may be opportunities to combine different methods to leverage their complementary

benefits; in particular when targeting less data-constrained data regimes (e.g. hundreds of samples).

Extending the visual and text interface. Natural language is a powerful and versatile input/output

interface to provide descriptions of visual tasks to the model and generate outputs or estimate

conditional likelihoods over possible outputs. However, it may be a cumbersome interface for tasks

that involve conditioning on or predicting more structured outputs such as bounding boxes (or their

temporal and spatio-temporal counterparts); as well as making spatially (or temporally and spatio-

temporally) dense predictions. Furthermore, some vision tasks, such as predicting optical flow, involve

predicting in continuous space, which is not something our model is designed to handle out of the

box. Finally, one may consider additional modalities besides vision, that may be complementary, such

as audio. All of these directions have the potential to extend the range of tasks that our models can

handle; and even improve performance on the ones we focus on, thanks to synergies between the

corresponding abilities.
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Scaling laws for vision-language models. In this work, we scale Flamingo models up to 80B

parameters and provide some initial insights on their scaling behaviour across evaluation benchmarks,

summarized in Figure 9. In the language space, an important line of work has focused on establishing

scaling laws for language models (Hoffmann et al., 2022; Kaplan et al., 2020). In the vision domain,

Zhai et al. (2021) take a step in this direction. Similar efforts have yet to be made for vision-language

models, including contrastive models, as well as visual language models such as the ones we propose.

While language modeling scaling law research has focused on perplexity as the golden metric, we

speculate that it may be more directly useful for our purposes to establish such trends in terms of

aggregate downstream evaluation task performance.

6.2. Benefits, risks and mitigation strategies

6.2.1. Benefits

Accessibility. A system like Flamingo offers a number of potential societal benefits, some of which

we will discuss in this section. Broadly, the fact that Flamingo is capable of task generalisation makes

it suitable for use cases that have not been the focus of vision research historically. Typical vision

systems are trained to solve a particular problem by training on large databases of manually annotated

task-specific examples, making them poorly suited for applications outside of the narrow use cases

for which they were deliberately trained. On the other hand, Flamingo is trained in a minimally

constrained setting, endowing it with strong few-shot task induction capabilities. As we’ve shown

in our qualitative examples (Section 5), Flamingo can also be used through a “chat”-like interface

for open-ended dialogue. Such capabilities could enable non-expert end users to apply models like

Flamingo even to low-resource problems for which little to no task-specific training data has been

collected, and where queries might be posed in a variety of formats and writing styles. In this direction,

we have shown that Flamingo achieves strong performance on the VizWiz challenge3, which promotes

visual recognition technologies to assist visually impaired people. A dialogue interface could also

promote better understanding and interpretability of visual language models. It could help highlight

issues with bias, fairness, and toxicity the model may pick up on from the training data. Overall, we

believe that Flamingo represents an important step towards making state-of-the-art visual recognition

technology more broadly accessible and useful across a myriad of diverse applications.

Model recycling. From a modeling perspective, although Flamingo is computationally expensive

to train, it importantly leverages pretrained frozen language models and visual encoders. We

demonstrated that new modalities can be introduced into frozen models, thereby avoiding expensive

retraining. As such models continue to grow in size and computational demands, “recycling” them

will become increasingly important from an environmental perspective (as well as a practical one),

as explored in Strubell et al. (2019) for language models. We hope such results may inspire further

research into how existing models can be repurposed efficiently rather than trained from scratch.

6.2.2. Risks and mitigation strategies

This section provides some early investigations of the potential risks of models like Flamingo. This

study is preliminary and we foresee that further research efforts should be undertaken to better assess

those risks. We also discuss potential mitigation strategies towards safely deploying these models.

Note that as explained in our Model Card (Mitchell et al., 2019) in Appendix B, this model was

developed for research purposes only and should not be used in specific applications before proper

risk analyses are conducted and mitigation strategies are explored.

3https://vizwiz.org/
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CIDEr difference CIDER

female - male = Δ darker - lighter = Δ overall

AoANet [52] - +0.0019 1.198

Oscar [67] - +0.0030 1.278

Flamingo, 0 shot 0.899 − 0.870 = +0.029 (> = 0.52) 0.955 − 0.864 = +0.091 (> = 0.25) 0.843

Flamingo, 32 shots 1.172 − 1.142 = +0.030 (> = 0.54) 1.128 − 1.152 = −0.025 (> = 0.76) 1.138

Table 8 | Bias evaluation of Flamingo for COCO captioning. We report results on the COCO dataset

splits over gender and skin tone provided by Zhao et al. (2021).

By construction, Flamingo inherits the risks of Large LMs. Recall that a large part of our model is

obtained by freezing the weights of an existing language model (Hoffmann et al., 2022) In particular,

if provided with no images Flamingo falls back to language model behavior. As such Flamingo is

exposed to the same risks of large language models: it can output potentially offensive language,

propagate social biases and stereotypes, as well as leaking private information (Weidinger et al., 2021).

In particular, we refer to the analysis presented in the Chinchilla paper ( Hoffmann et al. (2022),

Section 4.2.7) in terms of gender bias on the Winogender dataset (Rudinger et al., 2018) which

demonstrate that even though this model is less biased towards gender than previous models (Rae

et al., 2021), gender biases are still present. In terms of unprompted toxicity, we also refer to the

analysis from Chinchilla (Hoffmann et al., 2022) which highlights that overall the propensity of the

model to produce toxic outputs when not prompted to do so is rather low, as measured by computing

the PerspectiveAPI toxicity score on 25,000 samples. Weidinger et al. (2021) detail possible long-term

mitigation strategies for these risks. They include social or public policy interventions, such as the

creation of regulatory frameworks and guidelines; careful product design, for instance relating to user

interface decisions; and research at the intersection between AI Ethics and NLP, such as building better

benchmarks and improving mitigation strategies. In the short term, effective approaches include

relying on prompting to mitigate any biases and harmful outputs (Rae et al., 2021). Next, we explore

the additional risks incurred by Flamingo’s additional visual input capabilities.

Gender and racial biases when prompted with images. Previous work has studied biases that

exist in captioning systems (Hendricks et al., 2018; Zhao et al., 2021). Such modeling biases can

result in real-world harms if deployed without care. For AI systems to be useful to society as a whole,

their performance should not depend on the perceived skin tone or gender of the subjects – they

should work equally well for all populations. However, current automatic vision system performance

has been reported to vary with race, gender or when applied across different demographics and

geographic regions (Buolamwini and Gebru, 2018; De Vries et al., 2019; Schwemmer et al., 2020).

As a preliminary study assessing how Flamingo’s performance varies between populations, we follow

the study proposed in Zhao et al. (2021) and report how the captioning performance of our model

varies on COCO as a function of gender and race. Note that we use a different evaluation protocol

from the one proposed by Zhao et al. (2021); in that work, they measure results across 5 pretrained

models and compute confidence intervals across aggregated per-model scores. Here, we have just

one copy of our model (due to its high training cost), and we instead perform statistical tests on the

per-sample CIDEr scores across the splits from Zhao et al. (2021). We report the results in Table 8.

Overall, when comparing the CIDEr scores aggregated among images labeled as female versusmale,
as well as when comparing darker skin versus lighter skin, we find there are no statistically significant

differences in the per-sample CIDEr scores. To compare the two sets of samples, we use a two-tailed

B-test with unequal variance, and among the four comparisons considered, the lowest >-value we find

is > = 0.25, well above typical statistical significance thresholds (e.g. a common rejection threshold
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might be > < U = 0.05). This implies that the differences in scores are indistinguishable from random

variation under the null hypothesis that the mean scores are equal. We note that a failure to reject the

null hypothesis and demonstrate a significant difference does not imply that there are no significant

differences; it is possible that a difference exists that could be demonstrated with larger sample sizes,

for example. However, these preliminary results are nonetheless encouraging.

Toxicity when prompted with images. We also evaluate the toxicity of Flamingo using the Perspec-
tive API4 to evaluate the toxicity of the model’s generated captions when prompted with images from

the COCO test set. We observe that some captions are labelled as toxic by the classifier; however, when

examining them manually, we do not observe any clear toxicity – output captions are appropriate for

the images provided. Overall, based on our own experiences interacting with the system throughout

the course of the project, we have not observed toxic outputs when given “safe-for-work” imagery.

However this does not mean the model is not capable of toxic outputs, especially if probed with

“not-safe-for-work” images and/or toxic text. A more thorough exploration and study would be needed

if such a model were put in production.

Applying Flamingo for mitigation strategies. Thanks to its ability to rapidly adapt in low-resource

settings, Flamingo could itself be applied in addressing some of the issues described above. For instance,

following Thoppilan et al. (2022), adequately conditioned or fine-tuned Flamingo models could

be used for filtering purposes of toxic or harmful samples in the training data. In their work, they

observe significant improvements relating to safety and quality when fine-tuning on the resulting

data. Furthermore, during evaluation, such adapted models could be used to down-rank or exclude

outputs that might be classified as offensive, promoting social biases and stereotypes or leaking

private information, thus accelerating progress in this direction even for low-resource tasks. Our

results on the HatefulMemes benchmark represent a promising step in this direction. Recent work

in the language modeling space has also shown success of training an LM to play the role of a red

team, and generate test cases, so as to automatically find cases where another target LM behaves in a

harmful way (Perez et al., 2022). A similar approach could be derived for our setting. Enabling the

model to support outputs with reference to particular locations within the visual inputs, or to external

verified quotes is also interesting direction (Menick et al., 2022; Thoppilan et al., 2022). Finally, in

Figure 11, we provide qualitative examples demonstrating that Flamingo can explain its own outputs,

suggesting avenues to explainability and interpretability using the model’s text interface.

7. Conclusion

We propose a general-purpose family of Flamingo models that can be applied to image and video

understanding tasks with minimal task-specific training data. With just a few examples presented

to the model, a single Flamingo model can achieve state-of-the-art results on a wide array of tasks,

performing competitively with approaches requiring task-specific fine-tuning on orders of magnitude

more examples, and often requiring hand-engineered “tricks”. We’ve further presented qualitative

examples showing interesting interactive abilities, allowing users to “chat” with the model, querying

it for arbitrary information about input images and videos, demonstrating our models’ flexibility

beyond traditional vision and language benchmarks. Our results suggest that the Flamingo model,

a visual language model that bridges the gap between large language models and powerful visual

representations, represents an important step towards general-purpose visual understanding.

4https://perspectiveapi.com/
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8. Appendix

Datasets. We provide more details about our datasets in Appendix A. M3W is described in Ap-

pendix A.1, including details about its collection in Appendix A.1.1, the data augmentation we employ

controlled by the ><4FB parameter in Appendix A.1.2, and its datasheet in Appendix A.1.3. Datasheets

for LTIP and VTP are respectively given in Appendix A.2.1 and Appendix A.2.2. The deduplication

process for our training datasets against the evaluation datasets is provided in Appendix A.3.

Model card. The Flamingo model card is provided in Appendix B.

Experiment details. Additional experiment details are provided in Appendix C. This includes details

about our transformer architecture (Appendix C.1), our contrastive pretraining (Appendix C.2), the

subsets creation for the dev benchmarks (Appendix C.3) as well as how the gating values evolve

during training (Appendix C.4).

Dialogue prompt. Finally we provide the dialogue prompt that is used to generate our dialogue

qualitative figures in Appendix D.

A. Datasets

A.1. M3W

A.1.1. Collection

The selection and scraping of web pages for M3W follows a similar process to that used for collecting

the MassiveWeb dataset [95]. We start by filtering out non-English documents. We also remove those

that do not pass Google’s SafeSearch filter5, which identifies explicit content across images, videos,

and text. We use a custom scraper to extract salient content from the remaining documents, in the

form of plain text interleaved with images, as described in section 3.2.1. This is implemented as an

extension to the MassiveWeb scraper: the text is collected in a similar fashion, but we also collect any

images present at the same level in the HTML tree (if available). We discard documents for which the

scraping process does not yield any images.

We then apply similar text filtering heuristics, to remove low quality documents and reduce

repetition, as well as some image filters to remove images that are too small (either width or height less

than 64 pixels), too wide or narrow (aspect ratio greater than 3 in either direction), or unambiguously

low quality (e.g. single-colour images). We discard documents that no longer contain any images

following this filtering step.

A.1.2. Image placement data augmentation

During evaluation of Flamingo models, we prompt the model with an image and ask it to generate

text for that image. This lends itself to a natural sequencing at inference time in which the image

comes before the corresponding text output. When training on single-image (LTIP) or single-video

(VTP) datasets (Section 3.2.2) we use this same (7;064, B4FB) sequencing to maximize the model’s

effectiveness during inference.

However, the correspondence between images and text in our interleaved M3W dataset (Sec-

tion 3.2.1) is in general unknown (and potentially not well-defined in certain cases). As a motivating

example, a simple webpage might be structured in either of the following ways:

5https://support.google.com/websearch/answer/510
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(a) This is my dog! <dog image> This is my cat! <cat image>

(b) <dog image> That was my dog! <cat image> That was my cat!

The text-aligned image indices (indices) might “ideally” be chosen such that at each point in the

text, the index points to the most semantically relevant image for that text – i.e., the next image in

example (a), and the previous image in example (b). In the absence of a general way of determining

semantic correspondence between text and images on webpages “in the wild”, we make a simplifying

assumption that the most relevant image at any given point in the text is either the last image

appearing before the text token, or the image immediately following it (as in the simple examples

above), and choose indices accordingly.

During training, for each webpage sampled, we sample with probability ><4FB =
1
2 whether

indices are chosen to map text to the previous or next image. This inevitably means we make the

semantically “unnatural” choice – e.g., associating the text “This is my cat!” with the dog image in (a)

above – around half of the time. We ablate this choice in Section 4.4, finding a small advantage to

setting ><4FB =
1
2 over either 0 (always the previous image index) or 1 (always the next image index).

This suggests that there may be a beneficial “data augmentation” effect to this randomisation.

A.1.3. Datasheet

We follow the framework defined by Gebru et al. [35] and provide the datasheet for M3W in Table 9.

Motivation

For what purpose was the dataset

created? Who created the dataset?

Who funded the creation of the

dataset?

The dataset was created for pre-training multimodal models

of language and images by researchers at DeepMind.

Any other comments? None.

Composition

What do the instances that com-

prise the dataset represent (e.g.,

documents, photos, people, coun-

tries)?

All instances of the dataset are documents from the web

containing interleaved text and images.

How many instances are there in

total (of each type, if appropriate)?

There are 43.3M instances (documents) in total, with a total

of 185M images and 182 GB of text.

Does the dataset contain all possible

instances or is it a sample (not nec-

essarily random) of instances from

a larger set?

The dataset is a sample from a larger set.

What data does each instance con-

sist of?

Each instance is made up of a sequence of UTF-8 bytes en-

coding the document’s text, as well as a sequence of integers

indicating the positions of images in the text, and the images

themselves in compressed format (see Section 3.2.1).

Is there a label or target associated

with each instance?

No, there are no labels associated with each instance.
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Is any information missing from in-

dividual instances?

No.

Are relationships between individ-

ual instances made explicit?

There are no relationships between the different documents

in the dataset.

Are there recommended data splits? We use random splits for the training and development sets.

Are there any errors, sources of

noise, or redundancies in the

dataset?

There is significant redundancy at the sub-document level.

Is the dataset self-contained, or

does it link to or otherwise rely on

external resources?

The dataset is self-contained.

Does the dataset contain data that

might be considered confidential?

No.

Does the dataset contain data that,

if viewed directly, might be of-

fensive, insulting, threatening, or

might otherwise cause anxiety?

The dataset likely contains some data that might be con-

sidered offensive, insulting or threatening, as such data is

prevalent on the web. We do not try to filter out such con-

tent, with the exception of explicit content, which we identify

using Google’s SafeSearch filter.

Collection Process

How was the data associated with

each instance acquired?

The data is available publicly on the web.

What mechanisms or procedures

were used to collect the data?

The data was collected using a variety of software programs

to extract and clean the raw text and images.

If the dataset is a sample from a

larger set, what was the sampling

strategy?

We randomly subsample documents.

Who was involved in the data col-

lection process?

Researchers at DeepMind.

Over what timeframe was the data

collected?

The dataset was collected over a period of several months in

2021. We do not filter the sources based on creation date.

Were any ethical review processes

conducted?

No.

Preprocessing/cleaning/labeling

Was any preprocessing/Clean-

ing/Labeling of the data done (e.g.,

discretization or bucketing, tok-

enization, part-of-speech tagging,

SIFT feature extraction, removal

of instances, processing of missing

values)?

Yes — the pre-processing details are discussed in (A.1.1).
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Is the software used to preprocess/-

clean/label the instances available?

No.

Uses

Has the dataset been used for any

tasks already?

Yes, we use the dataset for pre-training multimodal language

and vision models.

Is there a repository that links to any

or all papers or systems that use the

dataset?

No, the dataset has only been used to train the models in this

paper.

What (other) tasks could the dataset

be used for?

We do not foresee other usages of this dataset at this stage.

Is there anything about the com-

position of the dataset or the way

it was collected and preprocessed/-

cleaned/labeled that might impact

future uses?

The dataset is static and thus will become progressively more

“stale”. For example, it will not reflect new language and

norms that evolve over time. However, due to the nature

of the dataset it is relatively cheap to collect an up-to-date

version.

Are there tasks for which the dataset

should not be used?

The dataset described in this paper contains English language

text almost exclusively and therefore should not be used for

training models intended to have multilingual capabilities.

Distribution

Will the dataset be distributed to

third parties outside of the entity

(e.g., company, institution, orga-

nization) on behalf of which the

dataset was created?

No.

Table 9 | M3W Datasheet. We follow the framework as presented in Gebru et al. [35].

A.2. Image and video text pair datasets

A.2.1. Datasheet for LTIP

Motivation

For what purpose was the dataset

created? Who created the dataset?

Who funded the creation of the

dataset?

The dataset was created for pre-training multimodal models

of language and images by researchers at DeepMind.

Any other comments? None.

Composition
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What do the instances that com-

prise the dataset represent (e.g.,

documents, photos, people, coun-

tries)?

All instances of the dataset are image-text pairs.

How many instances are there in

total (of each type, if appropriate)?

The dataset contains 312M image/text pairs.

Does the dataset contain all possible

instances or is it a sample (not nec-

essarily random) of instances from

a larger set?

The dataset is a sample from a larger set.

What data does each instance con-

sist of?

Each instance is made up of a sequence of UTF-8 bytes encod-

ing the document’s text, and an image in compressed format

(see Section 3.2.2).

Is there a label or target associated

with each instance?

No, there are no labels associated with each instance.

Is any information missing from in-

dividual instances?

No.

Are relationships between individ-

ual instances made explicit?

There are no relationships between the different instances in

the dataset.

Are there recommended data splits? We use random splits for the training and development sets.

Are there any errors, sources of

noise, or redundancies in the

dataset?

The data is relatively high quality but there is a chance that

some instances are repeated multiple times.

Is the dataset self-contained, or

does it link to or otherwise rely on

external resources?

The dataset is self-contained.

Does the dataset contain data that

might be considered confidential?

No.

Does the dataset contain data that,

if viewed directly, might be of-

fensive, insulting, threatening, or

might otherwise cause anxiety?

The websites that were used for this dataset were carefully

selected to avoid such content. However given the scale of

the data it is possible that some data could be considered

offensive or insulting.

Collection Process

How was the data associated with

each instance acquired?

The data is available publicly on the web.

What mechanisms or procedures

were used to collect the data?

The data was collected using a variety of software programs

to extract and clean the raw text and images.

If the dataset is a sample from a

larger set, what was the sampling

strategy?

N.A.

Who was involved in the data col-

lection process?

Researchers at DeepMind.
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Over what timeframe was the data

collected?

The dataset was collected over a period of several months in

2021. We do not filter the sources based on creation date.

Were any ethical review processes

conducted?

No.

Preprocessing/cleaning/labeling

Was any preprocessing/Clean-

ing/Labeling of the data done (e.g.,

discretization or bucketing, tok-

enization, part-of-speech tagging,

SIFT feature extraction, removal

of instances, processing of missing

values)?

Some automatic text formatting was applied to remove from

the captions dates and locations that were not relevant to the

training objective.

Is the software used to preprocess/-

clean/label the instances available?

No.

Uses

Has the dataset been used for any

tasks already?

Yes, we use the dataset for pre-training multimodal language

and vision models.

Is there a repository that links to any

or all papers or systems that use the

dataset?

No — the dataset has been used to train the models in this

paper.

What (other) tasks could the dataset

be used for?

We do not foresee other usages apart from the ones used in

the paper.

Is there anything about the com-

position of the dataset or the way

it was collected and preprocessed/-

cleaned/labeled that might impact

future uses?

The dataset is static and thus will become progressively more

“stale”. For example, it will not reflect new language and

norms that evolve over time. However, due to the nature

of the dataset it is relatively cheap to collect an up-to-date

version.

Are there tasks for which the dataset

should not be used?

The dataset described in this paper contains English language

text almost exclusively and therefore should not be used for

training models intended to have multilingual capabilities.

Distribution

Will the dataset be distributed to

third parties outside of the entity

(e.g., company, institution, orga-

nization) on behalf of which the

dataset was created?

No.

Table 10 | LTIP Datasheet. We follow the framework as presented in Gebru et al. [35].

A.2.2. Datasheet for VTP
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Motivation

For what purpose was the dataset

created? Who created the dataset?

Who funded the creation of the

dataset?

The dataset was created for pre-training multimodal models

of language and images by researchers at DeepMind.

Any other comments? None.

Composition

What do the instances that com-

prise the dataset represent (e.g.,

documents, photos, people, coun-

tries)?

All instances of the dataset are image-text pairs.

How many instances are there in

total (of each type, if appropriate)?

The dataset contains 27M video/text pairs.

Does the dataset contain all possible

instances or is it a sample (not nec-

essarily random) of instances from

a larger set?

The dataset is a sample from a larger set.

What data does each instance con-

sist of?

Each instance is made up of a sequence of UTF-8 bytes encod-

ing the document’s text, and a video in compressed format

(see Section 3.2.2).

Is there a label or target associated

with each instance?

No, there are no labels associated with each instance.

Is any information missing from in-

dividual instances?

No.

Are relationships between individ-

ual instances made explicit?

There are no relationships between the different instances in

the dataset.

Are there recommended data splits? We use random splits for the training and development sets.

Are there any errors, sources of

noise, or redundancies in the

dataset?

The data is relatively high quality but there is a chance that

some instances are repeated multiple times.

Is the dataset self-contained, or

does it link to or otherwise rely on

external resources?

The dataset is self-contained.

Does the dataset contain data that

might be considered confidential?

No.

Does the dataset contain data that,

if viewed directly, might be of-

fensive, insulting, threatening, or

might otherwise cause anxiety?

The websites that were used for this dataset were carefully

selected to avoid such content. However given the scale of

the data it is possible that some data could be considered

offensive or insulting.

Collection Process
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How was the data associated with

each instance acquired?

The data is available publicly on the web.

What mechanisms or procedures

were used to collect the data?

The data was collected using a variety of software programs

to extract and clean the raw text and images.

If the dataset is a sample from a

larger set, what was the sampling

strategy?

N.A.

Who was involved in the data col-

lection process?

Researchers at DeepMind.

Over what timeframe was the data

collected?

The dataset was collected over a period of several months in

2021. We do not filter the sources based on creation date.

Were any ethical review processes

conducted?

No.

Preprocessing/cleaning/labeling

Was any preprocessing/Clean-

ing/Labeling of the data done (e.g.,

discretization or bucketing, tok-

enization, part-of-speech tagging,

SIFT feature extraction, removal

of instances, processing of missing

values)?

Some automatic text formatting was applied to remove from

the captions dates and locations that were not relevant to the

training objective.

Is the software used to preprocess/-

clean/label the instances available?

No.

Uses

Has the dataset been used for any

tasks already?

Yes, we use the dataset for pre-training multimodal language

and vision models.

Is there a repository that links to any

or all papers or systems that use the

dataset?

No — the dataset has been used to train the models in this

paper.

What (other) tasks could the dataset

be used for?

We do not foresee other usages apart from the ones used in

the paper.

Is there anything about the com-

position of the dataset or the way

it was collected and preprocessed/-

cleaned/labeled that might impact

future uses?

The dataset is static and thus will become progressively more

“stale”. For example, it will not reflect new language and

norms that evolve over time. However, due to the nature

of the dataset it is relatively cheap to collect an up-to-date

version.

Are there tasks for which the dataset

should not be used?

The dataset described in this paper contains English language

text almost exclusively and therefore should not be used for

training models with multilingual capabilities.

Distribution
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Will the dataset be distributed to

third parties outside of the entity

(e.g., company, institution, orga-

nization) on behalf of which the

dataset was created?

No.

Table 11 | VTP Datasheet. We follow the framework as presented in Gebru et al. [35].

A.3. Dataset deduplication against evaluation tasks

We used a Google internal deduplication tool to deduplicate our training datasets. This deduplication

pipeline relies on a trained visual encoder which maps embedding closer together when they are

potential duplicates. Once the image embeddings have been computed, a fast approximate nearest

neighbor search6 is performed on the training images to retrieve duplicates candidates from the

validation datasets. For the paired image-text dataset, we have deduplicated our LTIP and ALIGN

training images against: ImageNet (train, val), COCO (train, valid, test), OK-VQA (train, valid, test),

VQAv2 (train, valid, test), Flickr30k (train, valid, test), VisDial (train, valid, test).

We did not deduplicate our image datasets against VizWiz, HatefulMemes and TextVQA as we

performed these evaluation only after having trained our Flamingo models. However, we believe

this had no impact on our results as the images from these datasets are unlikely to be scraped from

the web; VizWiz images were obtained using a specific mobile app and only available for download,

HatefulMemes memes were created by researchers instead of being scraped on the web and finally

TextVQA images are from OpenImages.

Note that we did not run the deduplication on the M3W dataset as one training example is a

full webpage of interleaved paragraph with several images, unlikely to contain images from our

benchmark suite. To verify this hypothesis, we have obtained near-duplicates statistics on the 185M

individual images from M3W and the results are the following: 1314 potential duplicates were found

from the validation and test splits of ImageNet, COCO, OK-VQA, VQAv2, Flickr30k and VisDial. Out of

the 1314 candidates, only 125 are exact duplicates.

For the video datasets, we did not perform any deduplication of VTP (27M videos) as none of the

collected VTP videos were obtained from YouTube or Flickr, which are the source of all of our video

evaluation datasets collected on the Internet.

B. Flamingo Model Card

We present a model card for Flamingo in Table 12, following the framework presented by Mitchell

et al. [85].

Model Details

Organization Developing the Model DeepMind

Model Date March 2022

6https://github.com/google-research/google-research/tree/master/scann
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Model Type Transformer-based autoregressive language model, condi-

tioned on visual features from a convnet-based encoder. Ad-

ditional transformer-based cross-attention layers incorporate

vision features into the language model’s text predictions.

(See Section 3 for details.)

Feedback on the Model jalayrac@google.com

Intended Uses

Primary Intended Uses The primary use is research on visual language models (VLM),

including: research on VLM applications like classification,

captioning or visual question answering, understanding how

strong VLMs can contribute to AGI, advancing fairness and

safety research in the area of multimodal research, and un-

derstanding limitations of current large VLMs.

Primary Intended Users DeepMind researchers. We will not make this model available

publicly.

Out-of-Scope Uses Uses of the model for visually conditioned language genera-

tion in harmful or deceitful settings. Broadly speaking, the

model should not be used for downstream applications with-

out further safety and fairness mitigations specific to each

application.

Factors

Card Prompts – Relevant Factor Relevant factors include which language is used. Our model

is trained on English data. Our model is designed for research.

The model should not be used for downstream applications

without further analysis on factors in the proposed down-

stream application.

Card Prompts – Evaluation Factors Flamingo is based on Chinchilla (a large proportion of the

weights of Chinchilla are used as this) and we refer to the anal-

ysis provided in [48, 95] for the language only component of

this work. We refer to our study presented in Section 6.2.2

for a toxicity analysis when the model is conditioned on an

image.

Metrics
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Model Performance Measures We principally focus on the model’s ability to predict relevant

language when given an image. For that we used a total

of 18 different benchmarks described in Section 4.1.2 span-

ning various vision and language tasks such as classification

(ImageNet, Kinetics700, HatefulMemes), image and video

captioning (COCO, VATEX, Flickr30K, YouCook2, RareAct),

visual question answering (OKVQA, VizWiz, TextVQA, VQAv2,

MSRVTTQA, MSVDQA, iVQA, STAR, NextQA) and visual dia-

log (VisDiag). This was tested either in an open ended setting

where Flamingo generate language and we compare the out-

puts with the ground truth or in a close ended setting where

we directly score various outcomes using the likelihood of

the model.

Decision thresholds N/A

Approaches to Uncertainty and Vari-

ability

Due to the costs of training Flamingo, we cannot train it

multiple times. However, the breadth of our evaluation on a

range of different task types gives a reasonable estimate of

the overall performance of the model.

Evaluation Data

Datasets See Table 2 for a detailed list.

Motivation We chose our evaluation datasets to span an important range

of vision and language tasks to correctly assess the ability

of Flamingo to produce relevant text given an image.

Preprocessing Input text is tokenized using a SentencePiece tokenizer with

a vocabulary size of 32,000. Images are processed so that

their mean and variance are 0 and 1 respectively.

Training Data

See [56], the Datasheet in Appendix A.1.3, Appendix A.2.1, Appendix A.2.2

Quantitative Analyses

Unitary Results Flamingo sets a new state of the art in few-shot learning on a

wide range of open-ended vision and language tasks. On the

16 tasks we consider, Flamingo also surpasses the fine-tuned

state-of-art in 6 of the cases despite using orders of magnitude

less task-specific training data. We refer to Section 4 for the

full details of our quantitative study.

Intersectional Results We did not investigate intersectional biases.

Ethical Considerations
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Data The data is sourced from a variety of sources, some of it from

web content. Sexually explicit content is filtered out, but

the dataset does include racist, sexist or otherwise harmful

content.

Human Life The model is not intended to inform decisions about matters

central to human life or flourishing.

Mitigations Apart from removing sexual explicit content we did not filter

out toxic content, following the rationale of Rae et al. [95].

More work is needed on mitigation approaches to toxic con-

tent and other types of risks associated with language models,

such as those discussed in Weidinger et al. [136].

Risks and Harms The data is collected from the internet, and thus undoubtedly

toxic and biased content is included in our training dataset.

Furthermore, it is likely that personal information is also in

the dataset that has been used to train our models. We defer

to the more detailed discussion in Weidinger et al. [136].

Use Cases Especially fraught use cases include the generation of fac-

tually incorrect information with the intent of distributing

it or using the model to generate racist, sexist or otherwise

toxic text with harmful intent. Many more use cases that

could cause harm exist. Such applications to malicious use

are discussed in detail in Weidinger et al. [136].

Table 12 | Flamingo Model Card. We follow the framework presented in Mitchell et al. [85].

Resampler xattn dense Frozen LM

L D H Act. L D H Act. L D H Act.

Flamingo-3B 6 1536 16 Sq. ReLU 24 2048 16 Sq. ReLU 24 2048 16 GeLU

Flamingo-9B 6 1536 16 Sq. ReLU 10 4096 32 Sq. ReLU 40 4096 32 GeLU

Flamingo 6 1536 16 Sq. ReLU 12 8192 64 Sq. ReLU 80 8192 64 GeLU

Table 13 | Flamingo models transformer hyper-parameters. All transformer blocks have a same

constant key and value size of 128 and the hidden size of each MLP is 4 × �. L: number of layers, D:

transformer hidden size, H: number of heads, Act.: FFW activation, Sq. ReLU: Squared ReLU [112].

C. Additional experiment details

C.1. Transformer architecture details.

We list in Table 13, the number of layers (!), the hidden dimension (�), the number of head (�)

as well as the FFW activation (Act.) used for each transformer part of our Flamingo models. All

transformer blocks have a same constant key and value size of 128 and the hidden size of each MLP is

4 × �. Note that the frozen LM was trained with the GeLU [45] activation while we have noticed that
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training the remaining trainable transformers with the Squared ReLU [112] activation outperforms

GeLU.

Dataset Combination ImageNet COCO
strategy accuracy image-to-text text-to-image

top-1 R@1 R@5 R@10 R@1 R@5 R@10

LTIP None 40.8 38.6 66.4 76.4 31.1 57.4 68.4
ALIGN None 35.2 32.2 58.9 70.6 23.7 47.7 59.4
LTIP + ALIGN Accumulation 45.6 42.3 68.3 78.4 31.5 58.3 69.0
LTIP + ALIGN Data merged 38.6 36.9 65.8 76.5 15.2 40.8 55.7
LTIP + ALIGN Round-robin 41.2 40.1 66.7 77.6 29.2 55.1 66.6

Table 14 | Effect of contrastive pretraining datasets and combination strategies. The first two rows show
the effect of training a small model on LTIP and ALIGN only, the final three show the results of a small model
trained on combinations of these datasets, comparing different combination strategies.

C.2. Contrastive model details

C.2.1. Contrastive model training details.

To pretrain the vision encoder we use a contrastive loss on the ALIGN and LTIP datasets, similar to

CLIP [94] and ALIGN [56]. The vision encoder is trained from scratch, together with a language

encoder. Using these encoders, images and text pairs are separately encoded and projected to a shared

embedding space and L2 normalized. From these embeddings, we maximise the similarity of paired

embeddings and minimize the similarity of unpaired embeddings, using a multi-class cross-entropy

loss, where the paired image-texts are treated as positive examples and the rest of the batch as

negative examples. We use the same loss as in CLIP [94], which consists of two contrastive losses, one

from text to image and another one from image to text. We use a learnable temperature parameter in

the final log-softmax [10] layer. The result is two loses, one from texts-to-images:
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and a similar one for images-to-text:
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the sum of which is optimized. Here, +7 and !7 are, respectively, the normalized embedding of the

vision and language component of the 7-th element of a batch. V is a trainable inverse temperature

parameter and # is the number of elements in the batch. We use the BERT [25] architecture for

the language encoder. The outputs of the language and vision encoders are mean-pooled before

being projected to the shared embedding space. We only use the weights from the contrastive vision

encoder in the main Flamingo model. Our pretrained experiments are discussed in more detail in

Section 4.1.4.

Experiment details. The training image resolution is 288 × 288, the joint embedding space is size

1376 and the batch size is 16, 384. It is trained for 1.2 million parameter update steps, each of which

consist of two gradient calculation steps (more details below) on 512 TPUv4 chips. The learning

rate is decayed linearly from 10−3 to zero over the course of training. Images have random color
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augmentation and horizontal flips applied during training. We use the same tokenizer as [56]. The

Adam optimizer is used to optimize the network, and we apply label smoothing of 0.1. We apply

10−2 adaptive gradient clipping (AGC) [11] to the NFNet encoder and global norm gradient clipping

of 10 for the BERT encoder.

To evaluate the pretrained model, we track zero shot image classification and retrieval. For

zero shot image classification, we use image-text retrieval between the images and the class names.

Following [94] we use “prompt-emsembling” in which we embed multiple texts using templates such

as “A photo of a {class_name}” and average the resulting embedding.

C.2.2. Ablation study on different dataset mixing strategies for the contrastive pretraining

One key to achieving strong results was the inclusion of our new dataset LTIP alongside ALIGN for

training. Despite being a smaller dataset ALIGN by a factor of 6, a contrastive model trained on

only LTIP outperforms one trained only on ALIGN on our evaluation metrics, suggesting that dataset

quality may be more important than scale in the regimes in which we operate. We also find that a

model trained on both ALIGN and LTIP outperforms those trained on the two datasets individually

and that how the datasets are combined is important.

To demonstrate this, we train a small model with an NFNet-F0 vision encoder, BERT-mini language

encoder and batch size 2048 for 1 million gradient-calculation steps on ALIGN, LTIP and a mixture

of the two. The results are presented in Table 14. It shows the results of training models on the

combined datasets using three different merging regimes:

• Data merged: Batches are constructed by merging examples from each dataset into one batch.

• Round-robin: We alternate batches of each dataset, updating the parameters for each batch.

• Accumulation: We compute a gradient on a batch from each dataset. These gradients are then

weighted and summed and use to update the parameters.

Across all evaluation metrics, we find that the Accumulation method outperforms other methods of

combining the datasets. Although the LTIP dataset is 5 × smaller than the ALIGN dataset, this ablation

study suggests that the quality of the training data can be more important than its abundance.

C.3. Details of subsets used for the dev benchmarks

Here, we describe in more detail how we create the validation subsets for each benchmark. For

captioning tasks, open-ended evaluation is efficient so we evaluate on a large number of samples.

Specifically, for COCO, we use the same number of samples as used in the splits of Karpathy for

evaluation sets (5000). For VATEX, because the training set is of limited size, we only evaluate over

1024 samples, reserving the rest for support sets. For question answering tasks, we evaluate over

1024 samples; chosen to make both open- and close-ended evaluation reasonably fast. For image

classification tasks, we evaluate over 10 images per class, that is 10000 samples for ImageNet, and

7000 samples for Kinetics700. As for the support sets, for both validation and final performance

estimation, we use 2048 samples across all tasks, except for classification tasks where we scale this to

32 samples per class, to better estimate expected performance for each class.

C.4. Evolution of the tanh gating values throughout training.

We plot in Figure 14, the evolution of the absolute value of the tanh gating values as a function of the

training progress (from 0% to 100%) at different layers of the LM stack for the Flamingo-3B model
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Figure 14 | Evolution of the absolute value of the tanh gating at different layers of Flamingo-3B.

composed of 24 LM layers. All layers of the frozen LM stack seem to utilize the visual information

as the tanh gating absolute values quickly go away from the 0 initializations. We also note that

the absolute values seem to grow with the depth. It is however difficult to draw strong conclusions

from this observation as the scale of activations might also vary with the depth even though layer

normalization is present. Future work is required to better understand the effect of these added

layers on the optimization dynamic and on the language model itself.

D. Dialogue prompt

For the dialogue examples in Figure 11 the following prompt is used:

This is a conversation between a human, User, and an intelligent visual

AI, Flamingo. User sends images, and Flamingo describes them.

User: <a cat image>

Flamingo: That is a cat. It’s a tiny kitten with really cute big ears.

User: <a dinner image>

Flamingo: This is a picture of a group of people having dinner. They

are having a great time!

User: Can you guess what are they celebrating?

Flamingo: They might be celebrating the end of a successful project or

maybe a birthday?

User: <a graph image>

Flamingo: This is a graph, it looks like a cumulative density function

graph.
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