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Abstract—The availability of medical imaging data from clin-
ical archives, research literature, and clinical manuals, coupled
with recent advances in computer vision offer the opportunity
for image-based diagnosis, teaching, and biomedical research.
However, the content and semantics of an image can vary
depending on its modality and as such the identification of image
modality is an important preliminary step. The key challenge for
automatically classifying the modality of a medical image is due
to the visual characteristics of different modalities: some are
visually distinct while others may have only subtle differences.
This challenge is compounded by variations in the appearance
of images based on the diseases depicted and a lack of sufficient
training data for some modalities. In this paper, we introduce a
new method for classifying medical images that uses an ensemble
of different convolutional neural network (CNN) architectures.
CNNs are a state-of-the-art image classification technique that
learns the optimal image features for a given classification task.
We hypothesise that different CNN architectures learn different
levels of semantic image representation and thus an ensemble of
CNNs will enable higher quality features to be extracted. Our
method develops a new feature extractor by fine-tuning CNNs
that have been initialised on a large dataset of natural images.
The fine-tuning process leverages the generic image features from
natural images that are fundamental for all images and optimises
them for the variety of medical imaging modalities. These features
are used to train numerous multi-class classifiers whose posterior
probabilities are fused to predict the modalities of unseen images.
Our experiments on the ImageCLEF 2016 medical image public
dataset (30 modalities; 6776 training images and 4166 test images)
show that our ensemble of fine-tuned CNNs achieves a higher
accuracy than established CNNs. Our ensemble also achieves a
higher accuracy than methods in the literature evaluated on the
same benchmark dataset and is only overtaken by those methods
that source additional training data.

Index Terms—deep learning, convolutional neural network,
fine-tuning, ensembles, image classification

I. INTRODUCTION

A diverse range of imaging data are acquired in modern
hospitals for diagnosis, treatment planning, and assessing

response to treatment. These large image collections coupled
with other image sources (e.g., research literature and clinical
manuals) provide new opportunities to use massive image
data to derive computerised tools for image-based diagnosis,
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teaching, and biomedical research [1]. These applications are
predicated on the identification, retrieval, and classification of
patient data that represent similar clinical outcomes [2], e.g.,
images representing the same diagnosis. There is a global push
to use all possible sources of images for these applications [3]–
[5] but not all image sources are labelled appropriately.

In cases where appropriate labels are absent, identifying the
image’s modality is a primary step [6] because the content and
semantics of an image can vary depending on its modality.
Modality classification is inherently a multi-class problem
where there are many different types of images and each
type must be uniquely distinguished from all others. The core
challenge arises from the fact that some modalities are visually
quite distinct (e.g., anatomical and functional modalities) while
others are only subtly different (e.g., different types of anatom-
ical images). There are also variations in the appearance
of images based on the individual diseases depicted. These
challenges are further compounded by the lack of sufficient
training data, especially for the numerous different diseased
states, which hinders the application of most classification
techniques. The distribution of the available labelled data is
often skewed against those modalities that are more difficult
for humans to interpret and label.

Attempts at modality classification have generally avoided
these issues by manually sourcing and labelling images to
expand the standard public benchmark datasets [7]. Classi-
fication is performed by extracting and fusing a multitude of
image features from the expanded dataset (see Section I-A).
This is a laborious task as the design process requires iterative
labelling, tests, and calibrations (i.e., “hand-crafted” feature
engineering). Moreover the approaches employed are often
specific to a particular task and cannot be applied to different
datasets or tasks. A data-driven approach for image feature
design, as is now common in general image classification
research, would be more robust to the variety of image
modalities and diseases while being less susceptible to human
domain-specific subjectivity.

Convolutional Neural Networks (CNNs) are a deep learning
technique that implicitly perform feature extraction on image
data with deeper networks generally learning more sophis-
ticated representations of the image data [8]–[10]. Training
CNNs to perform this kind of automated feature extraction
typically comes with the onus of requiring large volumes
of labelled training data. When such training corpora are
available, CNNs are capable of achieving state-of-the-art
performance in general object recognition, as evidenced by
their dominance of the ImageNET benchmark [11]. A variety
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of CNN architectures have been introduced and continue to
be improved (see Section I-A). Individual architectures have
different capabilities in their ability to characterise or represent
image data, which is often linked to the depth of the CNN.
However, CNNs may be indirectly limited when used with
highly variable image datasets with limited samples (e.g.,
medical images): shallow CNNs may be too general and would
not be able to capture the subtle differences between such
images while deep CNNs may become highly sensitive to
subtle differences and would not be able to capture the general
similarity between such images.

In this paper, we describe a method for classifying the
modality of medical images using an ensemble of different
CNN architectures. Ensemble learning is a machine learning
process in which better predictive performance is obtained
by combining the results from multiple classification models
into one high-quality classifier [12]. Our method resolves
the challenges associated with using CNNs on multi-class
classification problems with limited and unevenly distributed
sample data by using CNNs that have been pre-trained on a
large collection of natural images (> 1 million) and fine-tuning
(optimising) them using a smaller medical image dataset (thou-
sands). The various CNNs in our ensemble allow us to extract
image features at different semantic levels thereby enabling the
characterisation of the varying distinct and subtle differences
among modalities. Our ensemble of fine-tuned CNNs allows
us to adapt the generic features learned from natural images
to be more specific for different medical imaging modalities.

A. Related Work
Outcomes from the ImageCLEF medical benchmarks [5]

indicate that modality-specific information can improve the
performance of image-based classification and retrieval al-
gorithms [13]. As such, modality classification remains an
important research task [14], [15].

Many prior research studies [7], [16]–[20] into modality
classification have used a variety of approaches that combine
a vast range of image features that were derived both globally
over the whole image and locally over several different sub-
patches. These works all used combinations of image features
that were designed by humans to represent some characteristic
of the underlying image data, e.g., textures, colours, binary
patterns, and key point descriptors. The performance of these
methods was implicitly tied to the quality of the features, the
optimisation of which may require domain experts to hand-
craft the image features. Many of these methods also used
manual dataset expansion to increase the size of their training
dataset, which may not be possible in real world contexts [21].

CNNs are the state-of-the-art deep learning method for
image classification as demonstrated by their dominance of
the ImageNet benchmark [11]. A variety of different archi-
tectures have been introduced for the classification of the
1000 categories in the ImageNet dataset [22]. The initial
landmark breakthrough of Krizhevsky et al. [8] was achieved
by an efficient GPU implementation of their AlexNet CNN.
To reduce the risk of overfitting, Szegady et al. [23] in-
troduced the GoogLeNet architecture, which used networks-
within-networks to achieve a 12× reduction in the number

of parameters compared to AlexNet. Recently, He et al. [24]
introduced the Deep Residual Network (ResNet) architecture,
which solved the problem of degradation of training accuracy
in very deep networks. While these very deep networks have
high accuracy, they require several weeks to train optimally
even when using state-of-the-art computing hardware.

CNNs generally require large training datasets (tens of
thousands if not millions) and as such their direct application
to medical imaging is difficult due to the time and labour
cost involved in creating expertly labelled training datasets.
Anthimopoulos et al. [25] showed that CNN architectures
have higher accuracy than other methods when significant
effort has been expended to acquire labels for the training
data. However, when only small training datasets are available,
which is the norm, CNN-based methods may overfit and
struggle to learn the best image features, e.g., overfitting
when only 500 images are used [26]. A recent study [27] has
shown that transfer learning can be used to adapt CNNs for
medical imaging. Transfer learning is the process by which
a CNN is initially trained on a large well-labelled natural
image dataset to learn generic image features applicable to
all images and is then used to extract these generic features
from smaller datasets [28]. It has been successfully utilised
in various modality or disease specific studies [29]–[31].
However, the transfer learned features are more reflective of
the natural image dataset and may not necessarily reflect the
subtle characteristics of medical images.

A more advanced form of transfer learning, called fine-
tuning, can be used to adapt a pre-trained CNN to a different
dataset. Fine-tuning is the process of updating the pre-trained
weights of a CNN through the use of backpropagation. An
extensive study on medical imaging data has demonstrated that
fine-tuning is as effective as training a CNN from scratch while
being more robust to the size of training data [32]. Fine-tuning
has been applied to a variety of different medical imaging
modality or disease-specific classification tasks including MRI
view detection [33] and ultrasound anatomy identification [34].

We have used CNNs for our preliminary work in modality
classification: we have designed and trained a new CNN from
scratch [35] and fine-tuned AlexNet [36]. However, both of
these methods used one architecture potentially limiting their
ability to extract features learned by different CNNs. Other
CNN-based methods for modality classification [37], [38] have
also been proposed; the best performing methods generally
sourced additional images to expand the training dataset as
a way to address the difficulty of learning from an unevenly
distributed dataset [37].

II. MATERIALS

We used the medical Subfigure Classification dataset from
the public ImageCLEF 2016 collection1. The dataset contained
6776 training images and 4166 test images across 30 different
modalities. Ground truth annotations were provided for both
datasets. Table VI shows the distribution of the modalities in
the datasets, divided according to groups of similar modalities.
The training and test sets are both skewed, with over two-thirds

1http://www.imageclef.org/2016/medical
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of the classes having less than 100 samples. The distribution
of samples was intended to reflect the availability of labelled
training data. A detailed description of the datasets can be
found in the ImageCLEF 2016 overview papers [15], [39].

A. Data Augmentation

Data augmentation is the most common method used to
reduce overfitting during CNN training by artificially enlarging
the dataset using class-preserving perturbations of individual
images [8]. The key concept is that the reproducible perturba-
tions applied to the data do not change the semantic meaning
of the image, thereby enabling the generation of new samples.
Training CNNs on this larger perturbed dataset has been shown
to improve robustness and generalisability to unseen data [8].
Data augmentation is a contrast to the manual sourcing of
additional labelled images, which is difficult in the medical
domain (Section I).

We used an established 10-fold augmentation scheme in-
volving cropping and flipping (reflection) of each image [40]:

1) We set the dimensions of the crop to be the input
dimensions of the CNN architecture.

2) We extracted 5 crops from each image: the 4 corners
and the centre.

3) We generated 5 additional samples by flipping (reflect-
ing) each crop about the x-axis.

This scheme generated 67760 augmented training crops from
the 6776 training images. A random selection of 90% of
the augmented set was used for CNN fine-tuning and the
remaining 10% for CNN validation. All 67760 training crops
were used to train our ensemble classifier (see Section III-D).

It is important to distinguish data augmentation with clas-
sical cross-validation in the context of CNNs. The aim of
augmentation is to avoid overfitting the millions of CNN filter
weights to a small dataset. Cross-validation is generally used to
select the optimal CNN training parameters (see Section III-C)
but is often not used because it is computationally expensive
given that CNN training can take an extensive amount of time.

III. METHODS

A. Overview

Figure 1 shows an overview of our ensemble method. We
first fine-tuned the CNN architectures that had been pre-trained
(initialised) on natural image data. Each of the fine-tuned
CNNs was then used in two ways: (i) as an image feature
extractor with the independent feature vectors concatenated
and used to train multi-class support vector machines (SVMs),
and (ii) as a classifier generating softmax probabilities. The
posterior probabilities from the ensemble of SVMs and soft-
max classifiers were used to determine the class of the image.

We used the following different CNN architectures, each
with their own different capabilities:

1) AlexNet [8]. This well-established CNN follows a stan-
dard neural network architecture of stacked and con-
nected layers. It comprises eight layers that need to be
trained, five convolutional layers followed by three fully-
connected layers, as well as max-pooling layers. The
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Fig. 1. Overview of our ensemble method.

first, second, and fifth convolutional layers are followed
by overlapping max-pooling layers that make it more
difficult for the network to overfit. The output of the
fifth convolutional layer (after max-pooling) is fed into
the stack of fully-connected layers. A rectified linear unit
(ReLU) non-linearity is applied to each convolutional
and fully connected layer to enable faster training.

2) GoogLeNet [23]. This CNN architecture introduced a
new “Inception” module, a subnetwork comprising of
parallel convolutional filters whose outputs are concate-
nated. The repetition of the Inception modules captures
the optimal sparse representation of the image while
simultaneously reducing dimensionality. The network
comprises 22 layers that require training (or 27 if
pooling layers are also considered). Experiments have
shown that GoogLeNet has fewer trainable weights than
AlexNet and is more accurate [23].

We chose these architectures because they are well-established
and have shown good performance when adapted to a variety
of medical image classification scenarios [32], [33], [41].

We used two types of classifiers within our ensemble:
1) softmax. The softmax function is a generalisation of

the logistic function that highlights the largest values in
a vector while suppressing those that are significantly
below the maximum. When applied to a D-dimensional
feature vector, the softmax function can be used as
a non-linear variant of multinomial logistic regression
to generate a vector of D probability values, the d-
th element of which is the likelihood that the vector
represents a member of the d-th class [42]. The softmax
function is widely used as the classification layer of
many CNN architectures [8], [23], [24].

2) one-vs-one multi-class SVMs. SVMs [43] are a well-
established supervised binary classification technique,
where the model divides labelled training data into two
categories and classifies new samples into one of these.
Multi-class problems are usually solved by combining
multiple SVMs and as such we trained A-vs-B (one-vs-
one) SVMs for every pair of image modalities A,B in
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our dataset. The posterior probabilities were estimated
by minimising the Kullback-Leibler divergence based on
the outputs of the individual one-vs-one SVMs [44].

We implemented our method in MATLAB, using the Mat-
ConvNet library [45] for our implementation of CNN fine-
tuning. For our experiments, we used the pre-trained CNNs
provided with MatConvNet.

B. CNN Fine-Tuning

The CNN architectures we used were pre-trained (ini-
tialised) on the ImageNet [11], [22] natural image dataset,
which contains 1000 classes across > 1 million samples. We
adapted the CNNs to our problem by replacing the last fully
connected layer (intended for 1000 classes) with a new fully
connected layer for the 30 classes in our dataset. The initial
CNN filter weights derived from the natural images were then
fine-tuned (optimised) through back-propagation so that they
better reflected the modalities in the medical imaging dataset.

Let X be the training dataset of n images. Fine-tuning is an
iterative process that finds the filter weights w that minimises
the CNN’s empirical loss (i.e., reduces the error rate):

L (w,X) =
1

n

n∑
i=1

l (f (xi,w) , ĉi) (1)

where xi is the i-th image of X, f (xi,w) is the CNN function
that predicts the class ci of xi given w, ĉi is the ground-truth
class of the i-th image, and l (ci, ĉi) is a penalty function for
predicting ci instead of ĉi. We set l to the logistic loss function.

We used mini-batch stochastic gradient descent to find the
optimal w. Let B ⊂ X be a subset of b images; we call
B a mini-batch of X with batch size b. We now introduce a
distinction between the terms epoch and iteration. An epoch is
one training pass (weight update) using all the training samples
in X. In contrast, an iteration is one training pass over all the
elements of B. Each epoch, a randomized set of disjoint mini-
batches were generated such that all the elements of X were
covered. Generally speaking, one epoch consists of n

b mini-
batches of size b. However, when b is not a factor of n the
last mini-batch may have less than b images.

We iterated over the mini-batches of each epoch; the CNN
weights were updated each iteration. The updated weights
wt+1 were calculated from the gradient of the loss L when
applied to the mini-batch B using the current weights wt:

wt+1 = wt + η

[
α∆wt −

∂L (wt,B)

∂wt
− λwt

]
(2)

where ∆wt = wt − wt−1 is the weight update from the
previous iteration. The coefficient η is the learning rate con-
trolling the size of the updates to the weights. The momentum
coefficient α diminishes fluctuations in weight changes over
consecutive iterations by adding a proportion of the previous
update to the current update; this has the effect of speeding
up the learning process while simultaneously smoothing the
weight updates. The weight decay λ shrinks the weights to
find the smallest optimal weights. In our fine-tuning setup,
w0 are the weights of the pre-trained CNNs with ∆wt = 0.
Section III-C describes the selection of these parameters.
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Fig. 2. Fine-tuning AlexNet over 50 epochs.
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Fig. 3. Fine-tuning GoogLeNet over 50 epochs.

TABLE I
FINE-TUNING STATISTICS

Architecture # weights time (s)
AlexNet 56,991,134 14,722
GoogLeNet 6,004,302 39,394

Figures 2 and 3 show the training and validation error when
fine-tuning our CNNs across the 50 epochs. For both CNNs,
there is a consistent pattern of a steady drop and plateauing
of the training error rates. The similarity of the training and
validation curves suggests that our fine-tuned CNNs did not
overfit to the training data. Table I shows the training statistics
for each architecture: the number of weights that need to be
fine-tuned and the total time to fine tune over 50 epochs.

C. Fine-Tuning Parameter Selection

For the purposes of comparative evaluation we used the
same parameter set for all of the CNNs in our ensemble in-
stead of optimising the parameters for individual architectures.
We used empirical methods to determine the parameters as
described below. We did not use cross-validation to determine
these parameters because it was computationally infeasible
given the large parameter space and the time (over half a day)
required to train both AlexNet and GoogLeNet given a single
parameter combination (see Table I).
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As mentioned in Section III-B we trained our CNNs for
50 epochs, given the parameter set described below. This was
because the error rates for training and validation had already
begun to plateau at 50 epochs (see Figures 2 and 3) with
minimal improvements even when we trained for more epochs.

Each architecture required memory to store the filter weights
w and as such the batch size b was dependent on the memory
capacity of the training hardware. We set b = 256, which was
the power of 2 that maximized the memory usage of our 12GB
NVIDIA Titan X GPU.

We selected a uniform learning rate η = 5 × 10−6 that
allowed the fine-tuning process to effectively learn the filter
weights for the different CNN architectures. We empirically
determined this value by monitoring the validation error during
fine-tuning using a variety of learning rates sourced from
our preliminary work [26], [35], [36]; the learning rate was
modified until an appropriate value was discovered. Higher
learning rates often led to overfitting while lower rates led to
limited change in error across epochs (i.e., slow learning).

Our momentum term ηα∆wt controlled the fluctuation of
the weights by adding a proportion of the change from the
previous iteration to the current iteration (see Equation 2).
As such, higher values of α reduced fluctuation by forcing
weights to change in a similar direction to the previous
iteration, leading to a smoother and faster convergence to
the optimal weights. Lower values of α are generally used
during earlier iterations when the learning process may not be
globally optimal and drastic changes are more acceptable. We
selected α = 0.9 for all epochs because we were using pre-
trained CNNs that had already been trained on an extensive
image dataset and whose pre-trained weights would thus be
appropriate (but not yet ideal) for a wide range of image data.

The weight decay term −ηλwt acted as a regularisation
term for the gradient descent by preventing the weights
from growing too large; it was also important for avoiding
overfitting. We used the default value of λ = 1.

D. Ensemble Design

Our ensemble comprised of the following classifiers:
1) Fine-tuned AlexNet using a softmax classifier.
2) Fine-tuned GoogLeNet using a softmax classifier.
3) A one-vs-one multi-class SVM trained using features

extracted from the fine-tuned AlexNet. We extracted
4096 features using the activations of the last fully
connected layer of the fine-tuned network. For efficient
classifier training, we reduced the dimensionality using
Principle Component Analysis (PCA) [46]. Our feature
vectors were the principle components that explained
90% of the variation in the data (dimensionality: 459).

4) A one-vs-one multi-class SVM trained using features
extracted from the fine-tuned GoogLeNet. We extracted
1024 features using the activations of the last pooling
layer of the fine-tuned network. As above, we used PCA
so that the features were the components that explained
90% of the data variation (dimensionality: 108).

5) A one-vs-one multi-class SVM trained using features
extracted from the fine-tuned AlexNet and GoogLeNet.

The features captured from each CNN were concate-
nated to form a single 5120-dimensional vector and then
reduced to the principle components that explained 90%
of the data variation (dimensionality: 508).

The multi-class SVMs in our ensemble were trained using
the PCA-reduced features extracted from all augmented vari-
ations of the training dataset. We used one-vs-one multi-class
SVM classifiers to maximise the ability to distinguish two
modalities that have very subtle differences (i.e., are highly
similar). During classification, we first generated local crops of
a given test image using the same process as data augmentation
(Section II-A). We then obtained the posterior probability
Pi,k (m) that the i-th crop of the test image depicted a
particular modality m according to the k-th classifier in the
ensemble. We determined the modality m? of an image by
fusing the posterior probabilities according to:

m? = arg max
m

∑A
i

∑C
k Pi,k (m)

A× C
(3)

where A = 10 is the number of augmented variations of each
test image and C = 5 is the number of ensemble classifiers.

IV. EVALUATION

A. Experimental Setup

We compared our new ensemble method to a variety of
well-established CNN-based methods:

• transfer learned CNNs with multi-class SVMs [28].
• fine-tuned CNNs with softmax.
• fine-tuned CNNs with multi-class SVMs.

We used the AlexNet and GoogLeNet architectures for all
of these baselines. For the baseline companions, we used the
standard performance measures in CNN studies [8], [23]: the
correctness of the predicted label (Top 1 Accuracy) and the
presence of the correct label among the 5 labels with the
highest probability (Top 5 Accuracy).

We also compared the Top 1 Accuracy of our ensemble with
other studies using the ImageCLEF 2016 benchmark dataset.
It is important to note that several studies manually expanded
the skewed training dataset with labelled images from other
sources, while we used only the specified training dataset.

We also analysed the ability of our ensemble to classify
individual classes within the unbalanced dataset. We measured
the precision (positive predictive value or proportion of true
positives), sensitivity (true positive rate), specificity (true nega-
tive rate), and F-score for each of the modalities in our dataset.

B. Results

Table II compares the Top 1 Accuracy of our method to
the CNN baselines; our method achieved a higher accuracy
than all the other methods. Similarly, Table III shows the
Top 5 Accuracy of our method compared to the baselines;
our method achieved an accuracy that was consistent with the
best accuracies among the other methods. Our method had a
higher accuracy than softmax classification in both the Top
1 and Top 5 classification. In Top 1 Accuracy, our method
was 1.73% more accurate than the best baseline method (fine-
tuned GoogLeNet with SVM); in Top 5 Accuracy, our method
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TABLE II
TOP 1 CLASSIFICATION ACCURACY (%)

Architecture
AlexNet GoogLeNet

transfer learned + SVM 79.21 78.61
fine-tuned + softmax 79.62 77.17
fine-tuned + SVM 79.60 80.75

our ensemble 82.48

TABLE III
TOP 5 CLASSIFICATION ACCURACY (%)

Architecture
AlexNet GoogLeNet

transfer learned + SVM 96.71 96.33
fine-tuned + softmax 94.48 91.31
fine-tuned + SVM 96.47 96.54

our ensemble 96.59

TABLE IV
COUNT OF IMAGES CORRECTLY CLASSIFIED BY A PAIR OF METHODS

AlexNeta GoogLeNeta

TLS FTC FTS TLS FTC FTS ENS

A
le

x

TLS 3087 3113 3047 3000 3102 3188
FTC 3087 3118 3024 3036 3107 3231
FTS 3113 3118 3038 2991 3086 3211

G
oo

gL
e TLS 3047 3024 3038 2974 3085 3142

FTC 3000 3036 2991 2974 3065 3132
FTS 3102 3107 3086 3085 3065 3235
ENS 3188 3231 3211 3142 3132 3235

a TLS = transfer learned + SVM, FTC = fine-tuned + CNN softmax,
FTS = fine-tuned + SVM, ENS = our ensemble

TABLE V
TOP 1 ACCURACY COMPARED TO OTHER METHODS

Method Accuracy (%)
transfer learned ResNet-152 [37]* 85.38

hand-crafted feature collection [37]* 84.46
RGB color PHOW [20]* 84.01

our ensemble 82.48
RGB color PHOW [20] 81.73

modified GoogLeNet (60 epochs) [37]* 81.03
fine-tuned AlexNet (100 epochs) [36] 77.55

VGG-like CNN (500 epochs) [38] 65.31
* training dataset expanded with additional examples

was 0.12% lower than the best performing method (transfer
learned AlexNet with SVM).

Table IV demonstrates that our ensemble had a high degree
of similarity to every baseline. Each cell shows the number
of images correctly classified by both of the methods noted
in the row and column headers. The highest value (in bold)
for every baseline was with our ensemble, indicating that the
ensemble possessed the strengths of the individual methods.

Table V compares the Top 1 Accuracy of our ensemble to
other image-based methods (no text data used). The methods
marked with an asterix (∗) manually expanded the skewed
ImageCLEF 2016 training dataset with labelled images from
other sources. Our ensemble had a higher accuracy than all
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Fig. 4. Confusion matrix for our ensemble. The matrix entries have been
scaled to a percentage to account for the uneven distribution of the classes.

methods that used the unexpanded dataset.
Table VI shows the precision, sensitivity, specificity, and

F-score of our ensemble in the classification of the individual
modalities. This is complemented by Figure 4, which is a heat
map of the confusion matrix for the multi-class classification.
Due to the skewed test dataset, we generated the confusion
matrix by scaling the classification counts to a percentage.

C. Discussion

Our findings show that our method achieved a higher Top 1
Accuracy than all the other baselines. This is attributed to two
complementary components of our method: (i) fine-tuning to
learn features that were specific to our dataset, and (ii) our
use of different architectures, which had different capabilities
in generalising and adapting to different data.

The transfer learned architectures extracted generic image
features relevant to all images and thus could not achieve a
better Top 1 Accuracy because their features were not specific
for medical image modality classification. GoogLeNet, which
had higher accuracy than AlexNet in the classification of
natural images [23], had a lower Top 1 Accuracy when
transferred to medical images. We suggest that this outcome
indicates that shallower networks, such as AlexNet, learn
more generalisable features that are applicable to a wider
variety of images. In contrast, deeper networks, such as
GoogLeNet, learn more semantically meaningful features [9]
that are limited in their applicability when transferred to a
different domain. Since transfer learned AlexNet features are
less semantically optimised for natural images (in comparison
to the deeper GoogLeNet), they are more generalisable and
adaptable when transferred to the medical imaging domain.
The transfer learning outcomes demonstrate the characteristics
and strengths of the different architectures.

Using CNN softmax classification (the standard for most
natural image classification tasks) after fine-tuning revealed
some important outcomes. For AlexNet there was improve-
ment in the classification accuracy (0.41%) in comparison
to transfer learned AlexNet; in contrast, the accuracy of
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TABLE VI
PER CLASS CLASSIFICATION RESULTS (%)

Group Class
# Samples Results

Train Test Precision Sensitivity Specificity F-Score
3D reconstructions (D3DR) 201 96 69.31 72.92 99.24 71.07

m
ic

ro
sc

op
y electron microscopy (DMEL) 208 88 39.62 23.86 99.22 29.79

fluorescence microscopy (DMFL) 906 284 73.45 91.55 97.58 81.50
light microscopy (DMLI) 696 405 87.94 91.85 98.64 89.86

transmission microscopy (DMTR) 300 96 48.39 62.50 98.43 54.55

ra
di

ol
og

y

angiography (DRAN) 17 76 92.31 31.58 99.95 47.06
combined modalities (DRCO) 33 17 41.67 29.41 99.83 34.48

computerised tomography (DRCT) 61 71 80.26 85.92 99.63 82.99
magnetic resonance (DRMR) 139 144 75.29 90.97 98.93 82.39

positron emission tomography (DRPE) 14 15 100 13.33 100 23.53
ultrasound (DRUS) 26 129 98.59 54.26 99.98 70.00

x-ray, 2D radiography (DRXR) 51 18 34.38 61.11 99.49 44.00

si
gn

al
s electrocardiography (DSEC) 10 8 0 0 100 0

electroencephalography (DSEE) 8 3 100 100 100 100
electromyography (DSEM) 5 6 0 0 100 0

ph
ot

os dermatology, skin (DVDM) 29 9 62.50 55.56 99.93 58.82
endoscopy (DVEN) 16 8 100 12.50 100 22.22

other images (DVOR) 55 21 52.00 61.90 99.71 56.52

ge
ne

ri
c

bi
om

ed
ic

al
ill

us
tr

at
io

ns

chemical structure (GCHE) 61 14 92.86 92.86 99.98 92.86
statistics, figures, graphs, charts (GFIG) 2954 2085 88.80 99.23 87.46 93.73

flowcharts (GFLO) 20 31 71.43 16.13 99.95 26.32
chromatography, gel (GGEL) 344 224 95.03 76.79 99.77 84.94

gene sequence (GGEN) 179 150 71.74 22.00 99.68 33.67
hand-drawn sketches (GHDR) 136 49 29.09 32.65 99.05 30.77

mathematics, formula (GMAT) 15 3 0 0 100 0
non-clinical photos (GNCP) 88 20 36.84 35.00 99.71 35.90

program listing (GPLI) 1 2 0 0 100 0
screenshots (GSCR) 33 6 50.00 16.67 99.98 25.00

system overviews (GSYS) 91 75 33.33 6.67 99.76 11.11
tables and forms (GTAB) 79 13 50.00 46.15 99.86 48.00

GoogLeNet dropped by more than 1%. The reason for this
is that the softmax classifier does not conduct a one-vs-
one comparison when classifying an image and as such it
may be possible for modalities with subtle differences to be
misclassified; a one-vs-one multi-class SVM is capable of
distinguishing images with these subtle differences.

Fine-tuning the networks and then using SVMs improved
the Top 1 Accuracy for both the networks. It is worth noting
that the accuracy of GoogLeNet improved more than that of
AlexNet. This suggests that AlexNet is less prone to be fine-
tuned even when using the same fine-tuning parameters and
data. Additionally it suggests that the features learned by the
deeper GoogLeNet were more semantically relevant for the
medical images, thereby introducing a stronger discriminative
capability. These findings are important because they indicate
that deeper networks are more likely than shallower networks
to learn relevant features when fine-tuned on a smaller dataset.

Our method achieved a competitive Top 5 Accuracy; it was
higher than all of the other methods except for transfer learned
AlexNet, where it was 0.12% lower (approximately 5 images
whose true modality was not reflected in the Top 5). This is
an interesting outcome given that the overall Top 1 Accuracy

increased compared to the other methods. Our explanation
is that the fine-tuning of our ensemble may have indirectly
weakened the ability to extract image features relevant to this
relatively small subset of 5 images because the fine-tuning
process tried to extract image features that maximised the
overall classification accuracy (see Section III-B). In contrast,
transfer learning extracts generic image features that are appli-
cable to all images (see Section I-A) and as such the transfer
learned AlexNet was able to predict the correct modality in the
Top 5. However, because the generic image features were not
optimised for the medical image dataset, the transfer learned
AlexNet had an overall lower Top 1 Accuracy.

The confusion matrix (Figure 4) and the numerical out-
comes (Table VI) indicate that many of the modalities were
correctly identified: 19 of the 30 modalities had precision ≥
50%, 14 modalities with sensitivity ≥ 50%, and 13 modalities
with F-score ≥ 50%. The confusion matrix indicates that mis-
classifications generally occurred within a group (e.g., within
the radiology group, DRCO was misclassified as DRCT) but
there were situations when misclassifications occurred outside
the group, most commonly with GFIG. This is attributed to
GFIG being the largest and most varied class in the dataset.
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The classes that received 0 precision and F-score were those
classes with: (i) less than 20 training samples, and (ii) subtle
differences shared with other classes with larger training sets,
e.g., DSEC signals are visually similar to line graphs in GFIG.
Other classes with less than 20 samples (e.g., DSEE) had
higher F-scores due to visually distant characteristics, e.g.,
colour and position of signals. Similar patterns also occur for
other classes with few samples and very subtle differences.
For example, the DRCO class (33 training images) contained
multi-modality images and these were sometimes misclassified
as one of the constituent modalities, e.g. DRCT. This indicates
that it may be important to increase the number of training
samples for classes with subtle differences, as done in other
work [20], [37]. Alternatively, the training loss function (see
Equation 1) could be scaled according to the number of
samples in each class but this requires a separate study as it
may in some cases deteriorate classification performance [38].

Our ensemble achieved a higher Top 1 Accuracy than other
methods using hand-crafted features [20] as well as those using
AlexNet and GoogLeNet [36]–[38] (see Table V). In particular,
our ensemble of CNNs fine-tuned for only 50 epochs had
higher accuracy than methods that used individual CNNs that
were fine-tuned for a larger number of epochs (60-500). This
finding indicates that our ensemble was able to create an
accurate classifier from constituent CNNs that were not fine-
tuned as extensively as in other works. Table V shows that
two variants of existing methods [20], [37] achieved similar
accuracy (over 81%) compared to our method (82.48%) while
being methodologically simpler. However, it is important to
note that the RGB PHOW method [20] used hand-crafted
features, which are not robust to changes in the dataset and
are susceptible to human domain-specific subjectivity, while
the modified GoogLeNet [37] used manual dataset expansion,
which requires extensive human effort and is not replicable
across applications. We suggest that the ability of our method
to learn from the underlying data makes it more adaptable
to dataset changes. Table V also lists methods that reported
higher Top 1 Accuracy. These methods expanded their training
dataset with other image data, including adjusting the dis-
tribution of the classes with few samples [20], [37], and as
such it is difficult to conduct a direct comparison with our
ensemble because we cannot ascertain whether the improved
accuracy was due to their different methods or due to their use
of an expanded training dataset. Valavanis et al. [20] showed
that expanding the dataset improved the accuracy of their
method. We expect that our ensemble would also improve with
additional training data. In particular, we expect significant
improvements when our ensemble is fine-tuned with additional
data for the worst performing classes (DSEC, DSEM etc.) as
these are generally have higher rates of misclassifications.

Our ensemble has the ability to discriminate between dis-
tinct and subtle differences between image modalities because
it merges the generalisability of the shallower AlexNet with the
semantic relevance of the fine-tuned GoogLeNet. This finding
is supported by Table IV, which shows that the modality
classifications performed by our ensemble had high similarity
to every baseline method. This result, in combination with the
highest Top 1 Accuracy, indicates that the ensemble possessed

the strengths of the individual methods and was thus capable
of classifying images that would have been misclassified by
individual methods. Furthermore, fine-tuning of the CNNs in
our ensemble enables us to extract image features that are more
relevant to the dataset being classified. The ability to identify
the image features that are most relevant for the classification
suggests that our method can be readily adapted to a variety
of multi-modality and multi-disease datasets.

In order to demonstrate the influence of the ensemble,
we did not perform any parameter optimisations and used
the same fine-tuning parameters for both CNNs (see Sec-
tion III-C). Optimising the parameters for each CNN sepa-
rately via cross-validation would give improved results. Our
method can also be extended through the integration of dif-
ferent CNN architectures with new capabilities, such as the
ResNet [24], which can addresses training accuracy degrada-
tion in very deep networks. Koitka et al. [37] showed that
transfer learned ResNet has higher accuracy than GoogLeNet
using an expanded dataset. We believe that including ResNet
as part of our ensemble would extend its capabilities. This is
left to future work because training ResNet requires several
weeks even when performed on multiple devices in parallel.

V. CONCLUSIONS

In this paper, we introduced a new ensemble method for the
classification of the modality of medical images. Our ensemble
used multiple fine-tuned CNNs as optimised feature extractors
that were able to learn image features that captured the diverse
information present in medical images of different modalities.
The ensemble fused the fine-tuned CNN models to derive a
more powerful image classification scheme than the individual
CNNs. Our experimental results showed that our ensemble was
able to correctly classify the majority of images in a public
benchmark dataset and achieved higher classification accuracy
than other CNN baselines as well as other methods using the
same benchmark training dataset.

Our experiments showed that our ensemble method was able
to distinguish between image modalities with subtle differ-
ences under the constraint that there were sufficient training
samples to learn the differences between the modalities. In
the future, we will investigate adaptations to our fine-tuning
scheme (e.g., changes to the loss function) that can potentially
reduce this constraint so that our ensemble can be used without
manual dataset expansion.
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