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Executive 
summary
As the financial markets move faster and remain 
volatile, quantitative analysts grapple with ever-
growing data sets and the complex infrastructure 
needed to generate alpha and manage risk. 
With the need to process more data and act on 
opportunities faster, increasing compute speed, 
performance, and scalability in the cloud is 
crucial to gaining a competitive advantage.

The Securities Technology Analysis Center 
(STAC®), an organization that improves 
technology discovery and assessment in the 
finance industry through dialog and research, 
recently audited the STAC-M3™ benchmark suite 
on Google Cloud (SUT ID KDB211210). These 
enterprise tick-analytics benchmarks assess 
the ability of a solution stack such as database 
software, servers, and storage, to perform a 
variety of I/O-intensive and compute-intensive 
operations on historical market data.

The latest STAC-M3™ tick history analytics 
benchmark results demonstrate Google Cloud’s 
high-performance computing capabilities. Access 
to the latest technologies in Google Cloud can 
help hedge funds, investment banks, and other 
key players in the asset management industry 
achieve four crucial objectives:

1. Accelerate the speed of running 
a growing ledger of analysis while 
producing faster results.

2. Maximize high-performance compute 
clusters and storage with end-to-end 
automation and infrastructure as code 
(IaC) techniques.

3. Increase the flexibility and capacity to 
scale infrastructures to match market 
opportunities.

4. Simplify operations and reduce the 
cost of running calculations on massive 
financial data sets.

In this white paper, we highlight our methodology 
for achieving significant performance 
improvements, explain the use and advantages 
of IaC for infrastructure reproducibility, and 
provide code samples illustrating how an IaC 
deployment works.

https://www.stacresearch.com/
https://stacresearch.com/m3
https://www.STACresearch.com/KDB211210
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Optimizing Google Cloud for high-
speed market tick history analysis
Google Compute Engine processors have 
advanced since our last STAC-M3TM audit in 2018. 
The first way that we improved performance in 
the latest audit was by upgrading from the N1 
machine type to the newer N2 machine type. Intel 
Cascade Lake powered the benchmarked cluster, 
increasing computational performance over the 
Skylake architecture used in the previous audit. 
A newer Intel Ice Lake is now available, offering 
over 30% better price-performance compared 
to Cascade Lake.

N2 machine types are general-purpose virtual 
machines (VMs), offering an excellent balance 
of performance and functionality. Compute-
optimized C2 and C2D machine types 
were another option we considered, as they 
are well suited for computationally-intensive 
workloads, offering superior performance, higher 
frequencies, and control over non-uniform 

memory access (NUMA) settings. In this case, 
however, more significant performance gains 
came from rethinking how to handle disk input/
output (I/O). C2 and C2D machine types can 
have up to 8 high-speed local NVMe SSDs per 
instance, but general-purpose N2 machine types 
can have up to 24. As shown below, choosing 
I/O capacity over processor performance was 
crucial to improving overall performance on 
the benchmark.

The cluster used 12 nodes, which was the sweet 
spot for performance given the way data was 
distributed. Each node had 32 vCPUs, 160GiB 
of memory, and 9 TiB of local NVMe solid 
state disks (SSDs).

Figure 1.  Sharded kdb+ 4.0 

STAC-M3TM architecture on 

Google Cloud.

https://cloud.google.com/compute
https://cloud.google.com/blog/products/compute/can-cloud-instances-perform-better-than-bare-metal-latest-stac-m3-benchmarks-say-yes
https://cloud.google.com/blog/topics/financial-services/optimizing-google-cloud-for-high-speed-market-tick-history-analysis
https://cloud.google.com/blog/products/compute/compute-engine-n2-vms-now-available-with-intel-ice-lake
https://cloud.google.com/compute/docs/compute-optimized-machines
https://cloud.google.com/solutions/hpc
https://cloud.google.com/solutions/hpc
https://cloud.google.com/compute/docs/disks/local-ssd
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Changing our approach to disk I/O was made 
possible by changes in how queries were issued 
across the cluster. Some workloads benefit 
from vertical scaling, keeping computations 
on a single large node with nanosecond-
scale latency between processor cores. Other 
workloads benefit from scaling out horizontally 
across a greater number of smaller nodes that 
communicate over a high-speed network.

Workloads designed for horizontal scaling are 
able to easily take advantage of the elasticity of 
cloud resources. Freed from the constraints of 
fixed-size, on-premises clusters, hundreds of 
thousands of cores can be provisioned in hours 
rather than months to accommodate demanding 
workloads and vast data sets.

The STAC-M3TM benchmark workloads on kdb+ 4.0 
benefit to a certain extent from faster processors, 
but they are biased towards I/O performance 
and gain more from improvements to throughput 
and latency at the storage layer. By using more 
nodes with fewer cores each, both total storage 
capacity and throughput increase across the 
cluster in aggregate. The same concept applies to 
workloads that are limited by network throughput.

Working with KX, a Google Cloud Global 
Technology Partner, we took advantage of a 
new option in their STAC-M3TM implementation 
to “shard” tick history data across many nodes 

in a compute cluster. Sharding distributes unique 
segments of the complete data set to individual 
nodes, making each responsible for a range of 
the full data set. The downside of sharding is 
that it generally requires querying applications 
to be aware of the data layout scheme. Since the 
benchmark implementation’s code supported 
this style of execution already, adapting our 
infrastructure was simple.

Sharding the data set removes the need to have 
a complete shared data set visible to all nodes 
and allows us to redesign the cluster to take 
advantage of low-latency, high-throughput local 
NVMe SSD storage on Google Cloud. This is 
exceptionally fast, ephemeral storage that is tied 
to the lifecycle of the node. It’s excellent for high-
speed local computations, but when the node is 
shut down, the data is lost as well. That meant 
we needed a persistent store from which to 
download the tick history data set, as generating 
it on demand takes several hours. 

Fortunately, Google Cloud Storage provides 
secure, reliable, and cost-effective object storage 
of vast amounts of data. Most importantly, 
accessing it can be done in a highly parallel 
manner. The tick history data set was divided into 
hundreds of files, each individually downloadable 
by the node responsible for that segment of the 
sharded data set.

https://cloud.google.com/blog/products/gcp/220000-cores-and-counting-mit-math-professor-breaks-record-for-largest-ever-compute-engine-job
https://cloud.google.com/blog/products/gcp/220000-cores-and-counting-mit-math-professor-breaks-record-for-largest-ever-compute-engine-job
https://code.kx.com/q/
https://kx.com/
https://cloud.google.com/storage
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Figure 2. STAC-M3TM sharded data set.

Not only was each node responsible for 
downloading its own range of the entire data set, 
each range consisted of multiple files which could 
be downloaded in parallel to the local file systems 
of each node. This parallelism, both across and 
within nodes, was the key to optimizing the 
data transfer. 

A script to calculate the necessary files in the 
shard ran on each node, streaming multiple files 
simultaneously from Cloud Storage at the 32Gbps 
limit of each node’s network interface. While it 
wasn’t used for this particular setup, workloads 
that require an even faster population of local 
data will benefit from our faster network tiers up 
to 100Gbps. Scaled out across 50 or 100 nodes, 
even petabyte-level data sets can be staged in a 
distributed NVMe caching layer within minutes.

Other options exist for the data storage 
architecture. In situations where high-

performance workloads can’t take advantage 
of sharded data storage, fast shared storage 
can still be used to present a unified view 
of a large data set across many nodes in a 
cluster. Filestore High Scale, a fully-managed 
Google Cloud product, allows the provision of 
up to 100TiB of storage per Filestore instance 
with 920,000/260,000 read/write IOPS 
and 26,000/8,800 read/write MiB/s at the 
maximum volume size. 

Bringing workloads to Google Cloud is easier 
if you use NetApp or Powerscale systems on-
premises; our partner solutions offer the same 
features and scale available in on-premises 
systems today. For workloads that demand the 
most storage performance, the Lustre parallel 
file system is an ideal solution. Cloud Edition for 
Lustre from DDN Storage, available in the Google 
Cloud Marketplace, offers integration with Google 
Cloud projects and billing.

Antuco and Kanaga tick 
history data set Cloud Storage

https://cloud.google.com/filestore/docs/high-scale
https://cloud.google.com/netapp
https://cloud.google.com/architecture/partners/dell-powerscale
https://console.cloud.google.com/marketplace/product/ddnstorage/cloud-edition-for-lustre
https://console.cloud.google.com/marketplace/product/ddnstorage/cloud-edition-for-lustre
https://cloud.google.com/marketplace
https://cloud.google.com/marketplace
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Managing complexity with code

We also honed our approach to performance 
optimization. As we iterated through the cluster 
configuration possibilities, we used infrastructure 
as code (IaC) techniques to provision 
reproducible clusters based on definitions 
written in code.

IaC techniques use modern, cloud-oriented 
tools to interact with provisioning APIs which 
dynamically create, configure, and shut down 
networks, VMs, storage, and other resources 
or services based on code and configuration 
written by administrators. Because the tools use 
text-based code and configuration as inputs, 
everything necessary to manage infrastructure, 
operating systems, and applications can be 
stored in source code management tools like 
Git. This enables other activities like continuous 
integration and deployment of not just application 
code, but the underlying infrastructure itself. It 
also provides a full history of infrastructure state 
through the code repository, supporting auditing 
and troubleshooting activities.

Two of the most powerful and popular tools 
in this space are Terraform and Ansible. While 
there are some shared capabilities between 
the two tools, Terraform is primarily responsible 
for creating infrastructure resources such as 
networks and VMs, whereas Ansible is most 
commonly used to drive the operating system 
configuration for VMs and VM image templates to 
a known state in a controlled manner. 

They also differ in their approaches to code 
structure. Terraform code is largely declarative in 
nature, using dependencies between resources 
to determine the preferred way to create and 
shut them down. Ansible uses declarative steps 
called tasks, but the playbooks that tie those 
tasks together are procedural. This turns out 
to be a good fit for their respective strengths. 
Cloud APIs usually follow RESTful patterns that 
lend themselves well to declarative management 
via Terraform; however, operating systems are 
a mix of code, configuration, user data, and 
persistent state that are more easily managed 
with a pragmatic approach of declarative steps 
coordinated by procedural code with Ansible.

Google Cloud collaborates with Hashicorp to 
maintain the Google Terraform provider and 
with Red Hat to maintain an extensive set of 
Ansible modules. There is also a large collection 
of Google-authored, open-source Terraform 
blueprints and modules that simplify many 
common infrastructure creation tasks.

For our latest audited STAC-M3TM stack, 
Terraform managed the lifecycle of the compute 
cluster and its storage. Ansible configured the 
operating system, deployed the kdb+ application, 
synchronized data shards from Cloud Storage, 
set up the benchmarking environment, and 
ran the tests. 

https://cloud.google.com/architecture/managing-infrastructure-as-code
https://cloud.google.com/architecture/managing-infrastructure-as-code
https://git-scm.com/
https://www.terraform.io/
https://www.ansible.com/
https://cloud.google.com/apigee/resources/ebook/web-api-design-register
https://registry.terraform.io/providers/hashicorp/google/latest/docs
https://docs.ansible.com/ansible/latest/scenario_guides/guide_gce.html
https://cloud.google.com/docs/terraform/blueprints/terraform-blueprints
https://cloud.google.com/docs/terraform/blueprints/terraform-blueprints
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The final version of the code repository represents the configuration 
of the cluster used to produce the results in the STAC report. This 
concept of infrastructure reproducibility via code is powerful for a 
number of reasons:

1. It dramatically simplified iteration through cluster configurations to 
help optimize performance. By enforcing that every deployment use 
IaC to reach a known configuration, comparing different benchmark 
runs was as easy as looking at the code for each to see which 
parameters changed.

2. It completely eliminated the configuration drift. Rather than manually 
tuning the cluster to find the optimal configuration, the IaC tools 
automatically drove the cluster to the correct state each time a 
parameter change was needed.

3. It removed the possibility of human error at deployment time. Using 
tools to create infrastructure based on a predefined “blueprint” 
removed the possibility of accidental misconfigurations.

4. It reduced time to create a given cluster to minutes from hours or 
days since none of the tasks were performed manually. Automated 
tools can push a deployment forward without human interaction, 
running each step immediately after the previous one without 
distractions or breaks.

5. It can free up administrators’ time so they can manage more 
resources. Once the code definition of the infrastructure is created, 
it can be applied to multiple production and non-production 
environments, scaling out to clusters of thousands of nodes that 
would be infeasible to manage by hand.

6. It can dramatically increase the auditability of an environment. In 
its purest form, IaC can remove the need for any routine human 
interaction with a cluster or Google Cloud project, delegating all 
resource management and configuration changes to automated 
processes. Deployment of infrastructure can be driven by code 
commits; since all the code changes are stored in the history 
of the code repository, a full audit trail of the current and past 
desired state is always available for review and analysis. Taking this 
further, automated code scanning tools can search repositories for 
insecure patterns and alert administrators or halt deployments until 
corrective actions are taken.
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These benefits don’t just apply to an ephemeral 
benchmarking environment. One can use the 
same techniques to iterate on the infrastructure, 
control configuration drift, reduce human error, 
speed up deployments, scale operations, and 
secure and audit all cloud assets.

Consider a research platform for quantitative 
analysts. In the on-premises model, high-
performance computing resource managers and 
job schedulers are used to share scarce physical 
resources in a data center, boosting utilization 
and return on investment. The physical resources 
are fixed in the timeframe of days or weeks 
during which substantial changes to scale are 
infeasible. It can take months to meaningfully 
scale them, during which time competition for 
those scarce resources can slow down research 
teams and limit opportunities to react to market 
opportunities while researchers wait through 
long job queues.

On Google Cloud, teams can perform their 
research independently on dedicated clusters, 
each provisioned on demand using IaC tools 
when a hypothesis needs to be tested against 
market data. Those dedicated clusters experience 
no contention for fixed hardware, can be 
precisely sized for each workload to strike the 
right balance between cost and duration, and can 
be shut down or scaled down immediately upon 
job completion. 

IaC can drive this process end to end, sizing 
infrastructure to workloads, matching jobs to 
dedicated clusters, and trimming the time that 
cloud resources are in use. This results in cost 
savings compared to huge on-premises hardware 
investments, and provides greater agility to react 
to market conditions and opportunities.
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IaC for STAC-M3TM on Google Cloud

resource google_compute_instance node {

  count = var.instance_count

  name = “${var.name}${format(“%02s”, count.index + 1)}”

  machine_type = var.machine_type

  zone = var.zone

  allow_stopping_for_update = true

  min_cpu_platform = var.cpu_platform

(...)

The following code samples illustrate how an IaC deployment works. 
Download the code bundle from the STAC report page for complete 
details. STAC subscribers can even replicate our results using the 
bundle, a kdb+ 4.0 license, and a pregenerated STAC-M3TM data set. 

Starting from scratch with an empty project, a small cluster of Compute 
Engine instances are created with a Terraform resource definition in 
automation/terraform/main.tf:

The beginning of this block builds a uniform compute cluster of variable 
size with node names based on the size of the cluster and using a 
number of other user inputs for settings like the location and type of 
hardware. All of the usual options for Compute Engine instances are 
available here, but written as text rather than accessible interactively 
through the Google Cloud console, such as:

http://www.STACresearch.com/KDB211210
https://console.cloud.google.com/
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(...)

  boot_disk {

    initialize_params {

      image = var.boot_disk_image

      size = var.boot_disk_size

      type = var.boot_disk_type

    }

  }

(...)

terraform init

terraform apply

The above block, for example, initializes the boot disk to a user-
specified size, type, and image. To create a cluster with this definition 
in your Google Cloud project, change to the automation/terraform 
directory and run:

Changing any of the values in automation/terraform/vars.tf 
and running terraform apply will drive the cluster towards the new 
desired state. The cluster might need to be shut down and recreated 
depending on the type of change, so always review Terraform’s plan 
carefully before accepting it. 

This declarative resource management – stating your intent and using 
automation to drive resources towards it – is a powerful concept behind 
modern, cloud-native tools like Terraform. Even in cases like this one 
where the cluster itself is relatively simple, treating the infrastructure as 
committed code from the beginning enables all the benefits discussed 
earlier, such as rapid iteration and control over configuration drift.



11

One last example from the Terraform definition illustrates how resources 
relate to each other:

The DNS record set described here uses two sources of inputs: User 
selections from variables, and dynamic information sourced from the 
newly-created Compute Engine instances. Terraform understands the 
implicit dependency between the record set and the node’s address it 
points to. Therefore, it will create the node first, discover the address, 
and record that in DNS without any special handling by the user 
requesting the resources.

After applying the Terraform, you will have a running cluster, but each 
VM is created from a vanilla operating system image without any custom 
applications or data. The next step is to use Ansible to configure the operating 
system, data, and applications needed to run the STAC-M3TM benchmark:

resource google_dns_record_set node {

  count = var.instance_count

  managed_zone = var.dns_zone

  name = “${var.name}${format(“%02s”, count.index + 1)}.${var.dns_domain}.”

  type = “A”

  rrdatas = [“${google_compute_instance.node[count.index].network_interface[0].access_config[0].nat_ip}”]

  ttl = 5

}
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- hosts: all

  gather_facts: no

  any_errors_fatal: yes

  tasks:

    - wait_for_connection:

(...)

- hosts: all

  any_errors_fatal: yes

  roles:

    - stac-m3

  tags: stac-m3

(...)

- name: find mount points

  find:

    paths:

      - ‘{{ stac_m3_dir }}/data’

    file_type: directory

  register: mounts

This block from automation/ansible/install.yml waits for 
connectivity to the cluster and maps Ansible roles (code modules) to 
host groups. Digging into the stac-m3 role more, we find tasks like these 
in automation/ansible/roles/stac-m3/tasks/setup.yml:
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# list of partitions for each worker

- name: generate par.txt

  template:

    src: par.txt.j2

    dest: ‘{{ path }}/db{{ item }}/par.txt’

  loop: ‘{{ range(stac_m3_worker_count) }}’

(...)

(...)

- name: sync data from GCS

  loop: ‘{{ stac_m3_years }}’

  script: data.py -y {{ item }} -n {{ inventory_hostname }} {{ ‘ 
‘.join(groups[‘stac’]) }}

(...)

The code above locates mount points and stores them for later use, then uses a 
template to generate a configuration file needed for the benchmark to run. Most of 
the tasks are declarative, much like Terraform definitions, and playbooks should be 
written to be idempotent. In other words, running the same playbook again should 
drive the operating system, data, and applications toward a desired state, much like 
Terraform does with cloud infrastructure.

One final note about synchronization of sharded data as described earlier:

This task from automation/ansible/roles/nvme/main.yml runs a custom 
script to pull data from the Cloud Storage bucket in which the full Antuco and 
Kanaga data set is stored. With some basic knowledge of cluster size and layout, 
the script can determine which data segments the local node is responsible for 
and cache them to the fast local NVMe storage used when running tick history 
calculations. As a flexible and pragmatic tool, Ansible allows arbitrary scripts to run 
– just make sure the execution of the script is idempotent across multiple runs of 
the Ansible role or playbook.
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Empowering financial services 
with on-demand scale

To learn more or explore how Google Cloud fits 
into your long-term innovation roadmap, please 
contact your Google Cloud account manager or 
check our website.

Blog STAC Vault

Processing larger and larger data sets is becoming a major challenge - and 
opportunity - for the financial services industry where managing risk and 
generating returns are vital. Our latest benchmark results translate into real-
world advantages that typically would be difficult for investment firms to 
achieve in complex and costly on-premise environments: Immediate answers 
when markets are turbulent, more thoroughly explored research theories, and 
reduced costs by releasing cloud resources more quickly.

We would like to thank author Paul Mibus and 
contributors Aaron Walters and Christin Brown 
for their help, support, and technical and domain 
expertise in writing this paper.
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