
 

COVID-19 Forecasting in Japan: 
Fairness Analysis 

Introduction 

Google is committed to a core set of AI principles​1​. These principles lay out how we think about using 
technology to solve important problems. They also identify important challenges that we have a 
responsibility to address clearly, thoughtfully, and affirmatively. In developing our COVID-19 Public 
Forecasts​2​, we paid close attention to the disproportionate impact the disease has had globally and how 
this may impact our adherence to these principles, especially with respect to principle #2: “Avoid creating 
or reinforcing unfair bias.” 
 
Some subgroups of the population have been affected more by COVID-19 than others. Issues such as 
access to healthcare, systemic bias and structural racism can lead to greater negative impact from 
COVID-19 (as well as many other conditions)​3-8​. While much has been written on this in a USA context, 
issues of bias​9-10​ and access to healthcare​11​ have been described in Japan outside of the context of 
COVID-19, and a thorough analysis of how these issues might surface in our forecasting model remains 
important. 
 
We have developed machine learning prediction algorithms to forecast COVID-19 cases in Japan at a 
prefecture level​12​. Unlike our previous work in the US at a county level, forecasting at a prefecture level 
presents new challenges. Japanese prefectures are larger than US counties and many have fewer 
COVID-19 cases; the majority of prefectures have fewer than a thousand cases and fewer than ten 
deaths. 
 
The overall model accuracy as a percentage of total cases remains consistent between prefectures. But 
this means that the mean absolute error (MAE) is larger for prefectures with a greater number of cases 
and the risk of over- or undercounting cases is higher (​Figure 1a​). This is important in the context of 
demographic groups, as the populations of certain demographics are not evenly distributed, but rather 
concentrated in prefectures that have higher case numbers. This was particularly notable in our US 
COVID-19 forecasting model. A detailed description of how MAE varied with different demographic 
makeups can be found in our ​fairness white paper​2​. Normalising the MAE (dividing it by the death count) 
was found to reduce the variation in error between subgroups, indicating that the difference in absolute 
error across demographic groups can be largely explained by the difference in COVID-19 deaths and case 
counts (​Figure 1b​). 
 
For the analysis of our Japan model, we focus on normalised mean absolute error (NMAE). Because the 
number of deaths are so low in Japan, we focus our analysis instead on confirmed cases. To simulate 
how the model would perform in practice, for the purpose of this analysis the model was trained up to 
September 14th 2020, and evaluated over the following 28 days. The below sections explore individual 
demographic groups in more detail. We hope that this approach and focus on fairness will contribute to a 
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broader discussion around how AI can not only support the response to COVID-19 but also support 
efforts to identify and address disproportionate impacts. 
 

Figure 1: Absolute and normalized error and the total number of COVID-19 cases in Japan. (​a​)                
Absolute and (​b​) normalised error for prefectures are split into deciles, from the least number of cases to the                   
most. In general, the model absolute error rises as the case numbers increase. After the error is normalized, a                   
more uniform distribution of cases is observed. 

Prefectural performance 

Model NMAE was generally consistent across most prefectures (​Figure 2​). Higher error rates are mostly 
confined to prefectures with small numbers of cases or less dense populations. This can be expected, as 
machine learning models benefit from more training data and will perform less well where data is limited. 
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Figure 2: Model performance for each prefecture. Total number of cases (at the time of model                
assessment) and normalised error for all 47 Japanese prefectures. For each prefecture the green line indicates                
NMAE and the bar shows the total number of cases. Each bar is colored according to population density                  
(densely populated regions in red, sparsely populated regions in green). For clarity, the prefectures are also                
ordered by population density, from the highest density on the left to the lowest on the right. Both the highest                    
individual errors and case counts are seen in rural prefectures. 

Subgroup analysis 

In this section we present the model NMAE results for individual demographic groups: age, sex, ethnicity 
and median income. To better demonstrate trends across demographic groups, we bin the prefectures 
into four groups of an equal number of prefectures according to the percentage prevalence of that 
demographic group. We use self reported data from the ​2015 Japan Population Census​ for sex and 
ethnicity; for the later we report results over the three most populous groups (Japanese, Korean, 
Chinese). We use ​MHLW statistics​ for age (following the existing grouping of 0-14 years, 15-64 years and 
>65 years) and Japanese ​Cabinet Office statistics​ for median income. 
 
Figures 3, 4 and 5​ shows the total number of cases in each quartile, along with the respective model 
absolute and normalised error and their credible intervals. A clear correlation is observed with case count. 
After normalization this correlation is less clear, and in all groups there is substantial overlap in the 
credible intervals between prefectures with greater or lesser populations of different demographic 
subgroups.  
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Figure 3: Normalised error across different age groups in Japan. Prefectures are split into quartiles by                
the percentage of the population that fall into younger (<14 years old), middle (15-64 years old) and older                  
(>65) age groups. For each quartile, the total number of COVID-19 cases are shown (blue bars), along with                  
the absolute error (orange line) a normalised error (green). The orange and green bars indicate the 25% and                  
75% credible intervals for absolute and normalised error respectively. 

 
 
 

 

 



 
Figure 4: Normalised error across different ethnicity groups in Japan. Prefectures are split into quartiles               
by the percentage of the population that fall into the three most populous ethnicity groups according to the                  
2015 Census (Japanese, Korean and Chinese). For each quartile, the total number of COVID-19 cases are                
shown (blue bars), along with the absolute error (orange line) a normalised error (green). The orange and                 
green bars indicate the 25% and 75% credible intervals for absolute and normalised error respectively. 

 

Figure 5: Normalised error across sex and income groups in Japan. Prefectures are split into quartiles by                 
(​a, b​) the percentage of the population that are female, and (​c, d​) the medium income of the population. For                    
each quartile, the total number of COVID-19 cases are shown (blue bars), along with the absolute error                 
(orange line) a normalised error (green). The orange and green bars indicate the 25% and 75% credible                 
intervals for absolute and normalised error respectively. 

 
In addition to the demographic subgroups above, we also look at the effect of population density. A 
strong correlation between MAE and case count is again seen, which flattens out after normalization 
(​Figure 6​). Although population density is closely related to case count in Japan, in prefectures such as 
Hokkaido with lower population density but higher case counts the model NMAE remains relatively low 
(​Figure 1​). 
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Figure 6: Normalised error across population density quartiles in Japan. Prefectures are split into              
quartiles by the average population density. For each quartile, the total number of COVID-19 cases are                
shown (blue bars), along with the absolute error (orange line) and normalised error (green). The orange and                 
green bars indicate the 25% and 75% credible intervals for absolute and normalised error respectively. 

Discussion 

Our model optimizes for accuracy across all Japanese prefectures to provide the best overall forecast for 
most communities. After normalisation by case counts, the model error was consistent across all groups 
studied. Unlike our US COVID-19 forecasting work, model NMAE was lower or similar in areas with higher 
proportions of ethnic minority groups, despite previous reports of potential biases​11​.  
 
Performance appeared to be correlated with population density, though the correlation was markedly 
reduced by normalization. There may be several reasons for this. Firstly, these areas have the smallest 
number of cases, meaning there are fewer positive cases for a model to learn from making prediction 
more difficult. Secondly, the spread of COVID-19 will likely be slower and less predictable in sparsely 
populated areas than urban areas, which compounds the issue of lower data for these regions. Finally, 
while we didn’t see evidence for it in this analysis, access to specialist care may be more difficult in rural 
areas that lead to health inequalities that may be represented in the data itself. 
 
Our work has several limitations. As mentioned above, the numbers of cases were very small in many 
prefectures, presenting challenges both to model development and to drawing reliable conclusions in an 
analysis. In addition, due to the limited available duration for model training, we only report model 
performance at one point in time. As the factors influencing spread of disease may vary considerably 
over time, the results for a single time point may be less generalisable. Future work should be done to 
evaluate the model prospectively once launched to address potential limitations around training data and 
generalisability. Finally, it is important to note that for Non-Japanese ethnicities the proportions of 
individuals are very small (<1% of the population) in the majority of prefectures. This makes comparison 
difficult, particularly as no data was available on the number of cases in these communities.  
 
We remain committed to ensuring that our AI models are both valuable to the broader public and fair to 
vulnerable populations. We hope our model proves to be a valuable resource to the larger efforts to 
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respond to the global COVID-19 pandemic. Further work should be undertaken to understand the impact 
of the model when deployed in practice. 
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