

Google Cloud

Want to
know more
about SRE?

To learn more , Visit https://sre.google

https://sre.google

Enterprise Roadmap to SRE
How to Build and Sustain
an SRE Function

James Brookbank and Steve McGhee

Beijing + Boston + Farnham -« Sebastopol « Tokyo [KONR{=I|NAE

Enterprise Roadmap to SRE
by James Brookbank and Steve McGhee

Copyright © 2022 O’Reilly Media Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins Proofreader: Stephanie English
Development Editor: Virginia Wilson Interior Designer: David Futato
Production Editor: Christopher Faucher Cover Designer: Karen Montgomery
Copyeditor: Tom Sullivan lllustrator: Kate Dullea

January 2022: First Edition

Revision History for the First Edition
2022-01-20: First Release

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Enterprise Road-
map to SRE, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Google. See our statement
of editorial independence.

978-1-098-11771-9
[LSI]

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Preface

1.

Table of Contents

Getting Started with Enterprise SRE.......................

Evolution Is Better Than Revolution
SRE Practices Can Coexist with the ITIL Framework
DevOps/Agile/Lean

Setting Reliability as a Key Product Differentiator
When to Focus on Reliability?

Why Is SRE Happening Now?

Beyond the Google Halo

Why Not More Traditional Ops?

. SREPriNGples. ...ovvvriiiiii it i

Embracing Risk (SRE Book Chapter 3)

Service-Level Objectives (SRE Book Chapter 4)

Eliminating Toil (SRE Book Chapter 5)

Monitoring Distributed Systems (SRE Book Chapter 6)

The Evolution of Automation at Google (SRE Book
Chapter 7)

Release Engineering (SRE Book Chapter 8)

Simplicity (SRE Book Chapter 9)

How Do You Map These Principles to Your Existing
Organization?

Preventing Org-Destroying Mistakes

[\ NS

15
16
17
17
18

19
20
20

21
21

Create a Safe-to-Fail Environment for Your Adoption
Journey

Beware Diverging Priorities

How Do You Get Buy-In to These Principles, with the
Critical Sign-Off and Backing You Need?

SREPractices. ...oovvviiiiiiiiiiiii
Where to Start?

Where Are You Going?

How to Get There

What Makes SRE Possible?

Building a Platform of Capabilities

Leadership

Staffing and Retention

Upskilling

. Actively Nurturing Success.covvvviirierenneennnns

Think Big, Act Small

Culture Eats Strategy for Breakfast

Avoiding Culture Won't Help; Neither Will Waiting for It
What Does Nurturing SRE Mean?

SRE Care and Feeding

NotJustGoogle........ccovvvniiiniiiiiiiiiiiiiinennnens
Healthcare // Joseph
Retail // Kip and Randy

CONCUSION . v v vtv ittt iienieeeneneneeneneneenenennes

22
22

23

25
26
26
27
28
31
33
37
38

39
39
40
41
41
42

45
45
48

iv

| Table of Contents

Preface

Two previous O’Reilly books from Google—Site Reliability Engineer-
ing by Betsy Beyer, Chris Jones, Niall Richard Murphy, and Jennifer
Petoff (Eds.) and The Site Reliability Workbook by Betsy Beyer, Niall
Richard Murphy, David K. Rensin, Kent Kawahara, and Stephen
Thorne (Eds.)—demonstrated how and why a commitment to the
entire service lifecycle enables organizations to successfully build,
deploy, monitor, and maintain software systems.

This report is designed to build on the foundation of those books
and delve a little deeper into the challenges of adopting site reliabil-
ity engineering (SRE) in large and complex organizations (which we
refer to as enterprises). Despite the popularity of SRE over the past
few years, we have feedback from numerous enterprises that there is
a gap between the enthusiasm for SRE and the level of adoption.

We think this is an important gap to close because reliability is
increasingly a major differentiator for enterprises. The pace and
scale of technology change triggered by both cloud adoption and the
COVID-19 pandemic often requires different techniques to handle
this increased complexity.

These topics will be of more interest to you if you are involved in
(or depend on) reliability for production systems and need to know
more about SRE adoption. This includes executive and leadership
roles but also individual contributors (cloud architects, site reliabil-
ity engineers [SREs], platform developers, etc.) Regardless of role,
if you design, implement, or maintain technology systems, there is
likely something here for you.

CHAPTER1

Getting Started with
Enterprise SRE

Introducing SRE into an existing enterprise can seem daunting, so
we've gathered suggestions here to help you. Get started by evaluat-
ing your existing environment, setting expectations, and ensuring
you take steps in the right direction as you assess SRE and how it
might work within your organization.

Evolution Is Better Than Revolution

One of the defining features of enterprises is that there will always
be a history of previous IT/management information system (MIS)
methodologies and principles, and we will discuss a few common
methodologies in detail. Regardless of the current state, we've seen
the most success in adopting SRE when choosing to evolve and
complement existing frameworks rather than fighting them head-
on. Also, SRE is not immune to the fact that with any technology
adoption process, history matters (see the Wikipedia page on path
dependence). In short, this means that in a complex system such
as an enterprise, applying the same changes from different places
will lead to divergent and not convergent outcomes. We'll start with
some examples of how to succeed with different popular frame-
works.

https://oreil.ly/c7ZVd
https://oreil.ly/c7ZVd

SRE Practices Can Coexist with the ITIL
Framework

The Information Technology Infrastructure Library, or ITIL, is a set
of detailed practices for IT activities, such as IT service management
(ITSM). Not every enterprise uses ITIL, but if you do have some
level of ITIL adoption in your organization, then be prepared for
there to be substantial overlap between SRE and ITIL practices.
Also, because ITIL is a framework, your particular implementation
may have wide variations from the library.

Key Point: ITIL is five core books with thousands of pages on
how to build and run IT services, and a lot of these topics aren’t
reliability-related and intentionally not covered by SRE. ITIL is a
framework whereas SRE is a set of practices, so they are definitely
compatible, but expect challenges in translating terminology, e.g.,
“warranty, “utility,” and so on. Also, SRE has strong opinions on
areas such as change management and service ownership, so be
prepared to adjust how you do things even if the outcomes are
aligned.

There are some common antipatterns for SRE that will prove chal-
lenging to reconcile. A change advisory board (CAB) is a common
pattern for change control. The SRE approach to continuous deliv-
ery means streamlining and making this body strategic: you can
read more in Google’s DevOps Research & Assessment (DORA)’s
article explaining streamlining change approval. Similarly, for a
network operations center (NOC), this should move from an event-
driven model to a more proactive approach, centered on automation
and enablement. In both cases, focus on evolving the model rather
than trying to immediately replace it.

DevOps/Agile/Lean

DevOps has a multitude of definitions. For simplicity, we’ll assume
it includes the relevant parts of other methodologies such as Agile
(Scaled Agile Framework [SAFe], Disciplined Agile Delivery [DAD],
and Large Scale Scrum [LeSS]) and Lean (Six Sigma, Kanban).
Google’s DORA research shows that SRE and DevOps are comple-
mentary, so if you have some level of DevOps adoption in your

2 | Chapter 1: Getting Started with Enterprise SRE

https://oreil.ly/03Nuo
https://oreil.ly/psFmM
https://oreil.ly/fiuNe
https://oreil.ly/c1uke
https://oreil.ly/LyWVo
https://oreil.ly/rBj47

organization, this will usually be beneficial. As with ITIL, expect
some overlap with SRE and DevOps practices, and your particular
implementation may have wide variations from The DevOps Hand-
book.

We'll cover specific SRE practices in more detail later, but many
capabilities most commonly associated with DevOps (e.g., version
control, peer review, etc.) are also generally considered prerequisites
for SRE adoption. Whether you choose to build these capabilities
through DevOps or SRE initiatives is up to you, but they will still
need to be done to ensure adoption success.

Key point: Be pragmatic about reconciling your DevOps and SRE
initiatives; successful large-scale change is achieved iteratively and
incrementally. It’s important to deconstruct the individual activities
and focus on enabling people rather than spend unnecessary time
and effort getting the perfect “big picture”

Although they are complementary, there are some areas of DevOps
and SRE that might prove challenging to reconcile. For example,
you may have decided to replace Dev and Ops reporting hierarchies
with cross-functional DevOps teams. In this context, reintroducing
a dedicated function such as SRE needs careful consideration.

Start Where You Are

Whatever current methodologies and frameworks you currently use,
its important to understand and be honest with yourself about
where you are today. As per the SRE book, “Hope is not a strategy!”
If you don’t think anything is missing from your current environ-
ment or there is any opportunity for improvement, then you should
ask yourself why youre looking to adopt SRE. Likewise, some of
your technologies or employees won't initially seem aligned with
your SRE vision. Take the time to understand this before making
changes.

DevOps/Agile/Lean | 3

https://oreil.ly/cfTyO
https://oreil.ly/cfTyO
https://oreil.ly/oO3tE
https://oreil.ly/oO3tE
https://oreil.ly/EqPQB

Outline Your Expectations and Vision

Next, it's important to understand what outcomes you expect. SRE
has a number of technical and cultural components but they all have
a common goal of meeting reliability targets. You should expect to
spend meaningful time and effort in defining how they interact with
your existing frameworks. Simply stating “better reliability” isn’t
going to work. Similarly, if you are expecting outcomes not related
to reliability (e.g., cost, velocity), then be prepared to do some extra
work adapting SRE practices to your overall vision.

SRE Starts with People

Processes and technologies come and go over time, whereas people
and practices are able to adopt and adapt them. If you start with
training and hiring, then you can always add or remove technolo-
gies and processes. Building capabilities is an incremental process,
so don't try to hire your way to success. Think about hiring as
augmenting your training rather than replacing it. Remember that
SRE needs a generative culture to be successful, so ensuring this is
critical.

Embrace Your Uniqueness

There isn’t one best practice way to adopt SRE within your specific
organization. The only right way is the one that you are successful
with. We now have the benefit of substantial study of what did
and didn't work at multiple organizations, but you will inevitably
make novel mistakes. Use these organizations’ experiences as a gen-
uine learning tool to build virtuous improvement loops into your
organization.

4 | Chapter 1: Getting Started with Enterprise SRE

https://oreil.ly/yzHfp

CHAPTER 2

Why the SRE Approach to
Reliability?

Reliability isn’t a new concept. Enterprises have always placed their
reliability, quality, or uptime as qualities they strive to improve. So
what’s different about SRE? Why is this happening today, what is
different about it, and why should it matter to enterprises?

Setting Reliability as a Key Product
Differentiator

Why do enterprises want to build SRE teams or otherwise pursue
reliability? What are the outcomes they are hoping to achieve? Pop-
ular fads come and go (technology, processes), but there needs to be
a substantial business value for them to stay. Consider reliability and
security. Neither are initially a clear product differentiator, but both
are assumed requirements. It is only in the presence of problems
coupled with high expectations or reliance on a product that either
become more pronounced. For example, years ago, security exploits
and hacks were relatively rare, so security was present, but not on
the marketing materials of a consumer or business-facing product.
Now, as vulnerabilities are more commonplace and front-of-mind,
we see security as a product differentiator.

Reliability (or more commonly, availability or uptime) tends to be
mentioned mostly in the context of service-level agreements (SLAs)
and similar agreements or expectation-setting fine print. However,

we feel its presence in customer satisfaction (CSAT) scores, third-
party sites like Downdetector, and the overall trend of moving more
of our lives and businesses onto the internet. During the COVID-19
pandemic, many software as a service (SaaS) products experienced
huge uptakes in business and had to dramatically increase their
reliability expectations.

Apart from availability, the commonly understood proxy for relia-
bility, we can also consider features like durability, data residency,
speed or performance under load, consistency, and quality of results
as similar features of reliability that consumers and customers of
internet services implicitly expect.

Once we understand that reliability is actually a highly desired
feature of a product, we might even take the leap to state that it
is the most desired feature of a product. Because if the product is
not available, none of its features can be leveraged. If they cause
frustration due to performance or quality, they won’t be satistying. If
they cannot be used during peak, critical moments, they might not
be worth having at all.

Google Search is famously “always up” to the point that its presence
is felt as ubiquitous. The availability of Google Search is a key differ-
entiating factor when comparing to its competitors, alongside speed,
quality, ease of use, and user experience. This is not an accident,
but a deliberate choice and investment made by Google for over a
decade.

When to Focus on Reliability?

When startups consider their reliability investments, they might see
it as premature. Especially when they consider the full measure
taken by large organizations like Google. This is perfectly valid
because a startup is meant to first build only a minimal viable
product, not a durable, resilient service. However, as soon as you
establish viability, integrate reliability into a product roadmap as
soon as possible, alongside security and other “horizontal” efforts
(internationalization, accessibility, etc).

Costly, custom reliability investments can be premature in these
startups or early-stage businesses, but like security, many of the
offerings in the reliability space are becoming more commoditized
through open source software and third-party offered services and

6 | Chapter2: Why the SRE Approach to Reliability?

https://downdetector.com

tools. Leverage these early to avoid any late attempt at painful inte-
grations into large, complex existing systems, or in response to
reliability issues. Proactive consideration is key when it comes to
reliability and preparedness. Also, it is worth noting that, although
companies like Google build many reliability systems in-house, this
is by no means the most cost-effective method. Leveraging external
services and tools is a well-established best practice. Buying over
building is recommended, especially in fields like security (“never
roll your own cryptography”) and reliability, due to the myriad edge
cases and side effects possible. While the reliability vendor field is
not as mature or large as security’s is today, it is growing and can
make a large difference to a growing company.

>«

McKinsey’s “The three horizons of growth™ model (see Figure 2-1)
can be helpful in planning your investment. It describes three ways
to think about the future of your company:

 Horizon 1 is the areas of effort that are already important today.
o Horizon 2 is your expected new areas of growth.

» Horizon 3 is long-term potential areas of growth, currently in a
state of research and development.

By considering various levels of investment for each horizon, teams
can break up the seemingly infinite amount of work in the reliability
space.

By focusing initially on Horizon 1, we ensure reliability efforts that
maintain continuous innovation in a company’s current business
model and short-term needs. This includes traditional Ops work,
which can be automated through SRE practices. Service monitoring
(service-level objectives [SLOs]), incident response, and continuous
integration/continuous delivery (CI/CD) are all part of this work.

Horizon 2 considers extending the core business into new markets
and targeting new customers. An extension of the existing reliability
functions to support greater breadth of consumers and an expan-
sion of infrastructure across the planet is likely in order. These
present new reliability challenges, such as distributed teams (24-7

1 “Enduring Ideas: The Three Horizons of Growth.” McKinsey Quarterly. December 1,
2009, 37. https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/
our-insights/enduring-ideas-the-three-horizons-of-growth

When to Focus on Reliability? | 7

https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/enduring-ideas-the-three-horizons-of-growth
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/enduring-ideas-the-three-horizons-of-growth

coverage), capacity planning for multiple customer bases, multire-
gion deployments, and less ability overall to fall back on things like
maintenance windows, which are inherently reasonable only for a
localized product, not a global one (it's never “the middle of the
night” everywhere).

Emerging products
« Horizon 3
« 24t0 72 months

Next generation products

* Horizon 2
+12to 36 months

Current products

«Horizon 1
« 0 to 18 months

Figure 2-1. The three horizons of growth. Source: The Alchemy of
Growth, by Mehrdad Baghai, Stephen Coley, and David White (Basic
Books).

Finally, reliability efforts around Horizon 3 include ways the com-
pany might expand its business offerings. New capabilities and
new business models should be achievable to respond to disruptive
opportunities or to counter competitive threats. A business that is
investing in Horizon 3 ensures that their platform and architecture
do not tie them to a single business model, but allow systems of
varying shapes to spawn and morph, all while retaining control and
quality standards. A reliable but rigid system will not suffice here.
Efforts like centralized approval boards and top-down architecture
mandates stifle innovation that is required in Horizon 3.

Therefore, applying SRE to Horizon 1 can have immediate effects on
your business. Placing SRE as a core foundation into Horizon 2 can
ensure its potential success. However, Horizon 3 is not the best place
to start SRE, as efforts there have not yet established viability.

8 | Chapter2: Why the SRE Approach to Reliability?

Why s SRE Happening Now?

Why wasn’t SRE invented and popularized in the 1970s? Why not
in 20102 The complexity of internet-based services has clearly risen
recently, and most notable is the rise of cloud computing. We con-
sider the cloud as the commercial successor to distributed systems,
a deep academic field in computer science. Only in the past 10+
years has this branch of computer science become relevant to indi-
vidual consumers (i.e., Google, Facebook, Apple) and businesses
(Salesforce), or has its principles been used to deliver scalable inter-
net systems effectively and broadly by service providers (Akamai,
Stripe), not to mention cloud providers.

The introduction of “warehouse-scale computing” has brought a
change in how businesses build, deliver, operate, and scale their
services. Clearly, these models are changing how businesses treat
costs, moving from a capital expenditure (CapEx) model of renting
or building space and purchasing computer systems to an opera-
tional expenditure (OpEx) model of renting slices of compute serv-
ices on demand. But beyond that are implications around systems
design, architecture, and coping with changing failure modes.

Traditional infrastructure follows the model of a building or a pyr-
amid: a large strong base, built from the bottom up. If the base
fails, this spells disaster for everything above it. We call this a
component-based reliability model, or a union model, in which all
components in a system are expected to be available for it to work;
this is visualized in Figure 2-2.

(\ (3\

Component reliability: Scalable reliability:
« Solid base (big cold building, heavy « Less-reliable, cost-effective base
iron, redundant disks/net/power) « Software improves availability
« All components must be up as much « Subset of components must be up:
as possible: union model intersectional model
- Total availability as goal « Aggregate availability (99.9%) goal
| - “Scale up”) (| *"Scaleout”)

Figure 2-2. The pyramids of reliability.

Why Is SRE Happening Now? | 9

https://oreil.ly/iawYA

The newer model used in cloud computing is that of a probabilistic-
reliability or intersectional model, in which only a subset must be
available for the system to work, due to architectural choices that
expect failure.

While this concept is not totally novel or hard to understand, it’s
also not obvious to adopters of cloud services, especially when we
present offerings like “lift and shift” that propose equity between
the old and new models. While its entirely possible to run the
old model on a new platform, many considerations must be taken
into account, often bewildering the unprepared. For example, a tra-
ditional IT department might take pride in the uptime of any given
virtual machine (VM), while cloud VMs are expected to be more
ephemeral: being created and destroyed intentionally, often quite
quickly.

Enterprises see success stories in modern companies like Google,
Facebook, and Apple, seeing two major benefits: (1) innovation at
scale and (2) reliable systems at scale. Not only can these companies
build new systems, but they can keep them available, fast, and cor-
rect. This combination is incredibly powerful to a business because
it enables them to respond to market demands rapidly and deliver
wide-reaching solutions to entire markets.

Beyond the Google Halo

Of course, Google was not always huge. In fact, in the early days,
Google managed its fleet in a more traditional manner. What made
Google different was an early shift from vertical scaling to horizon-
tal scaling of its fleet. That is, moving from buying bigger and more
powerful computers to a model of buying more, cheaper computers.
This change was visible by walking the aisles of an early colocation
facility. While many tenants during the first dot-com boom had
slick-looking, expensive hardware in their cages, Google instead had
a vast amount of commodity hardware instead, expecting single
machines to fail at any time, while accounting for this failure in
software.

An important factor in this transition was the deliberate choice not
to scale the operational costs associated with this shift to horizontal.
That is, when scaling horizontally, it didn’t make financial sense to
staff an operational team that scales linearly with the number of
machines under their control.

10 | Chapter2: Why the SRE Approach to Reliability?

This technological and financial choice drove an organizational
one—arguably this is what begat SRE. Google simply made this
choice before most other companies did because it was a very early
web-scale company. Most companies at the time didn’t have the
need to consider the amount of processing or storage that Google
needed to store, index, and serve search results for the entire inter-
net.

We believe that many companies are now facing similar scaling chal-
lenges that Google faced back then. Except now these companies
have the advantage of public cloud instead of having to fill their
own datacenters with copious commodity hardware. We believe that
the fact that Google was able to overcome this change in approach
by evolving the SRE function should mean that SRE can help these
companies overcome the same hurdles.

An important point we learned at Google about staffing levels in
SRE, as compared to traditional IT Ops staffing, is that of sublinear
scaling. By this, we mean that the size of a team operating a system
should not grow at the same rate as the base unit of a system. If
your system doubles in usage, you should not need twice as many
operators. Google chose not to scale by number of machines, but
by other higher-order measures: clusters, services, or platforms. By
focusing on higher abstractions, teams can do more, with less over-
head. These abstractions tend to be built and extended by those who
operated systems modeled on previous abstractions.

Complexity can increase the need for SREs, but your staffing should
grow more slowly than the onboarding of services, a concept
referred to as sublinear scaling. This is actually directly related to
the principle of reducing toil on a team. If a team finds itself doing
repetitive tasks to keep systems healthy, they will inherently have
to do more of these tasks as the systems grow and multiply. The
SRE management must actively prevent and track this. This can
be a slippery slope if teams allow too much toil to go unchecked,
and a downward spiral results in unsustainable teams and increased
outages.

Why Not More Traditional Ops?

By taking advantage of Google’s experience shifting from vertical to
horizontal scaling, and the associated changes that resulted through
the development of SRE, your organization can reap the benefits of

Why Not More Traditional Ops? | 11

https://oreil.ly/oq2uj

scale sooner, while also saving money. Consider the alternative: to
reduce the cost of scaling a team whose responsibilities are increas-
ing with complexity, one might instead look for cheaper labor (e.g.,
“staff augmentation” or “right-shoring”). This is an all-too-common
approach when dealing with scale and complexity. This often results
in the unexpected result of stifling the growth of a system, causing
outages, and actually increasing cost over time. These unexpected
costs may come not only as outages or damage to one’s brand but
also other forms of revenue loss due to reduced speed to execute or
scale, time-to-market for new products, and even eventually being
overtaken by competitors. An organization needs to consider the
whole picture before choosing how to optimize costs on operational
and reliability investments.

Therefore, it's important to staft your SRE team appropriately. You
don’t need to hire all PhDs, but you dont want to skimp, either.
Try not to focus just on the unit cost of operators but, rather, the
overall system cost. To make a comparison, industrial food packag-
ing uses million-dollar machines to pack peaches into cans. You
might wonder, “Why not just hire unskilled workers? That would be
much cheaper than the million-dollar machines.” At first glance, this
sounds cheaper. When you consider the overall system cost of hiring
unskilled workers, however, it’s actually more expensive. Therefore,
the overall system of using the million-dollar machines ends up
being better and cheaper than hiring unskilled workers. SREs and
platform engineers will build your canning robots, if you let them.
Don't force them to pack tins manually just because that’s what you
used to do.

Adopting a high-performance practice like SRE is much harder
without high-performing staff. So are existing teams out of luck?
Not at all. Evolving existing talent is entirely possible and highly
suggested. Teams might be tempted to hire an outside expert or even
an entire team of external folks with SRE experience, but this can be
a mistake. Similarly, expecting to gain (long-term) SRE capabilities
through staff augmentation or offshoring is not likely to result in
the outcomes you expect. SREs tend to have a higher unit cost than
traditional Ops teams, and attempting to undercut or find ways to
gain high value for low cost when it comes to staffing SRE teams
tends to fail. If reliability is valued within your organization, you
should be able to rationalize this cost, and we'll explore ways of
doing this in later sections.

12 | Chapter 2: Why the SRE Approach to Reliability?

Treating operations as a siloed cost center is a common mistake.
You should consider the big picture of revenue and total cost of
ownership, avoid local optimization of costs, and recognize that
simply focusing on short-term cost-cutting can end up costing your
company far more in the long run. For example, by considering
failure scenarios and estimating their impact on revenue or brand,
a team can position themselves as a form of long-term insurance,
complete with a roadmap of mitigations and prevention strategies.
Ideally, this team is more than just “insurance” but actually a driver
of an improved (reliable!) ability to deliver innovation to customers,
too. Consider your Horizon 2 goals and plan your platform for that.
Don't just solve today’s problems; plan for the future.

Consider the benefits of transforming your existing staff. Given the
right incentives, opportunities, and sufficient time, an organization
can transform its norms and gracefully adopt modernized roles and
responsibilities for its people, while also minimizing unnecessary
churn. Because, without a doubt, an organization’s most valuable
asset is always its people. A real understanding of your company’s
core business is not to be undervalued when assessing the skill set of
a staff member.

Why Not More Traditional Ops? | 13

CHAPTER 3
SRE Principles

Before we talk about specific practices, it's important to be clear on
principles, similar to the legal terminology of adherence to the letter
and spirit of the law. Practices themselves aren’t enough; the spirit of
SRE is in the principles. Practices also can’t be exhaustive—they are
proxies for principles and vary over time and from org to org.

Principles are the fundamental truths that form the foundation of
your transformation and help guide decision making. There are
often multiple ways to achieve business objectives, so encouraging
people to live and breathe a core principle is better than setting
exhaustive rules that can be followed in letter but not in spirit. Goo-
gle’s own principles are an example of this; while there are multiple
internal policies regarding how we design and build new services,
the core principle we always try to adhere to is, “Focus on the user
and all else will follow”

Your focus should be on enabling people to demonstrate leadership
at every level rather than being bound by a series of directives
that disempower individuals. In particular, business functions and
managers need to be convinced by the transformation narrative and
must be willing to amend the detailed guidance within the context
of their specialist areas. These influencers are your greatest assets
once they are convinced, and your biggest hurdle if not.

Similar to principles, good policies focus on outcomes and not tasks;
however, they are more prescriptive guidance. They are the vehicle
to harness the bureaucracy of your business instead of fighting
against it. Policies and policy frameworks should empower people to

15

https://oreil.ly/gGjsY
https://oreil.ly/gGjsY
https://oreil.ly/NLDya

operate safely within well-understood guardrails. They should also
contain sensible defaults to nudge behavior in the right direction.

Antipattern: Having a big, up-front plan or design of how things are
going to be implemented.
Inherently, you'll need to spend a lot of time learning, and we
recommend building feedback loops (virtuous cycles) guided
by coherent principles.

We're going to give a quick overview of each principle from the SRE
book and how to translate that to your org. For more details, we
recommend reading the referenced chapters in the Site Reliability
Engineering book.

Embracing Risk (SRE Book Chapter 3)

This is one of the toughest first steps. We often phrase this as a
trade-off between reliability and velocity; however, this isn’t neces-
sarily true. The most helpful way to frame reliability for enterprises
is around exponential cost. Approximately each order of magnitude
level of 9%s (e.g., 99.9 to 99.99) results in an order of magnitude
increase in costs, whether software or hardware or people. Consid-
ering whether this provides good return on investment helps adjust
this to business requirements. Types of failures are also incredibly
important. For example, services that operate 24-7 are much better
suited to SRE (as opposed to internal company systems that run 8
hours, 5 days a week). Also, SRE will be much less useful for services
that are not being actively maintained because, for these services, we
apply less continuous improvement. This is especially true if you're
intentionally not making many releases or writing new code.

Antipattern: 100% reliable services
100% is the wrong target for pretty much everything.

Antipattern: Getting 99.999% in “normal” operations
Monthly metrics or maintenance windows can obscure the
outsized impact of disasters.

16 | Chapter 3: SRE Principles

https://oreil.ly/2dtDT
https://oreil.ly/2dtDT
https://sre.google/sre-book/embracing-risk

Service-Level Objectives (SRE Book Chapter 4)

Start with service-level indicators (SLIs) before you worry about
SLOs and SLAs, and use the data on your systems to craft accurate
SLIs, which can then support your SLO/SLA negotiations. Do not let
your existing business commitments drive your SLO/SLI accuracy
and relevance—you have a choice of using metrics to drive changes
or using changes to drive metrics. Don't sugar coat or cherry pick.
Spend the time to understand what your customers want over using
convenient data points that support your theory. In short, let evi-
dence (SLI/SLO) drive your conclusions (SLAs). Try and focus SRE
on the >99.9% services and let the <99.9% ones be maintained
without SREs (until they need it). We can’t emphasize enough that if
a service doesn’t benefit from SLOs/SLIs, it probably won't benefit from
SRE ceither. Finally, if you can’t make software or process changes in
the event of an SLO violation, there won't be much benefit from SRE
either.

Antipattern: SLO = SLA
Always set your SLOs tighter than your SLAs (e.g., SLO:
99.95%, SLA: 99.9%)

Antipattern: SLI = OKR (objectives and key results)/KPI (key perfor-
mance indicator)
Goodhart’s law applies here: when a measure becomes a target,
it ceases to be a good measure.

Eliminating Toil (SRE Book Chapter 5)

This is probably one of the most important principles since its
closely tied to the generative culture required for SRE to succeed.
Most of the time, enterprise leadership wants to speed things up
and does this by making sure all resources are 100% busy. If you
genuinely want to make sure your teams are doing the right thing
instead of doing the wrong thing fast, then you’ll aim for less than
50% busywork (or as we call it, toil). This is the secret to reliability
(and speed) at scale. Do not equate this with technical debt, i.e.,
something you can store up and pay back later, or tackle this once
a quarter with “toil week” Once toil overwhelms your team, all the
other SRE activities will grind to a halt. You must decide what toil is

Service-Level Objectives (SRE Book Chapter4) | 17

https://sre.google/sre-book/service-level-objectives
https://oreil.ly/ybhwJ
https://sre.google/sre-book/eliminating-toil

for your org, and this must be decided by the SRE practitioners, not
decided from above. The definition of toil also changes over time
(again set by practitioners).

Antipattern: Toil as an optional principle
Ignoring toil reduction will have an outsized impact on your
SRE adoption. If you don’t have time to reduce toil, then you
don’t have time to implement SRE.

Antipattern: Toil is one person’s/one team’s job instead of everyone’s
The people closest to the work need to be the ones fixing it. If
you try to offload this work, it will drive the wrong behaviors.

Antipattern: Toil fixing week
Having a “toil fix week” once a quarter is a common tempta-
tion, but this won't work. Your approach to eliminating toil
needs to be more systematic and constant.

Monitoring Distributed Systems (SRE Book
Chapter 6)

Observability is a specialized discipline in its own right, and it
needs as much care and thought as the rest of your development
practices. Realistically, most enterprises should expect to invest in a
variety of systems that will help your teams do their jobs better. A
“single pane of glass” isn’t going to work well; neither will having
hundreds of overlapping tools. Try to find a balance that works
for you by understanding your unique SRE user journeys and how
they will need to use multiple tools to diagnose and resolve logical
connections between systems. Treat the observability systems as
an internal product deserving of investment and thoughtfulness,
emphasizing usable tools over “perfect” dashboards because systems
are always changing. Keep in mind that over-alerting is as bad as
under-alerting: alerts should not go to a human unless there is an
expectation of an action. Building this alert learning cycle is a com-
mon way to accelerate learning; getting it wrong will rapidly burn
out SREs.

18 | Chapter3:SRE Principles

https://sre.google/sre-book/monitoring-distributed-systems
https://sre.google/sre-book/monitoring-distributed-systems

Antipattern: Alerts to nowhere
An email inbox full of ignored alerts means that no one will
respond to high-severity alerts because of too much noise.

Antipattern: “NoOps” tooling that replaces SREs
Tooling augments SREs but doesn't replace them. Trying to
completely eliminate operations as a discipline isn't possible
and will quickly alienate your SRE teams.

Antipattern: Alerts are causes
You can log many things but always alert on symptoms, not
causes.

The Evolution of Automation at Google (SRE
Book Chapter 7)

Automation is most important when it comes to extremely high
reliability levels (99.99% or over), since at this point, you'll almost
always experience SLO breaches if a human has to intervene. The
balance of intervention as error budgets shrink is increasingly
toward proactive maintenance, with approaches such as graceful
failure, retries, etc. Automation for its own sake is also a common
problem, and taking time to fix bad processes is incredibly impor-
tant but very difficult to embed in team culture. Automation always
needs to be as easy to maintain as other parts of the system.

Antipattern: Defaulting to automation regardless of process quality or
fit
The best code is the code not written! Playbooks are a good
intermediate solution for infrequent processes.

Antipattern: Unnecessary human intervention for the “really impor-
tant” parts
Only involve a human if you genuinely need them to make a
decision and they are empowered to do so.

The Evolution of Automation at Google (SRE Book Chapter7) | 19

https://oreil.ly/Guc4z
https://oreil.ly/Guc4z
https://sre.google/sre-book/automation-at-google
https://sre.google/sre-book/automation-at-google

Release Engineering (SRE Book Chapter 8)

Release engineering overlaps extensively with the continuous inte-
gration/continuous delivery (CI/CD) practices your DevOps teams
are probably already working on. Leverage that work rather than
trying to impose top-down practices. Emphasize outcomes and
flow metrics to align teams, and make sure you have sufficient
investment in a platform team (or teams depending on your scale).
Shift left on release aspects as much as possible—i.e., involve testing
teams earlier in the process and think about testing at all stages.
Don't overload your developers but ensure each part of the release
cycle is treated as valuable and aligned with the others. The release
pipeline is the cause (and therefore the fix) of most SRE problems.
The on-call/maintenance staff need to be tightly aligned.

Antipattern: The DevOps/SRE team does releases for all things
That’s just operations with different job titles.

Antipattern: Release engineering has to introduce CI/CD
Continuous delivery is a discipline in its own right, and your
platform and development teams need to build that foundation
(SRE can help).

Simplicity (SRE Book Chapter 9)

Cognitive load on teams is important, and will change over time
as the remit of teams expands or shrinks. Make sure you allow
for teams to be merged or split to match cognitive load. Essential
complexity means that many things will be hard to understand, so
try to incentivize the reduction in accidental complexity and split
essentially complex things into smaller, easier-to-manage chunks,
e.g., domain-driven design (DDD). Another important concept to
reuse from DevOps is low context versus high context, and SRE
concepts such as playbooks, documentation, Disaster Recovery Test-
ing (DiRT) exercises, and so on are all important parts of making
things low context. Less code and fewer product features likely flies
in the face of most of your product incentives, so make sure you
keep this in check when you consider its reliability impact.

20 | Chapter 3: SRE Principles

https://sre.google/sre-book/release-engineering
https://sre.google/sre-book/simplicity
https://oreil.ly/Mvrab
https://oreil.ly/k3ypY
https://oreil.ly/AADk0
https://oreil.ly/AADk0

Antipattern: Simple means I can understand it
An executive dashboard can’t meaningfully display everything.
Don't try to force it.

Antipattern: Static teams based on annual reviews
Dynamic team formation is needed more than once a year.

How Do You Map These Principles to Your
Existing Organization?

Its highly unlikely that these principles are already fully aligned
to your organization, and that’s okay! Your version of SRE doesn’t
need to exactly match Googles—only the principles do. However,
make sure youre intentionally choosing what to pursue, check for
mismatches between existing principles, and use this time to double
check for vanity metrics (see “success theater” as explained in The
Lean Startup by Eric Ries [Crown Business]). Basing change on
shaky foundations can be hard, so if you arent confident, then
assume you need to check and change things. Try not to hedge
on the principles—if you don’t think something can be done, then
delaying its implementation is better than pretending it's working.

Preventing Org-Destroying Mistakes

Changes can have very different potential impacts. It’s inevitable that
some changes you make when adopting new principles won’t always
work. The impact of the change is usually less important than the
ability to roll it back, meaning that the changes that are hardest to
reverse can often cause the biggest pain. Focus on the changes that
are easier to reverse, so even if these are mistakes they will still give
rise to learning. Consider as an example that you can always have
another “reorg” if the first one doesn’t work, but you can't unfire
people.

Antipattern: Fire all the Ops people who can’t code
Aside from the obvious ethical or legal implications, you sim-
ply can’t reverse this decision.

How Do You Map These Principles to Your Existing Organization? | 21

https://oreil.ly/o0JQ1
https://oreil.ly/o0JQ1

Antipattern: Give root/production access to all developers
Good security and operations practices such as least privilege
apply to automation more than ever.

Antipattern: Picking the most critical system in the business to start
with
You wouldn’t start a marathon training program with a 26-mile
run on day one.

Create a Safe-to-Fail Environment for Your
Adoption Journey

Expect failure, but make sure you're learning and improving from it.
When doing complicated things, make sure you have subject matter
experts involved, but when doing complex things, make sure you
either reward failure or have failure budgets. It’s hard to genuinely
reward failure in most orgs, so a failure budget is sometimes more
appropriate. This means that youre measured on the top n% of
things that go right rather than the mean/median. It’s crucial that
you role-model these behaviors in your leadership team or they will
not be able to embed these across the organization.

Antipattern: We'll support any risks you take as long as they are
successful
Real risk budgets mean accepting some failures.

Beware Diverging Priorities

It's possible you have absolute buy-in from your entire leadership
team. What's more likely, however, is that people will want reliabil-
ity but have valid concerns over change and cost. We recommend
acknowledging the J curve of change, as shown in Figure 3-1—this
means that after an initial set of somewhat easy wins, the curve to
making impactful changes becomes difficult. For example, adapting
your own new automation can feel like a step backward before sig-
nificant gains are realized. Make sure you're setting up for success by
making roofshots versus moonshots. You can still aim for dramatic
improvements, but be conservative at first.

22 | Chapter 3: SRE Principles

https://oreil.ly/pliQM
https://oreil.ly/IjY6k
https://oreil.ly/brTCV

Figure 3-1. The] curve of transformation from the DORA 2018 State
of DevOps Report.

Antipattern: Giving up too soon. For example, trying SRE for six
months, then stopping after no immediate wins
This doesn’t mean that you need to achieve everything up
front, but there has to be a clear narrative around moving in
the right direction after a couple of quarters.

How Do You Get Buy-In to These Principles,
with the Critical Sign-0ff and Backing
You Need?

Make sure you are setting SRE up for success by considering general
enterprise change principles such as the ones mentioned by John
Kotter or B] Fogg. It’s okay if your leadership team doesn't fully
believe in what youre attempting, but you need to make sure, at
minimum, that there is enough urgency to make the change and the
motivation to enact it.

In technology, we often reward fixing problems instead of prevent-
ing them from happening, and the adoption of SRE principles and
practices is liable to fall victim to this mode of operation. Ensure
that your SRE efforts aren’t turned down after several months due

How Do You Get Buy-In to These Principles, with the Critical Sign-0ff and Backing You Need? |
23

https://oreil.ly/9E5wh
https://oreil.ly/9E5wh
https://oreil.ly/GKjZO
https://oreil.ly/GKjZO
https://behaviormodel.org

to “insufficient impact” by making the ongoing value of your SRE
adoption visible. A proven way to do so is to find the right metrics
for your organization to demonstrate this return on investment.
For example, in retail, you might focus on maximizing sales dur-
ing Black Friday, while in healthcare you might focus on continu-
ous compliance and availability, and in finance it might be about
throughput of a trading system or the speed to complete an analysis
pipeline.

Antipattern: If you build SRE, they will come
Practices can’t exist in a vacuum. You have to start doing the
work to be able to make genuine improvements

Antipattern: Steady gradual upward progress
Real-world change has ups and downs. If you're not failing,
then you’re not learning.

24 | Chapter 3: SRE Principles

CHAPTER 4
SRE Practices

Once you've established an SRE team and have a grasp on the
principles, it's time to develop a set of practices. A team’s practices
are made out of what its members can do, what they know, what
tools they have, and what they’re comfortable doing with all these.

What teams do is initially based on their charter and their environ-
ment. Often, it defaults to “everything the dev team is not doing,’
which can be dangerous. By focusing a team on a subset of opera-
tional duties, they can produce a flywheel of capabilities that build
on each other, over time. If theyre just thrown in the deep end
with an undefined scope, toil and frustration will certainly result.
Another common antipattern is to add SRE work onto an already
overburdened team.

What the team knows can be expanded via education, either self-
imposed or centrally organized. Teams should be encouraged to
hold regular peer education sessions—for example, a weekly hour
where any question about production is welcome, from either new
or veteran team members. If a question is answerable by someone, a
teaching session can result. If nobody knows the answer, it can turn
into a collaborative investigation. In our experience, these sessions
are highly valuable for everyone on the team. Junior team members
learn new things, seniors get a chance to spread their knowledge,
and often something new is discovered that nobody knew about.
Similarly, Wheel of Misfortunes, or tabletop exercises, in which
team members meet in an informal setting to discuss their roles
during an emergency and their responses to a particular emergency

25

https://oreil.ly/kuQP4

situation, are extremely helpful for getting people more comfortable
with touching production in a stress-free environment. Reliving a
recent outage is an easy way to start. If one team member can
play the part of the Dungeon Master and present the evidence as it
played out in real life, other team members can talk through what
they would have done and/or directly use tooling to investigate the
system as it was during the event.

Teams should also be encouraged to gain more knowledge about
the systems they are operating from development teams. This is
not only a good exercise to better understand the existing system
but also an opportunity to directly introduce new instrumenta-
tion, discuss and plan changes to the system such as performance
improvements, or address scalability or consistency concerns. These
conversations tend to be highly valuable in developing trust between
teams.

A team’s capabilities can also be expanded through the introduction
of new, third-party tooling, through open source software tools, or
by the teams writing their own tools.

Where to Start?

When adding capabilities to a team, where do you begin? The prob-
lem space of reliability and SRE is vast, and not all capabilities
are appropriate at the same time. We suggest starting with a set of
practices that allow a team to learn what to work on next. Abstractly,
we refer to a model called plan-do-check-act (PDCA). By basing
your next step on how the system currently is working, your next
step will always be relevant. We explain later in this chapter how to
build a platform of these capabilities and where to start. This set of
early capabilities will form a flywheel, so your teams won't have to
guess at what to build or adopt next—it will develop naturally from
their observations of the system.

Where Are You Going?

It's important to set your goals appropriately. Not all systems need
to be “five 9s” and super reliable. We recommend classifying your
services and apps based on their reliability needs and set levels
of investment accordingly. As we mentioned previously, remember
that each nine costs 10 times as much as the previous nine, which

26 | Chapter4: SRE Practices

https://oreil.ly/dnl9R

is to say that 99.99% costs 10 times more than 99.9%. While this
statement is difficult to prove exactly, the principle is true. There-
fore, setting targets blindly or too broadly without consideration can
be expensive and run efforts aground. Forcing excessive reliability
targets onto systems that don’t need them is also a good way to cause
teams to lose top talent. Don't aim for the moon if you just need to
get to low earth orbit.

Make sure your path to success is one of “roofshots,” making incre-
mental progress toward your goals. Don’t expect to achieve it in one
large project or revolution. Incremental improvement is the name of
the game here.

As you spin out new practices within your team, make sure you
record the benefits youre gaining. These gains should be promo-
ted within the team and to stakeholders or other peer teams. Peer
recognition is very important and includes praising members in a
team standup, putting people on stage to retell how they avoided a
catastrophe, publishing near-misses in a newsletter, and drawing out
to the larger organization what might have happened if it weren't for
preventative measures. It's important to celebrate this type of work,
especially in an environment that hasn’t done so in the past. Verbal
and written praise can also be coupled with monetary bonuses or
gifts. Even a small gift can go a long way.

How to Get There

Don't try to have a long-term (e.g., three year) detailed plan. Instead,
focus on knowing the direction of travel. Know your north star, but
generate your next steps as you accomplish your last ones. Once
you've established your direction of travel, you don’t need to “blow
up” your existing teams and processes that don’t align with the new
model. Instead, try to “steer the ship” in the right direction.

We think of this as the Fog of War approach, wherein you know
your destination but are ready for any hiccups along the way.
Short-term planning and agility are essential here, especially early
on, when quick wins and immediately demonstrable impact can
have major positive effects on a fledgling program and the morale
of the team. Give yourself achievable goals that solve today’s prob-
lems, while starting to build generic, reusable capabilities that mul-
tiple teams can use. By building out a platform that delivers these

HowtoGetThere | 27

https://oreil.ly/bGY8v

capabilities, you can scale the impact of your investment. We expand
on this concept of platform and capabilities later in this chapter.

Not every product development team within an organization is
equal in terms of their needs and their current capabilities. As you
introduce SRE to an enterprise, you should strive to be flexible in
your engagement models. By meeting product teams where they
are, you can solve today’s problems while also introducing org-wide
norms and best practices. As an SRE team gets off the ground, they
can feel over-subscribed if many teams are looking for their help.
By developing a clear engagement “menu,” you can avoid one-off
engagements or other unsustainable models. There are several types
of engagement models: embedded, consulting, infrastructure, etc.
These are described well in a blog post by Google’s Customer Relia-
bility Engineering (CRE) team, as well as the model described in
Chapter 32 of the SRE book.

For SRE adoption, reporting structure is important to clarify early
on. We recommend an independent organization, with SRE leaders
having a “seat at the table” with the executive team. By separating
the SRE leadership structure from the product development one, it’s
easier for SRE teams to maintain focus on the core goals of reliabil-
ity, without direct pressure from teams that are more motivated by
velocity and feature delivery. However, take care when doing this
not to build an isolated “Ops” silo because it’s critical that SREs
work closely with other parts of the enterprise. Development teams
should invest in these common SRE teams in such a way that the
value derived from this team is greater than building out the SRE
function from within their own ranks.

What Makes SRE Possible?

What makes SRE possible? Is it just a series of practices like SLOs
and postmortems? Not exactly. Those are actually products of the
culture that made SRE work to begin with. Therefore, a successful
adoption of SRE should not just mimic the practices, but must also
adopt a compatible culture to achieve success.

This culture is rooted in the trust and safety of the team itself.
The team must feel psychologically safe when theyre put in the
high-pressure position of control over major systems. They must be
able to say “no” to their peers and leaders without fear of retribution.
They must feel their time is valued, their opinions heard, and their

28 | Chapter4: SRE Practices

https://oreil.ly/60SOS
https://oreil.ly/60SOS
https://oreil.ly/sCP21

contributions recognized. Most of all, SREs should not be made
to feel “other” or “less” than their counterparts in a development
organization. This is a common pitfall, based on the historically
rejected models of Dev versus Ops.

A well-known example of this is blameless postmortems. By writing
down “what went wrong,” a team is able to collaboratively determine
contributing factors that result in outages, which might be either
technical or procedural. Often, when mistakes are made by humans,
it can be tempting to cite “human error,” but this has been shown
to be somewhat meaningless and not an effective way to improve a
system. Instead, SRE promotes blamelessness. An easy way to think
of this is that the system should make it difficult for a human
to make a mistake. Automation and checks should be in place to
validate operator input, and peer reviews should be encouraged to
promote agreement and collaboration. You know you have blame-
less postmortems when people freely include their names in reports
for situations in which they made mistakes—when they know there
will be no shaming, no demotion, and no negative performance
reviews due to simple mistakes that could happen to anyone. If you
see postmortems referring to “the engineer” or “Person 1,” you may
consider this is a good blameless practice, but this could actually
be due to underlying cultural problems that must be addressed
directly. If names are redacted and replaced with “the engineer” or
“Person 1” on paper, but blame is still cast on the engineer outside
the context of the postmortem, the culture of blame has not been
addressed. You should definitely not automate the process of explic-
itly redacting names from logs or documents—this does not solve
the cultural problem, and it just makes documents harder to read
and understand. Rather than superficially redacting names, address
the culture underneath to move toward blamelessness.

One sign of bad culture is watermelon metrics: green on the outside,
but red inside. These are metrics reflecting the efforts of a team
that are contrived to look good but in reality hide real flaws. These
are similar to Goodhart’s Law, which tells us that any measurement
that becomes a target ceases to be a good measure. For example,
focusing on the number of support tickets or overall mean time to
resolve (MTTR) can often be abused either intentionally or by those
with good intent who don’t realize their mistake. By measuring the
activity of a team, we make that activity the goal, not the customer
outcomes. Instead, a team should be able to define their own success

What Makes SRE Possible? | 29

metrics that are directly representative of things such as customer
happiness, system stability, and development velocity.

SRE should not just be a “20% time” role but, rather, a dedicated title
and position within your organization. There should be a job ladder
with published transfer requirements and promotion expectations.
Leveling and pay should be equitable between teams. A transfer
should not feel any significant effects either way.

A good way to know if an established SRE team is succeeding is by
looking at transfers into and out of SRE. By ensuring that transfers
are routine and free of any sort of bureaucracy or limitations, you'll
quickly learn if people feel “stuck” in SRE or if it is a desirable
role. By observing the rate of volunteer transfers into SRE from
Development, you find out if it'’s working or not.

SREs must know that their time is valued, especially when their
job demands exceed “normal hours” An example of this at Google
is that of time-in-lieu: when an SRE must be available outside of
normal hours (aka “on-call”), they should be compensated. Some
teams at Google allow on-call engineers to choose between mone-
tary compensation or time off, at some percentage of on-call hours,
often with an agreed-to cap. There should not be more demands on
a team than what can be delivered by that team, so it’s important to
ensure the on-call pool is of sufficient size. A common mistake is
to make the on-call pool consist of only SREs. This is an artificial
limitation. On-call pools should be done on an opt-in basis, as
well. As soon as a team feels their time is being abused, it’s a swift
downward spiral.

Another cultural touchpoint is that of planning and goal setting.
Because SREs are closest to the problems of production, they tend
to have a good sense of what’s most important, what's burning,
what’s causing the most pain. By allowing an SRE team to set their
own priorities and roadmap, you empower that team, and they will
be much more effective and happier. Management should follow
the practice of developing an agreed-upon, shared understanding
of expected outcomes. Does the business need to move faster? Do
users need their results faster? A common antipattern of this is Tay-
lorism: the model of leaders independently setting and prioritizing
detailed plans and tasks, then assigning them to the workers.

30 | Chapter4:SRE Practices

https://oreil.ly/9Ukui
https://oreil.ly/9Ukui

Building a Platform of Capabilities

An SRE team can build a platform to deliver capabilities to their
partner teams, ideally scaling their contribution to the entire organi-
zation over time. By introducing resilience mechanisms into shared
services, practices, norms, and code, these teams can develop a
shared platform made of automation, code, shared libraries, pipe-
lines, procedures, norms, documentation, playbooks, and, yes, even
that special undocumented knowledge that lives only in people’s
heads. Instead of each team attempting to create their own best
practices, these can be baked into the platform. Products can be
built from scratch on the platform (so called “digital natives”) or can
be ported onto the platform. As the platform’s capabilities increase
over time, and the team becomes more confident and comfortable
with its operational characteristics, increasingly critical workloads
can be ported over. By adopting this model of encoding capabilities
into a platform, the SRE team can scale their impact by applying
capabilities to many services together. The platform is an internal
product and should be governed like one, treating service teams
as customers, taking feature requests, and tracking defects (see
Figure 4-1).

Service N: high risk, don't
Platform adopt prematurely!
maturity 4
00 ?
Capability 4 L2 /I
| —Ces
Capability 3 ' | 7’
ol /
27 /
Capability 2 ,,/, ’
o'l //' /
Capability 1 I
.: [— ;
Service 1: low risk, early Time
adoption, slow progress Gain confidence
in capabilities

Figure 4-1. A platform of capabilities.

As a team builds a platform, the question arises, “What to build
first?” By adopting low-risk services first, you can minimize that list
to be an MVP, or minimum viable product. Over time, you’ll add
more capabilities. But which ones are next? There are two sources:

Building a Platform of Capabilities | 31

your developers and your environment. That is, build what they ask
for, e.g., “We need a message bus!” and build what you know they’ll
need, e.g., “There has to be a scalable service discovery system or
else this will never work?”

For the environmental capabilities, these often come down to:

o DevOps improvements such as enhancing the software develop-
ment life cycle (SDLC) and getting more code out, faster and
safer

o Reliability engineering improvements: minimizing risk from the
errors that do creep in

For reliability engineering improvements, we recommend develop-
ing “the virtuous cycle” within your teams. If youre not sure what
to improve, you can learn by looking at your outages and doing the
following:

o Institute SLOs.

» Formalize incident response.

o Practice blameless postmortems and reviews.
o Use risk modeling to perform prioritization.

o Burn through your reliability backlog based on error budget or
other risk tolerance methods.

Let this cycle be your flywheel to spin out new capabilities. For
example, if you have an outage in which a deployment introduced
a bug that crashed every server in the fleet, you’ll want to develop a
way to reduce that risk, possibly through something like blast radius
reduction, using canary releases, experiment frameworks, or other
forms of progressive rollouts. Similarly, if you find that a memory
leak is introduced, you might add a new form of load test to the
predeployment pipeline. Each of these is a capability that is added
to your platform, which can provide benefit and protection for
each service running on the platform. One-off fixes become rare as
generic mitigation strategies show their value.

32 | Chapter4:SRE Practices

Leadership

Of course, to build such a platform, you need to devote engineering
hours, which might otherwise be used to develop features. This is
where influence is needed, all the way up the chain. When develop-
ment talent is used for both features and stability, a trade-off must
be made. It's important to make sure that the people making this
trade-off have the big picture in mind and have the appropriate
incentives in place. We are increasingly seeing the role of Chief
Reliability Officer, someone senior within your organization who has
a seat at the table for strategic reliability decisions (this might be a
familiar concept for fans of the book A Seat at the Table by Mark
Schwartz [IT Revolution Press]). While this is a common job role
for successful SRE adoption, it's not a common job title, and it is
frequently an additional hat that an existing executive is wearing.

Knowing If It Is Working

A well-run organization that understands and values reliability will
exhibit a few observable traits. First is the ability to slow or halt
feature delivery in the face of reliability concerns. When velocity
and shipping is the only goal, reliability and other nonfunctional
demands will always suffer. Do reliability efforts always get depriori-
tized by features? Are projects proposed but never finished due to
“not enough time”? An important caveat here is that this should not
be seen as slowing down the code delivery pipeline—you should
keep your foot on the gas.

Another indicator of success is when individual heroism is no
longer being praised, but instead is actively discouraged. When the
success of a system is propped on the shoulders of a small set of
people, teams create an unsustainable culture of heroism that is
bound to collapse. Heroes will be incentivized to keep sole control
of their knowledge and unmotivated to systematically prevent the
need to use that knowledge. This is similar to the character Brent in
The Phoenix Project by Gene Kim, Kevin Behr, and George Spafford
(IT Revolution Press). Not only is it inefficient to have a Brent, it
can also be downright dangerous. A team has to actively discourage
individual heroism while maintaining the team’s responsibility because
heroism can feel like a rational approach in short-term thinking.

Another sign of a well-functioning team is that reliability efforts are
funded before outages, as a part of proactive planning. In poorly

Leadership | 33

https://oreil.ly/269hq
https://oreil.ly/q4z8M

behaved teams, we see that an investment in reliability is used to
treat an outage or series of outages. Although this might be a neces-
sary increase, the investment needs to be maintained over time, not
just treated as a one-off and abandoned or clawed-back “once things
get better”

To illustrate this further, consider a simplification of your organ-
ization’s approach to reliability as two modes: “peacetime” and
“wartime”” Respectively, “things are fine” or “everybody knows it’s
all about to fall apart” By considering these two modes distinctly,
you’re able to make a choice about investment. During wartime, you
spend more time and money on hidden features of your platform,
infrastructure, process, and training. During peacetime, you don’t
abandon that work, but you certainly invest far less.

However, who decides when a company is in wartime? How is that
decision made? How is it communicated throughout the company
in ways that don't cause panic or attrition? One method is to use
priority codes, such as: Code Yellow or Code Red. These are two
organizational practices that aid teams in prioritization of work.
Code Yellow implies a technical problem that will become a business
emergency within a quarter. Code Red implies the same within days,
or it is used for an already-present threat. These codes should have
well-defined criteria that must be understood and agreed to by all
your leadership team. Their declaration must be approved by leader-
ship for the intended effect to take place. The outcome of such codes
should result in changing of team priorities, potentially the cessation
of existing work (as in the case of a Code Red), the approval of
large expenditures, and the ability to pull other teams in to help
directly. Priority codes are expensive operations for an enterprise, so
you should make sure there are explicit outcomes. These should be
defined from the outset as exit criteria and clearly articulated upon
completion. Without this, teams will experience signal fatigue and
no longer respond appropriately.

Choosing to Invest in Reliability

What other less-dramatic changes might be under the purview
of such a reliability leader? These would be policy and spending.
Setting organization-wide policy tends to be inconsistent at best
when driven from the bottom-up. It's far more effective to have a
leadership role in place to vet, dedupe, approve, and disseminate
these policies as they’re proposed by teams. Similarly, spending

34 | Chapter4:SRE Practices

company funds on staffing, hardware, software, travel, and services
is often done in a hierarchical manner.

One has to consider the value of reliability within the organization
before building out a structure as mentioned earlier. For this to
make sense, the organization must consider reliability not as a cost
center but as an investment and even as a product differentiator. The
case to be made is that reliability is the hidden, most important,
product feature. A product that is not available for use, too slow, or
riddled with errors is far less beneficial to customers, regardless of
its feature set. Setting this direction must be done at the executive
level to set a consistent tone, especially if this is a new orientation.

One simple argument for this is that reliability can be a proxy for
concepts that are better understood, like code quality. If a system
introduces user-visible failures, the application of reliability practi-
ces such as gradual change can make the system appear to have
fewer errors to your end customers, before directly addressing the
code quality issues. For example, by rolling out a broken change
to 1% of customers, 99% of those customers don’t experience the
problem. This makes the system appear 100 times better than it
actually is and reduces support costs and reputational damage.

Making Decisions

By setting up reliability as an investment into a stronger product,
youre able to make longer-term plans that have far greater impact.
Traditional models treat IT as a cost center, focusing entirely on
reducing that cost over time. At the end of the day, it doesn’t
matter that the service is cheap if it's not up. You can still apply
cost reduction, but you should consider it after you've achieved
reliability goals. If you're finding that the cost of maintaining your
stated reliability goals is too high, you can explicitly redefine those
goals—i.e., “drop a 9”—and evaluate the trade-offs that result.

To achieve all these goals, youll likely need to persuade some
governing board, group of decision makers, or executives. You'll
need their buy-in to staff and maintain a team over time, provi-
sion resources, and train and further develop team members. This
should be seen as a long-term investment and explicitly funded
accordingly, not as a hidden line-item in some other budget.

Leadership | 35

Antipattern: Ignoring Ulysses

When it comes to reliability, a common antipattern is to let
outages or other “bad news” affect your planning cycle, even
when theyre expected. Often, it’s tempting for leadership to
feel the need to “do something” in the face of bad news, and
“sticking to the plan” often doesn’t feel impactful. However,
given a plan that expects outages to happen, unless a significant
change in the understanding of a system occurs, “sticking to
the plan” is exactly the right thing to do. The term Ulysses
pact can be a useful illustration here. This is where a leader
(Odysseus) tells his team (his sailors) to stick to the plan (sail
past the Sirens as he is tied to the mast). When his team
sticks to the plan (despite his thrashing and begging to stop),
he congratulates them. They didn't get tempted by short-term
thinking. Their plan considered the long-term impact, and
they had time to make a clear plan before the chaos started.

By allowing a team to make in-the-moment decisions, you’re
often choosing to ignore a good plan and make emotional
or ego-driven choices instead. A classic example of this is a
leader “walking into an outage” and taking over command
without having full context, and despite a capable team already
in control. This is often the outcome of a company’s culture.
A culture of HiPPOs (decisions based on the Highest Paid
Person’s Opinion) can have a drastically bad effect on incident
management and reliability in general. Instead, listen to Odys-
seus, stick to the plan, and don’t abandon ship. This applies
not only to incident response, but also things like error budget
exhaustion or tracking SLOs in the face of “really bad” inci-
dents. If your plan is to halt a feature release in the face of
error budget exhaustion, but you make an exception for “this
important feature” every time, your leadership will be severely
undercut. An effective practice to improve this is the introduc-
tion of “silver bullets” in which a leader is granted three silver
bullets to be used sparingly as an override to the expected plan.
By introducing this artificial scarcity, leaders are required to
make explicit trade-offs. Similarly, if a single bad event wipes
out an SLO, don't ignore it. Gather the team to analyze how
this changes your collective understanding of the system. Was
this type of failure never considered before? Was the response
to an outage insufficient?

36

Chapter 4: SRE Practices

Antipattern: Both at Once

Another antipattern is that of trying to mix old and new mod-
els without modification. This pulls teams in strange directions
and should be avoided. For example, in the case of ITIL prob-
lem management, a central team is often expected to drive
down causes and resolution times for all problems through
a problem manager. In comparison, SRE expects embedded
engineers to drive their own problem resolution through post-
mortems and reviews. While the outcomes are still aligned
(fewer, shorter outages), the methods and personas differ
greatly. By trying to do both at the same time, you end up with
confusion, and the intended outcomes from both approaches
conflict with each other and suffer.

We call these bad mixtures of SRE and non-SRE principles
“toxic combinations,” similar to the medical term referring to
bad mixtures of medicines. Each on its own can be beneficial,
but the combination of the two together causes an unintended
bad consequence. Often, we find good intent behind using
both, often due to trying to keep existing staff involved, or in
an attempt for continuity in reporting. However, the appeal
of this is far outweighed by the worsened outcomes: longer
outages, more toil, and reduced reliability.

Staffing and Retention

Staffing and role definition can also present antipatterns. When
building out an SRE team, it can be tempting to hire an SRE from
the outside to impose order on the existing team. This can actually
result in wasted effort, often with the hired SRE failing to under-
stand the nuances of the team or technology in place already and
falling back to applying previously used methods, without knowing
if they're in fact reasonable in the new job.

We suggest growing existing teams into SRE teams instead. Simply
renaming them isn’t effective, but providing a structured learning
path and an environment to grow and thrive can certainly work.
There are cases where the transition might fail, of course. If individ-
uals are not set up to succeed and instead are expected to immedi-
ately turn into a senior SRE just by “reading the book,” they can
become frustrated and look for employment elsewhere. Similarly,
some engineers don’t see the reason for change, aren’t incentivized,

Staffing and Retention | 37

or otherwise are highly resistant to adopting a new role. By provid-
ing paid education, time and room to learn, and the context to
help your team understand why the change is needed, you can
successfully transition a team into the SRE role. This takes time,
effort, and patience. In cases where it doesn’t stick, it’s important to
conduct an exit interview, specifically to address the transition and
what did or didn't work for an individual. You may uncover flaws
in your plans or discover that it isn't being executed in the way you
intended. Finally, as you ask teams to do more complex work that
has higher impact, note that this is, literally, higher-value work and
the team should be compensated for it. That is, as your team starts
acting like SREs, you should pay them like SREs, or else they’ll move
to somewhere that does. If you pay teams to learn high-value skills
and they leave to use those skills elsewhere, you have only yourself
to blame.

Upskilling

When growing and transitioning existing staff into SREs, it is crit-
ical to build an upskilling plan. This includes both the what and
the how—that is, what skills are needed in the role and how you’ll
go about enabling staff to acquire those skills. Tools like skills gap
analyses and surveys are intrinsically useful here to check assump-
tions about the foundational skills that are required for the job.
These skills, often not talked about specifically in SRE literature,
are nevertheless essential to allow SREs to scale their contributions
organization-wide. For example, it is not unheard of for traditional
operations teams to be unfamiliar with software engineering funda-
mentals such as version control, unit testing, and software design
patterns. Ensuring that these baselines are a part of your upskilling
plan and that they are tailored to each learner profile is crucial, not
just to establish a critical mass of skill on the team but to provide a
smooth on-ramp for individuals into the new expectations of their
role (and thus help reduce team churn).

38 | Chapter4:SRE Practices

CHAPTER 5
Actively Nurturing Success

Once you've decided that SRE is worth pursuing for your organiza-
tion and resolved to invest in it, it’s important to ensure that your
investment is a successful one. It’s always hard to introduce change
into a system, but it's even harder to make that change stick. Here
are some tips on how to keep SRE working in your organization.

Think Big, Act Small

The statement, “If you cant measure it, you can’t manage it,” is
frequently associated with Edwards Deming. The full quote, how-
ever, is “It is wrong to suppose that if you can’t measure it, you
can’'t manage it—a costly myth” SRE, at its core, is a metrics-driven
methodology. No amount of SLOs or SLIs, however, will help you
understand whether your SRE adoption is both working and aligned
with your enterprise strategy. You'll have to find this out through
continuous experimentation and learning.

In previous chapters we've asked you to “think big,” but when it
comes to nurturing success, you should “act small” Any kind of
large-scale change is achieved iteratively and incrementally, and SRE
ism’t immune from these challenges. There’s also an obvious caveat
to this—if you have too short of a timeline, you won't be able to
make meaningful change, so be prepared to find the balance.

39

https://oreil.ly/uq5n1

Google internally uses shared objectives and key results (OKRs) to
align teams and set goals when it's not always clear how they’ll
be achieved. Your organization might have its own processes to
do this, but they must be extended to include explicit iterations
and periodic reviews of SRE team metrics (toil, alerting, Software
Engineering impact, capacity plans, etc.). The nonlinear nature of
adoption means your progress will always include setbacks, so this
should also be treated as a normal part of the process.

Culture Eats Strategy for Breakfast

One of the assumptions Google makes, which is a key unwritten
part of the SRE story, is the underlying generative Google culture.
Google also shared the research we conducted to describe these
attributes. As it turns out, who is on a team matters less than how
the team members interact, structure their work, and view their
contributions.

We learned that there are five key dynamics that set successful teams
apart from other teams at Google:

Psychological safety
Can we take risks on this team without feeling insecure or
embarrassed?

Dependability
Can we count on each other to do high-quality work on time?

Structure and clarity
Are goals, roles, and execution plans on our team clear?

Meaning of work
Are we working on something that is personally important for
each of us?

Impact of work
Do we fundamentally believe that the work we're doing matters?

Many of the typical concerns we see with SRE adoption are things
such as cost implications, specialized industry concerns, technical
debt, etc. However, the best thing about this discovery is that, like
all good things, these five dynamics are essentially free! Regardless
of your industry or situation, consider targeting these items as
a priority. The high-performing teams at Google relied on these

40 | Chapter5: Actively Nurturing Success

https://oreil.ly/ttBXP
https://oreil.ly/7dWRF

cultural norms to make SRE succeed, effectively making SRE an
emergent behavior from this cultural base.

Avoiding Culture Won't Help; Neither Will
Waiting for It

It’s usually frustrating to hear us talk about culture being critical to
successful SRE adoption, with the implication that you should wait
for your culture to get to a certain point before you can adopt SRE.
To paraphrase a popular proverb, the best time to start changing
your culture might have been 20 years ago, but the second best time
is now. There are also substantial repercussions aside from reliabil-
ity concerns to not making your culture responsive to reliability

feedback.

What Does Nurturing SRE Mean?

To nurture and grow SRE, there are some key activities to consider.

1. Sublinear Scaling

We've already mentioned this earlier, but it's important to clarify
that this isn’t about “doing more with less” but, rather, using auto-
mation and continuous improvement culture to change the way we
approach reliability problems. SRE is explicitly designed not to be
scalable through headcount, so resist the temptation to add more
people to existing steps in your software assembly line, and use SREs
to automate or eliminate those steps instead.

2. Building and Retaining Sustainable, Happy Teams

While the tech industry has moved in the direction of project to
product approaches, it’s still very common to see individuals treated
as fungible resources moved between activities on a whim. This
directly conflicts with our cultural advice. Don’t expect to do this
and succeed with SRE.

3. Acknowledging That Sre Is Not Static—It’s
Inherently a Dynamic Role, and Grows over Time

Part of the evolutionary process of reducing toil and implementing
automation means that SRE will evolve within your organization.

Avoiding Culture Won't Help; Neither Will Waiting forIt | 41

https://oreil.ly/YPSxc
https://oreil.ly/TZ1Og
https://www.usenix.org/conference/srecon19americas/presentation/rath
https://oreil.ly/OgUhM
https://oreil.ly/BYsBX
https://oreil.ly/BYsBX

You can still budget and plan for this, but aim for outcomes rather
than specific tasks and fixed team sizes. This will feel strange at first
because it conflicts with a lot of top-down planning activities. When
SREs dynamically re-team, however, it’s usually a sign that you are
succeeding.

4. Assessing Your Reliability Mindset Level and Target
Within Your Organization

It takes a longer time than youd expect to attain a high level of
SRE adoption. Inside Google, we think getting to a strategic level
of reliability for a product can be a 3- to 5-year journey. Given the
constant effort to maintain this level, it’s also common to revert to
old habits. Therefore, take the time and energy to assess and adjust
to this new mindset on a continual basis.

SRE Care and Feeding

Once SRE has been started, you’ll want to care for and feed your
fledgling organization. As your SRE practice develops, you'll need to
consider the following.

Growing a Foothold Team into a Larger Org

Don't start with the biggest problem you have or the giant core
monolith of your enterprise that everyone is afraid to touch. You’ll
need some level of quick wins to get started and build your team,
principles, and practices in a supportive environment. Conversely,
don't start with a toy service. SRE is only valuable where there is
an important reliability need. Once you have a foothold, you need
to continuously learn to expand safely. It might seem attractive to
take on a large number of less important services, but resist this
temptation. SRE value is in the high reliability services. Other serv-
ices should follow the “you build it, you run it” model.

SRE org structure: Separate SRE Org Versus
Embedded Teams

Google has always had a dedicated SRE org since its inception, and
we think there are considerable benefits to doing so—such as relia-
bility culture, release prioritization, hiring, and so on. Often, we are
asked to compare this with the DevOps approach of “breaking down

42 | Chapter 5: Actively Nurturing Success

https://www.oreilly.com/library/view/dynamic-reteaming-2nd/9781492061281
https://oreil.ly/UDKNV

silos” It’s critical to understand that the separate SRE management
chain is never supposed to be a silo. SREs have a multitude of ways
of working with development teams, from embedded individuals
to light-touch consultancy. Having said this, you might still have
success deploying SRE without a dedicated organization structure,
but be prepared to need extensive senior leadership support.

Promotion, Training, and Compensation

SREs are developers and should expect compensation and incentives
at least equal to the other developers in your organization. Promo-
tion rates are also a great indicator to see if there is parity with other
teams. You should regularly compare both pay and promotion rates
to close any gaps. Guard against any assumption that this pay scale
allows you to mistreat SREs (e.g., with longer hours). Also note that
SRE expectations will be higher about being able to do meaningful
and impactful work.

Going on-call is a scary and draining activity that needs careful
preparation and training for. It’s also critical to compensate teams
for on-call in a meaningful way. If you have restrictions on direct
compensation, then get creative with indirect methods (e.g., time in
lieu).

Communication and Community Building

SRE enablement covers a wide variety of activities such as formal
training courses, tech talks, reading groups, etc. Much of this will
be indirect work, done by giving time and resources to experiment
(e.g., 20% work). Autonomy and empowerment are key to building
communities, and this needs to be done through active (as opposed
to passive) leadership. This means setting out a clear leadership
vision or north star, and visibly role modeling empowerment within
the organization. It’s easy to underestimate the amount of communi-
cation involved in any kind of transformation, and SREs are also
exceptionally good at detecting inauthentic messaging.

Gauging When Your SRE Adoption Is Effective

Its common to acquire a large number of SRE artifacts in your
adoption journey such as SLOs, SLIs, error budgets, dashboards, etc.
These are all proxy metrics for your organization, but they won't
always give you a holistic picture of how reliability is changing.

SRE Care and Feeding | 43

For this, you might need to consider some more unconventional
perspectives. If things are genuinely going well, the virtuous cycle
will start to feel a lot calmer over time. Instead of just firefighting
from incident to incident, there will be a sense of proactive fire
prevention. This can be unsettling, especially if your organization
has been used to demonstrating its value through busyness. Resist
the temptation at this point in making tactical optimizations to
regain that busy feeling. Your SREs will naturally start improving
SLOs and error budgets as they experience failures and build their
capabilities.

Steering the Ship

Getting to a more proactive approach frees you up to spend more
time on vision. You'll start to get a better idea of exactly what
reliability levels different services in your organization actually
need. Decide where to optimize by using this data and setting new
expected outcomes. Perhaps some of your internal systems were
marked as business-critical, but your SREs now know they only
need a 99.9% SLO. Other systems might now need greater reliability
levels, and a surefire way to know if you are successful is when you
start to see interest from those other teams in getting the benefits of
SRE.

44 | Chapter 5: Actively Nurturing Success

CHAPTER 6
Not Just Google

To round out the perspectives presented in this report, we spoke
with three SRE leaders in different industries who have all adopted
SRE in various forms over the past several years. Each has a unique
story about how that adoption worked and what they might have
done differently, in addition to insights into what makes SRE work
in their industry or organization.

Healthcare // Joseph

Joseph Bironas has been leading SRE adoption in several healthcare
organizations since his time as a Google SRE leader. As such, he
was able to provide an industry-wide view of how implementing
SRE in this space differs from other tech and startup cultures. Due
to the nature of its life-critical workflows, reliability is often top-of-
mind. However, the healthcare industry faces specific challenges
that span organizational models, culture, budgeting, and regulatory
requirements.

After working with a company that focused on very tight mar-
gins in areas like medical device manufacturing, as well as FDA-
regulated fields, Joseph observed that reliability is understood as
a requirement, but that the cost-benefit ratio of SRE is far from
well-understood in the industry. As a result, SRE and infrastructure
teams can find themselves as “catch-all engineering” being pulled
into an IT cost center, with their scope increased dramatically.

45

What’s wrong with an SRE team being managed under an IT cost
center, you might ask? When enterprises are used to managing
through broad IT frameworks like ITIL, it’s hard to make value
judgments about SRE, which is a mere subset of ITIL—which also
handles things like hardware procurement that SRE has no opinion
on. More to the point, a CIO who manages all of corporate and
production IT is not in the best position to make judgments on
software systems reliability. Instead, rolling up to a software-focused
leader—e.g., an SVP of Engineering or perhaps a CTO—makes
more sense.

Organizations in this field often face the steep curve of hoping to
adopt SRE when they haven't yet adopted DevOps practices. For
example, they were releasing software once a month, with very little
CI/CD automation due to the necessary complexity around regula-
tions and organization-wide compliance controls. Many healthcare
organizations simply don’t want to deploy quickly: for some custom-
ers, deploying too fast implies inadequate testing or insufficient
safety.

The willingness to implement changes—such as a meaningful pivot
to SRE—varies widely across the industry, perhaps due to differing
leadership priorities and styles. Joseph described one scenario in
which a team was able to send designers out into the field to
gather requirements, build new workflows, and revolutionize care
through a better product. In another scenario, a different team was
only incentivized to be better than the incumbents, which didn't
require the same level of investment. In a third scenario, a team was
plagued by inertia, waiting for a top-down mandate before making
any change or investment. In Joseph's experience, more progressive
leadership tends to be more sensitive to customer demands for
reliability.

In contrast to startup culture, change is very slow for some of these
teams. One particular team questioned if they could accomplish
“anything” (e.g., adopting SRE) in 18 months—an eternity for a
startup. When considering significant changes in organizations with
this pace, you have to have models to help understand planned
returns on investment. Knowing about the] curve (see roofshots
versus moonshots) is important here to avoid abandoning an effort
in its trough, before the real return. Joseph recommended checking
in quarterly with teams to keep a steady cadence on progress. He
recommends starting the transition to SRE with incident response

46 | Chapter 6: Not Just Google

https://oreil.ly/tZNSp
https://oreil.ly/tZNSp

and building a cycle of continuous learning with incident reviews
(say, for six months) before focusing on SLOs. To make a “real
investment” that can’t just fail silently, you might seek executive
sponsorship, implement top-level OKRs, or focus on whatever
makes an effort “real” in your organization. It’s also critical to not
just learn from this cycle, but to put what you learn into action.

Another common mistake in the healthcare industry is to overlook
“the software side of SRE” when a team is used to focusing on
traditional Ops work: “It’s difficult to imagine that you can make
XX% of your IT spend just go away via software.” This core value of
SRE is often a foreign concept to leaders, and might even be deliber-
ately resisted or even undermined by some entrenched sysadmins
and operators. Ignoring this aspect can make SRE seem highly inef-
fective. Software engineering is also difficult and expensive. Even if
youre buying commercial SRE-adjacent tooling (which is imperfect
despite the huge number of contributors over many years), you can’t
escape the integration work, which is largely a software engineering
effort.

Budgeting for reliability can also be problematic. Joseph points out
that “the industry doesn’'t have ads-revenue curves [that Google had
when SRE was built]” This impacts their ability to specialize and
invest like Google did and leads them to depend more on commer-
cial solutions. Business budgeting and planning are often still in
waterfall mode, which can be a challenge for SRE work—the time
required to explore, understand, and design new solutions isn't well
suited to waterfall-style work.

In terms of takeaways, he’s seen that it can apply across all indus-
tries. Joseph shared a story illustrating how sometimes even an
imperfect effort can be a valuable starting point. In the case of
one company he worked with, leadership wanted a dramatically
simple version of error budgets. Instead of choosing SLOs that were
appropriate for their critical user journey (CUJ), they declared a
single SLO (99.95% available) for everything. This target was simple
to understand, but it crippled the concept of SLOs for the whole
engineering team. Stateful and stateless applications, batch and real-
time, all had the same SLO, which ultimately wasn’t useful and
undermined confidence in the technique. This also resulted in error
budgets that didn’t make any sense, so those were similarly crippled,
as was any process that attempted to use those error budgets.

Healthcare // Joseph | 47

At the end of the day, though, there was value in the fact that people
started measuring things they were not measuring before. SLOs gave
the teams a way to ask each other a question they were not asking
before. This all goes to show that it's important to talk to each other
and help each other make good decisions based on the data in front
of us.

Retail // Kip and Randy

Commodore “Kip” Primous and Randall Lee from The Home Depot
(THD) provided insight about how a large retailer adopted SRE,
their successes, and some of their current challenges. THD was
an early big retail customer with Google Cloud Platform (GCP),
and part of their cloud adoption was to adopt SRE, following the
principles detailed in the recently published SRE book. Six years
later, what they expected to build and what exists now are entirely
different.

Kip started out as the Reliability Engineering (RE) manager with the
“dot-com” business unit, working on “the Browse Stack" for THD’s
ecommerce website. Randy started at THD before Kip and shared a
joint goal for SRE: to improve resilience through a better platform.
They initially considered building their own cloud and datacenters,
but then they evaluated the various cloud service providers and
landed on GCP. As they moved to the cloud, the only way to succeed
was simultaneously changing how they worked, via something like
SRE or “DevOps 2.0”

Originally, THD’s goal was to move away from their huge mon-
olithic commerce service. Project Aurora was funded and champ-
ioned by their VP, who sought to achieve economies of scale,
reduce the size of the operational team, and change the team from
hundreds of contractors to significantly fewer full-time associates.
There was also a general intent to improve reliability and reduce
the reliance on other teams (that might not be well-aligned) within
the organization. The dot-com team hoped to operate at “internet
speed”

Alignment was important. Before moving to Cloud, every deploy-
ment was “like launching the space shuttle: lots of coordination
based on years of hard work” The team felt that the current model
of DevOps had run its course within THD/dot-com. By introducing
RE, the team was able to follow a new pattern of distinct work on

48 | Chapter 6: NotJust Google

a new platform and with a new remit and felt empowered to work
through anything in the stack that related to reliability. They hired a
lot of cloud native engineers and automated as much as they could.
They were able to skip past the boundaries that were limiting the
existing DevOps teams.

From 2015 to 2017, SRE was able to move swiftly and independ-
ently because they were working on new cloud infrastructure, with
different and modern tools and hardware. Then, in 2018, the enter-
prise teams caught up—SRE was no longer the only team working
on GCP. Much to everyone’s relief, the two sides were able to con-
verge as the centralized enterprise team updated their traditional
models—for example, acknowledging that they shouldn't keep track
of patches on individual machines in the new world of ephemeral
VMs. By bringing the teams together through a series of construc-
tive conversations, The dot-com RE team was able to work with
the newly formed centralized enterprise team and was able to help
establish more enterprise-friendly processes and better adherence to
company security guidelines. In addition, they were able to offload
much of the broader GCP platform management (billing, permis-
sions, quotas, etc.) from the RE team to the enterprise team.

As THD underwent their SRE journey, Kip and Randy observed
several patterns and lessons that will likely translate to other indus-
tries. The process of getting other teams to adopt SRE concepts took
years and happened in cycles: there would be a push to improve
compliance automation, followed by cost improvements, then access
control, then cyber security. Each interaction required a lot of dis-
cussion and education. During quiet periods of few outages or little
downtime, a sense of urgency might instead come from outside
events. The Equifax outage or the Akamai or Facebook DNS prob-
lems might cause everyone to scramble and kick off another cycle of
reliability improvement.

Executive sponsorship was critical for the success of SRE adoption
within THD. After the initial success of the dot-com migration
to the cloud by using the SRE model, the SRE role became synon-
ymous with high performance within the company. Many other
teams wanted to replicate the model, and some were forced to
implement SRE regardless of defined SLO requirements. However,
not all were as fortunate to start green-field and cloud native like
the dot-com team did. This led teams to struggle to recognize the
value the RE team brought to the table, and they sometimes mistook

Retail //KipandRandy | 49

expectations of roles and responsibilities. This kind of ambiguity
can cause problems when a team interacts with an “unofficial” RE
in one part of the organization who might not work at the same
level or use the same principles as the original team—for example,
someone who “just pushes buttons" with no real plan to automate
toil. Such an experience leaves a bad taste in the mouth of the team,
who then aren’t interested in working with other RE teams in the
future.

Kip also warns that without a new SRE-inspired effort every few
years, reliability standards devolve. REs broke down walls, but those
walls are being re-erected. Teams think, “Reliability isn’t my prob-
lem, it’s the REs” problem!”, which is the wrong message to send.
Randy adds that a well-functioning RE team can backslide without
constant reinforcement and education of RE practices and princi-

ples, in addition to well-defined roles and responsibilities.

Currently, THD is in the mode of “doubling down” on RE, which
can actually be an antipattern if changes aren’t held to SRE princi-
ples. SRE isn’'t a panacea that you can apply to every problem, but it’s
hard for a team to see success with SRE and not want to then apply
SRE everywhere. Recently, Kip was told to run RE in distribution
centers and on vendor-supported physical hardware, which isn't a
natural fit for SRE. While there are always opportunities to improve
the reliability of these systems, it's more challenging to apply many
of the RE practices in non-cloud-native environments. Perhaps a
better path forward for some areas of the business is not SRE, but
practices like value stream mapping or Lean. To avoid these types of
dynamics, it might make more sense to apply SRE as a “pull” model,
as opposed to a “push” model: don’t force SRE on teams, just offer it
as a service and let them come to you.

Kip and Randy’s biggest piece of advice is to focus on executive
education and to recognize the value of a champion. If you don't
have top-down support, it’s difficult to fund any meaningful change.
Trying to obtain funding through product dev teams results in a
dynamic where those teams “never want to pay the tax” Whenever
they do pay the tax, they only want SREs to work directly on their
products and toward their product goals.

At THD, there was originally a senior leader who championed the
creation and growth of the RE team for dot-com and beyond. THD
is now in a strange position of having many RE teams working on

50 | Chapter 6: Not Just Google

various projects, with varying degrees of the ability to apply SRE
principles. Randy and Kip expect that having a more senior player
would improve things at THD. A VP of Reliability who owned all
the RE roles would provide economies of scale. Without a central
RE organization, the SRE role can morph to the point where SREs
from different orgs are doing completely different things and fol-
lowing different standards and principles.

Retail //Kipand Randy | 51

Conclusion

We hope this provides some insight into how your enterprise might
adopt SRE, and where the challenges may lie. We think your chances
of success are higher if you clearly define your SRE principles, map
those to practices and capabilities, and prioritize growth and nurtur-
ing of those within your team. We also showed some examples of
teams that have gone through the process of spinning up an SRE
practice within an enterprise, and the specific challenges they faced
and overcame.

We think this report will help your adoption of SRE and lead to a
more reliable technology experience for everyone. And we hope that
through this adoption operations teams can become more sustaina-
ble, services can be more scalable, and development velocity can
increase.

“May the queries flow and the pager be silent”

53

About the Authors

James Brookbank is a cloud solutions architect at Google. Solution
architects help make cloud easier for Google’s customers by solv-
ing complex technical problems and providing expert architectural
guidance. Before joining Google, James worked at a number of large
enterprises with a focus on IT infrastructure and financial services.

Steve McGhee is a reliability advocate, helping teams understand
how best to build and operate world-class, reliable services. Before
that, he spent more than 10 years as an SRE within Google, learn-
ing how to scale global systems in Search, YouTube, Android, and
Cloud. He managed multiple engineering teams in California, Japan,
and the UK. Steve also spent some time with a California-based
enterprise to help them transition onto the Cloud.

	Cover
	Google Cloud
	Copyright
	Table of Contents
	Preface
	Chapter 1. Getting Started with Enterprise SRE
	Evolution Is Better Than Revolution
	SRE Practices Can Coexist with the ITIL Framework
	DevOps/Agile/Lean
	Start Where You Are
	Outline Your Expectations and Vision
	SRE Starts with People
	Embrace Your Uniqueness

	Chapter 2. Why the SRE Approach to Reliability?
	Setting Reliability as a Key Product Differentiator
	When to Focus on Reliability?
	Why Is SRE Happening Now?
	Beyond the Google Halo
	Why Not More Traditional Ops?

	Chapter 3. SRE Principles
	Embracing Risk (SRE Book Chapter 3)
	Service-Level Objectives (SRE Book Chapter 4)
	Eliminating Toil (SRE Book Chapter 5)
	Monitoring Distributed Systems (SRE Book Chapter 6)
	The Evolution of Automation at Google (SRE Book Chapter 7)
	Release Engineering (SRE Book Chapter 8)
	Simplicity (SRE Book Chapter 9)
	How Do You Map These Principles to Your Existing Organization?
	Preventing Org-Destroying Mistakes
	Create a Safe-to-Fail Environment for Your Adoption Journey
	Beware Diverging Priorities
	How Do You Get Buy-In to These Principles, with the Critical Sign-Off and Backing You Need?

	Chapter 4. SRE Practices
	Where to Start?
	Where Are You Going?
	How to Get There
	What Makes SRE Possible?
	Building a Platform of Capabilities
	Leadership
	Knowing If It Is Working
	Choosing to Invest in Reliability
	Making Decisions

	Staffing and Retention
	Upskilling

	Chapter 5. Actively Nurturing Success
	Think Big, Act Small
	Culture Eats Strategy for Breakfast
	Avoiding Culture Won’t Help; Neither Will Waiting for It
	What Does Nurturing SRE Mean?
	1. Sublinear Scaling
	2. Building and Retaining Sustainable, Happy Teams
	3. Acknowledging That Sre Is Not Static—It’s Inherently a Dynamic Role, and Grows over Time
	4. Assessing Your Reliability Mindset Level and Target Within Your Organization

	SRE Care and Feeding
	Growing a Foothold Team into a Larger Org
	SRE org structure: Separate SRE Org Versus Embedded Teams
	Promotion, Training, and Compensation
	Communication and Community Building
	Gauging When Your SRE Adoption Is Effective
	Steering the Ship

	Chapter 6. Not Just Google
	Healthcare // Joseph
	Retail // Kip and Randy

	Conclusion
	About the Authors

