DMA Interoperability Developer
Documentation:
Overview of the Technical Framework

Important Information

This document provides a high level overview of WhatsApp’s technical solution for
facilitating interoperability pursuant to Article 7 of Regulation (EU) 2022/1925 (the “Digital
Markets Act” or “DMA?”). It constitutes part of WhatsApp’s Reference Offer pursuant to
Article 7(4) of the DMA.

Further detailed technical documentation, containing technical implementation guidance
and a breakdown per technical requirement, will be shared with qualified partners.

Table of Contents

Section 1 - Overview of Implementation and Milestones

Section 2 - Overview of WhatsApp’s Technical Solution

Appendix: Required Features

Glossary

Page 1

Section 1 - Implementation and Milestones

WhatsApp has devised a sequenced, milestone-based approach to facilitate
implementation of WhatsApp’s technical framework for interoperability with eligible
third party messaging services (“Partners”). The suggested sequencing below breaks
down the implementation process into milestones that are accompanied by testable
experiences. The testing enables the Partner to verify whether the implementation of
each milestone component was successful.

Note: Partners can communicate with their WhatsApp point of contact for assistance while
completing each milestone and when testing integration points.

Suggested Sequencing

There are five main milestones to implementing interoperability with WhatsApp.

The breakdown below highlights the main activities to be completed in each milestone,
as well as proposed testing to verify successful completion. Further specifics will be
provided in the detailed technical documentation (which is organized by milestone).

Getting started

+ Review the requirements and create a work plan

Milestone 1: Identities - Verification, User Enlistment and Authentication

+ Build out the public key fetch APIs to allow the WhatsApp server to fetch public
keys to verify user tokens
Build and test user enlistment
+ Request and Responses

Test - enlist a user and verify successful response

Page 2

Milestone 2: Chat Protocol and Noise Handshake

« Chat Channel / Noise Protocol

Build out WhatsApp binary protocol -> XML translation to connect and see
examples

+ Build XML -> WhatsApp binary protocol translation and a ping; connect and
send ping
Build user key fetch XML construction & storage

Test - set up chat channel, complete noise handshake, verify successful responses received
for ping

Milestone 3: Enabling Messaging
3.1 Encryption

+ Build message encryption using the Signal Protocol (or compatible)
3.2 Enabling Outgoing Messages to WhatsApp

+ Build message XML construction
+ Build text message protobuf construction
Send the phone numbers of WhatsApp test accounts you want to use for testing

Test - successfully send message from a Partner client to a WhatsApp client

3.3 Enabling Incoming Messages from WhatsApp

+ Push notifications
+ Build message XML processing
Build message decryption
« Build text message protobuf parsing/validation

Test - successfully receive message from a WhatsApp client

Page 3

Milestone 4: Enabling Integrity and Additional Features
4.1. Enabling Media

+ Build and test subsequent message types, such as media

Test - successfully receive media from a WhatsApp client

4.2. Integrity Features

+ Build blocking functionality

Milestone 5: User Deletion

+ Partner enables and sends a deletion request through the chat channel to
request removal of user account information from the WhatsApp server.

Test - send deletion request

Once all milestones have been reached, WhatsApp and Partner will jointly test
the integration.

Conclusion: Enabling interoperability for Partner app

+ WhatsApp and Partner to agree on rollout/GTM and ongoing monitoring

Page 4

Section 2 - Overview of Technical Framework

This document presents a high level overview of the technical specifications for each
component of WhatsApp’s technical solution to enable interoperability, as follows:

« Part 1: Identities - Verification, User Enlistment and Authentication
« Part 2: Chat Protocol and Noise Handshake

« Part 3: Enabling Messaging

« Part 4: Enabling Additional Message Features and Integrity

« Part 5: User Deletion

« Part 6: Updates and Ongoing Support

Each part corresponds to a chapter of the detailed technical documentation, to be sent
separately under NDA to qualified parties.

General Note on Architecture

Partner users’ devices connect to the WhatsApp server using WhatsApp’s proprietary
XML protocol (based on XMPP), as described further below.

The WhatsApp server interfaces with Partner servers over HTTP in order to facilitate
user authentication, push notification services, and management of Partner’s users’
media uploads. Partner’s users’ devices also send HTTP requests to the WhatsApp
server in order to enlist.

Note: Supported HTTP Protocols - Partner servers must support both the HTTP/1.1 and
HTTP/2 protocols. This allows WhatsApp’s server to start with the simpler HTTP/1.1 protocol
and switch to HTTP/2 later to improve efficiency if required.

Page 5

@ ' IEEEN NN NN

Identity Verification,

WhatsApp Server Push, Media

LB WhatsAppChat L B N NN
WhatsApp (chatd))
Client WAP in XML WAP in XML

WhatsApp Enlistment
(regd)

HTTP
ser@partr

Figure 1.0: Solution Architecture Overview

Alternative Architecture (Proxy)

The Partner will have the option to add a proxy or an “intermediary” that sits between
their client and WhatsApp’s server. The proxy server must maintain a separate client
connection to the WhatsApp server for each individual Partner client on the Partner
client’s behalf. The client/server protocol including the Noise Protocol can be
implemented at the proxy level; however, the decryption & encryption of message
content must only happen on the Partner client.

Requirements for Proxy Architecture

- The third party proxy server must maintain a single connection to WhatsApp
Infrastructure per client

- The third party proxy server’s connection lifecycle must match that of the
Partner client’s (i.e., the third party proxy server must not maintain a connection
to the WhatsApp server while the device is offline)

- The third party proxy server must provide the client’s IP address to WhatsApp
Infrastructure on connection

- The third party proxy server must not decrypt messages on the client’s behalf
(i.e., breaking end-to-end encryption)

Page 6

@ IEEEN NN NN

Identity Verification,

WhatsApp Server Push, Media

o000 00 WhatsAppChat o000 BOOOOL
WhatsApp (chatd)
Client WAP in XML WAP in XML

WhatsApp Enlistment
(regd)

HTTP
ser@partr

Figure 1.1: Solution Architecture Overview with Proxies

Part 1: Identities - Verification, User Enlistment
and Authentication

WhatsApp's technical solution utilizes two main identifiers: a user-visible identifier and
a uniquely generated identifier that is used at the infrastructure level (for protocols, data

storage, etc.), referred to as an “internal identifier”.

Note: Requirements applicable to user-visible identifiers will be specified in the detailed
technical documentation.

1.1 Verification of Identifiers

Each Partner user is represented by an internal identifier in WhatsApp’s infrastructure
that is assigned to them upon enlistment.

When WhatsApp users message Partner users, the WhatsApp client refers to the
internal identifier assigned to the Partner user at the protocol level. When Partner users

Page 7

message WhatsApp users, the Partner client refers to the internal identifier assigned to
the WhatsApp user.

WhatsApp requires Partner clients to provide “proof” of their ownership of the Partner
user-visible identifier when connecting or enlisting. The proof is constructed by the
Partner service, by providing a cryptographic signature over an authentication token,
which proves that a device has access ownership to a given Partner user-visible
identifier at a given point in time.

The WhatsApp server uses the standard OpenlD protocol (with some minor
modifications), alongside the JSON Web Token (JWT), to verify Partner user identities.
When a Partner user attempts to enlist or connect to the chat channel, the WhatsApp
server verifies their Partner user-visible identifier before performing the enlistment or
opening the channels upon enlisting, as well as upon connection to the chat channel,
as set forth in this section.

Partner servers are required to generate a signed token verifying the Partner user’s
identity. The WhatsApp server will periodically fetch the public key from the Partner
servers. The WhatsApp server uses this public key to verify the tokens generated by
Partner, as follows:

(1) The WhatsApp server periodically fetches the public key through an HTTP
endpoint that Partner exposes. This public key is used for signature verification
of the token.

(2) The Partner server generates a token for the authenticated Partner client.

(3) The Partner client provides that token to the WhatsApp server through either
the enlistment or the chat channel connection points.

(4) The WhatsApp server verifies the token by verifying the signature using the
previously fetched public key.

1.2 Partner User Enlistment

The WhatsApp server exposes an Enlistment API that Partner clients must use when
opting in to the WhatsApp network. The API consists of a standard HTTP request.

The Enlistment API has the following responsibilities:

Page 8

+ Verify the token, confirm that the provided Partner user-visible identifier is
also mentioned in the token.

« Assign an internal identifier to the Partner client.

+ Check the Partner client’s WhatsApp interop protocol version number.

1.2.1 Enlistment Request Example

The Enlistment API Endpoint is: https://v.whatsapp.net/3p/interop_reg

This APl is executed by the Partner client to request to enlist the Partner user on

WhatsApp’s infrastructure.

After this request successfully completes, the Partner user can login to WhatsApp’s
chat service, known as chatd.

1.2.2 Arguments

Arguments should be passed into an HTTP POST request.

Arguments

Argument ‘ Size ‘ Description

authkey 32 bytes Client static chat auth public key (same as for login).
This key is saved on the server and used as part of the Noise
handshake when connecting to the chat channel, a method of
authenticating the client.

e_keytype 1 byte e2e key type
(0x05 == curve25519).

e_regid 4 bytes The Registration ID
RegistrationID is generated by the Signal Protocol

e_ident 32 bytes e2e identity public key
This is the long term key used to create Signal sessions

e_skey_id 3 bytes e2e skey identifier

Page 9

https://v.whatsapp.net/3p/interop_reg

Also referred to as the Signed PreKey ID, generated by the
Signal Protocol

e_skey_val 32 bytes e2e skey bytes

The public part of the Signed Prekey (a medium term key),
generated by the Signal Protocol

e_skey_sig 64 bytes skey signature

The signature over the Signed Prekey by the Identity Key

integrator_id ID assigned to the Partner during onboarding e.g., "1"

A base10 string representation (1-999)

user_identifier | 1-4 bytes The Partner user's user-visible identifier, e.g., "alice" or
"16505551234".
- Note: Each UTF-8 character is 1-4B
- Restrictions: Only UTF-8 strings of length 1 to 40 are
allowed

token 4 kilobytes | JWT token issued by Partner server

Enlistment Request Example

curl -X POST -k "https://v.whatsapp.net/3p/interop reg" \
-H "Content-Type: application/x-www-form-urlencoded" \
--data-urlencode "user_identifier=alice" \
--data-urlencode
"e ident=x6g6tGpek@0Obx65-vVx9t3wNtjlUXcQY2iarR-Aush4" \
--data-urlencode "e keytype=BQ" \
--data-urlencode "e regid=x6g6tA" \
--data-urlencode "e_skey id=_tdJ" \
--data-urlencode
"e skey sig=BPEcejlI7RhacXe9MvBMUEs IHctlcDyza24vDrZca®N77YDGqCAXr2VWDALvOC
TSziNWFVMI4IDXIENwvyACA" \
--data-urlencode
"e skey val= tdJvC0i@-F9hl7iaHhrn42d1GnI3p6LwkFx3BS jXw" \
--data-urlencode
"authkey=mLsPDd27k@7BJa54dtt2e9Yz-vITECLXRAPrFp7Yex4" \
--data-urlencode "token=eyJraWQiOiIt..." \
--data-urlencode "integrator_ id=1"

Page 10

Example Response (Successful)
Note: This is a JSON object.

< HTTP/1.1 200 OK

{"login":"1-10853634039893@interop"”, "status":"ok"}

Example Response (Failure)
Note: This is a JSON object.

< HTTP/1.1 200 OK

{"reason":"bad_integrator", "status":"fail"}

1.3 Fetch Public Key for Partner Identity Verification

The Partner client provides an auth token as the identity proof to WhatsApp server.
WhatsApp server then cryptographically verifies if the identity does in fact belong to
the Partner user in question, through the public keys fetched from the Partner server.

Fetch Public Key APl Example

Sample Request

GET /.well-known/oauth/openid/jwks

Sample Response

"keys": [
{
"kid": "370fa58a78d23043256a2cc580f1cf9ed3b9bbe7",
"kty": "RSA",
"alg": "RS256",

n n

use": "sig",

n":
"y1VSkbdIm-Q76nrrPpv7RaGlQVjRfxw5z90wkM7qzFdUN15QIFrN8nozL21Vn0s-2rAfsoctoA
8aQVMmtuWsyeGIpdLrupMVsKqC9bS5_ 7CQFXRGhQbxsZN1WDU9PcyzQamqFMfOE13B1j3gZr13T
MHxaOBOIH60eMD1zUGWIsbrX4 QyYXr2Wj8xNNdZ7NwmRrik@dFTBg -TjTvBzV10WkhbnHT7Lu
krilXSEKhjGgAeDOzfGaixhunx3PcFtuB5HNB9qdpkxMeDUGOoUZ3MX-WY5ppfYMBs8euR10PG2

Page 11

6BACcBM5j40FuCy8zEv50rnodoa71Af-JbEdyr8smCyw",
llell : "AQAB"

Part 2: Chat Protocol and Noise Handshake

WhatsApp utilizes a slightly modified version of the Noise Protocol Framework. This
protocol is used to encrypt all data traveling between the client and the WhatsApp
server, similar to TLS.

As part of the Noise Protocol, the client must perform the Noise Handshake every time
the client connects to WhatsApp’s chat server. The Noise Handshake is used to
establish a shared secret to encrypt the communication between the client and server.
As the last part of the Noise Handshake, the client provides a payload to the server,
which among many other data points also contains the JWT token.

2.1 Chat Protocol

Once the client has successfully connected to the WhatsApp server using the Noise
Protocol, the client must use WhatsApp’s chat protocol to communicate with the
WhatsApp server.

WhatsApp’s chat protocol uses XML to construct stanzas to communicate with the
server. The data itself is transmitted in binary over the wire.

2.1.1 WhatsApp’s Chat Protocol Stanzas

Some example stanzas include the following (the detailed technical documentation
includes more detailed stanzas):

+ <message> To send a message to a WhatsApp user.

+ <ig> Similar to HTTP requests, used to query or set information with the
WhatsApp server.

+ <ib> For the server to communicate general information to the client, e.g., count
of messages in the offline mailbox for the client.

+ <receipt> Used by recipients of a message to indicate the status of the message
to the sender (delivered, requires re-delivery).

Page 12

http://www.noiseprotocol.org/

2.1.2 WhatsApp’s Binary Protocol Example

The WhatsApp binary protocol is used specifically in WhatsApp’s chat protocol. The
following is an example of how a stanza in WhatsApp’s chat protocol is converted into
the binary protocol.

XML:

<message to='14155551001@s.whatsapp.net’' from='14155551000@s.whatsapp.net’
id="123456"' type='text' notify='joe'>

<body>Body text of message.</body>
</message>

List format:

['message', 'to', ('14155551001', 's.whatsapp.net'), 'from',
('14155551000', 's.whatsapp.net), 'id', '123456', 'type', 'text', 'notify’,
"joe', [['body', 'Body text of message.']]

Binary encoded with nibble & hex packing:

Note: The binary will be compressed and encrypted following this step.

[248, 12, 19, 17, 250, 255, 134, 20, 21, 85, 81, @, 31, 3, 6, 250, 255,
134, 20, 21, 85, 81, @, 15, 3, 8, 252, 6, 49, 50, 51, 52, 53, 54, 4, 56,

24, 252, 3, <<"joe">>, 248, 1, 248, 2, 237, 117, 252, 14, <<"Body text of
message.">>].

Part 3. Enabling Messaging

WhatsApp clients use the Signal Protocol to implement end-to-end encryption. Partner
clients must also use this protocol (or one that Partner can demonstrate provides an
equivalent level of encryption) in order to send and receive messages with WhatsApp
clients.

As mentioned in the Enlistment API’s encryption parameters, the Partner client will
need to generate an identity key as well as some other keying material to be able to

Page 13

send and receive messages to WhatsApp clients. This keying material is generated
using the Signal Protocol.

Once the keying material is generated and the public keys are uploaded to the
WhatsApp server, the Partner clients are ready to receive messages from WhatsApp
clients. To send a message, they must use the chat channel and fetch the keys of the
relevant WhatsApp user to encrypt a message to them.

Note: Only one encryption identity can be associated with a Partner user account at
any given time. Therefore, WhatsApp clients only encrypt messages to a single
device.

Review the WhatsApp Security Whitepaper, available publicly on the WhatsApp
website, for more technical information about messaging security and encryption in
WhatsApp.

3.1 Enabling Outgoing Messages to WhatsApp

To create outgoing messages, the Partner will need to build message XML stanzas and
the content protobuf structures that are then later encrypted using the Signal Protocol.

More details are provided in the technical documentation.

3.2 Enabling Incoming Messages from WhatsApp

Partner clients must be connected to the WhatsApp server to receive messages from
WhatsApp users. When the client is connected, messages are pushed by the server to
the client through the chat channel, using the <message> stanza as defined in Part 2
above.

Once the message is received through the chat protocol, the client must decrypt the
payload using the Signal Protocol or equivalent encryption protocol. Once the payload
is decrypted, the content protobuf can be accessed and the message can be rendered.

3.2.1 Push Notifications
In the event that a Partner client is offline, the WhatsApp server will store the encrypted

messages sent to the user for 30 days in their offline mailbox. In order to facilitate
timely delivery of messages, the WhatsApp server will notify Partner servers over HTTP

Page 14

that their user’s client should reconnect to the WhatsApp server and fetch the latest
messages waiting for them in their offline mailbox.

Sends/Signals to Push
Requests Infra
Push Request
Infrastructure
Webhook Push Notify Push request to
User partner client
@ @ L offlin
WhatsApp WhatsApp
Client Server
Us: onnects to

Figure 1.2: Push Notification Process Flow

3.2.2 Push API Example

Whenever there is new activity for the Partner user and the Partner client is not
connected, the WhatsApp server makes a HTTPS POST request to the /push path
(e.g., https://foobar.com/whatsapp/push) with the user-visible identifier as the payload.

Sample Request

curl --request POST

--url $BASE_URL/push \

--header 'Content-Type: application/json' \

--header 'Authorization: Bearer
eyJhbGci0iJSUzIINiIsImtpZCI6IjFhWGY4IiwidHIwIjoiS1dUIn®.eyJpc3MiOiIXSEFUUOF

QUCISImF1ZCI6Imh@dHBz0i8vaW50ZWdyYXRvci5jb20iLCIpYXQi0jE20Dg2NjkyMzIsImV4cC
I6MTY40DY3MjgzMne.1JU_8k9SpbTo-MdGPdMgWNpdXRINBwYU3HgkDImHCOFDg6MQgwEBYyU7hy
-02Wo_a09kf8plIKYIQoxzbGsBfq3uANn4ixKN2TsraV5VxkBtXjhDHRAifYQ1ZkOK1EQ501K50
VoeU WWjG7ykkb69AsIbw-phF -t zxD8t2fI6TLsq0j3i3zxIBLNR1kuvuHL2DR21JFV74Tm
AXPXeZQfxLrv542xV7C1]-ruBGS2hcb04M OVvLbyXBPzP8M6nllhc460zSTmasTnzx1Etb7pGF

Page 15

https://foobar.com/whatsapp/push

sn5eJwZVeWWUQ3mbwDS7aTaC538PoA EX8TpLMgxgO5KkTGngKe8gygwcPFg'
--tlsvl.3

--http1.1
--data '{"to": "alice421"}'

Sample Response

200 OK

Note: There is no payload expected in the response.

The authorization token is a JWT signed using WhatsApp server's private key. The
Partner server should verify it using the public keys downloaded from
https://whatsapp.com/.well-known/jwks.

Page 16

https://whatsapp.com/.well-known/jwks

Part 4. Enabling Integrity and Additional Features

To enable integrity features and additional features such as media management, the
Partner will need to build and test media message types and blocking functionality.

4.1 Media Management

Partner messaging servers are responsible for hosting any media elements their client
applications send to the WhatsApp client application (such as image files). The
WhatsApp client downloads media from the Partner messaging servers using a
WhatsApp proxy service.

Note: Partner client applications will download media from the WhatsApp server for
media messages that are sent by the WhatsApp client application.

4.1.1 Sending Media to WhatsApp Client

Download encrypted
media blob

©)

Uploads media
o message WhatsApp WhatsApp
Server Client

Figure 1.3: Partner Client to WhatsApp Client Media Flow

Page 17

1. Partner clients should upload the encrypted media to the Partner server,
obtaining a storage_reference.

2. Partner clients should send a media message with a download path as
/interop/whatsapp/download/{integrator_identifier}/{storage
_reference}/.

3. Upon receiving the media message, the WhatsApp client will construct a
download URL by prepending the WhatsApp media server's URL to the
download path (e.g., http://mmg.whatsapp.net/{download_path})
which is effectively:
http://mmg.whatsapp.net/interop/whatsapp/download/{integrat
or_identifier}/{storage_reference}/).

4. The WhatsApp client makes a download request at the above path to the
WhatsApp server.

5. The WhatsApp server then downloads the encrypted media from the Partner
server by making a GET request to {3p_base_url}/{storage_reference},
and returns a response to the client.

4.1.2 Receiving Media from WhatsApp client

The WhatsApp client will upload encrypted media to WhatsApp's media server to
obtain a download path (i.e., /v/t{file_identifier}). The WhatsApp client will
then pass the download path inside the media message.

The Partner client should construct the full download URL by prepending WhatsApp
media base_url for download (e.g.,
http://mmg.whatsapp.net/v/t{file_reference}). The Partner client should
then make a HTTP GET request to the endpoint (see example below).

Sample Request

GET http://mmg.whatsapp.net/v/t{file_reference}

Sample Response

200 OK

Page 18

http://mmg.whatsapp.net/v/t%7Bdownload_path
http://mmg.whatsapp.net/v/t/interop/whatsapp/download/%7Bintegrator_identifier%7D/%7Bstorage_reference
http://mmg.whatsapp.net/v/t/interop/whatsapp/download/%7Bintegrator_identifier%7D/%7Bstorage_reference
http://mmg.whatsapp.net/v/t/%7Bfile_reference

Note: The response header includes the content length (file size) and content type.
The response body includes the file data binary.

4.2 Blocking

To block a WhatsApp user or to read the current list of users that the Partner client has
blocked, getting and setting blocklist IQs are used over the chat channel.

Page 19

Part 5. User Deletion

In the case of a Partner user deciding to opt out of the WhatsApp integration, the
Partner client must send a deletion request through the chat channel to request
removal of their information from the WhatsApp server.

If a Partner client does not connect to the WhatsApp server for a period of 30 days, the
WhatsApp server will automatically un-enlist them. In that case, the Partner client will
receive an error, and must re-enlist as described previously.

Part 6. Integration Completion, Ongoing
Communication & Support

WhatsApp and Partner will jointly develop a rollout plan once implementation is
successfully completed.

Partners will have access to a WhatsApp point of contact for ongoing communication
and support post-rollout.

Versioning
The WhatsApp interop protocol supports versioning.

Partner clients are required to provide the protocol version they are using when
connecting to the WhatsApp server.

Partners can refer to the version changelog that is published with the detailed technical
documentation. The changelog will list any modifications that have been made to
processes, endpoints, and other technical implementation details (such as protocol
enhancements).

Page 20

List of Required Features

The list below outlines the minimum set of features that Partners are required to
support when requesting integration with WhatsApp for the Interoperable Messaging
Services, as defined in the Reference Offer and described in this Developer
Documentation.

Partner must support the following Required Features:

Feature Type Feature List

User Features 1. Receiving Messages

- Text Messages

- Media Messages
2. Sending Messages

- Text Messages

- (optional) Media Messages
3. Delivery Receipts

- Must display to Partner User
4. Push Notifications

—

E2EE Features . Security Notifications in the chat thread (i.e., Identity Change
Notifications)

Forward Secrecy

Post Compromise Security

Deniability

Retry Messaging (i.e. receive and send retry receipts)

Al

User Enlistment
Verification of Identifier for Partner Users
Deletion (user account deletion, e.g., upon opt-out)

Processes and
Functionality

W~

—

Integrity and Safety
Features

. Blocking

Page 21

Glossary

Chat channel - The communications channel established and maintained between
WhatsApp and Partner messaging services. The channel is between the client and the
server (based on chatd).

Binary protocol - The transport protocol on the wire between the client and Chat
server; the Chat protocol is encoded into this protocol.

Chat protocol - The client/server protocol used to communicate with WhatsApp’s
Chat server.

Devices - End user mobile devices (iOS and Android) that are used when sending and
receiving messages between WhatsApp and Partner messaging services.

Enlistment (Registration) API - The set of Application Programming Interface calls
that manage the messaging user enlistment process.

Infrastructure - The hardware and software resources comprising the Interoperable
Messaging Services (servers, APl endpoints, etc.).

Internal identifier - A unique identifier for users of the Partner messaging service
created and used by WhatsApp. Used at the protocol layer.

JWT (JSON Web Token) - An open standard (RFC 7519) that defines a compact and
self-contained way for securely transmitting information between parties as a JSON
object. This information can be verified and trusted because it is digitally signed. (See
https://auth0.com/learn/json-web-tokens)

Noise Handshake - The exchange of public keys and the performing of a sequence of
operations to compute shared secret keys independently by the WhatsApp’s Chat
server and Partner clients.

Page 22

https://auth0.com/learn/json-web-tokens

Noise Protocol - A framework for building crypto protocols. Noise protocols support
mutual and optional authentication, identity hiding, forward secrecy, zero round-trip
encryption, and other advanced features.

OpenlD protocol - An open authentication protocol (OpenlD Connect (OIDC)) that
works on top of the OAuth 2.0 framework. OIDC allows individuals to use single
sign-on to access relying party sites using OpenlD Providers. (See
https://www.pingidentity.com/en/resources/identity-fundamentals/authentication-autho
rization-standards/openid-connect.html)

Signal Protocol - A set of cryptographic specifications that provides end-to-end
encryption for private communications.

User-visible Identifier - A unique identifier for a user of the Partner messaging service
(phone number, email, etc.). Displayed to the end users.

User Enlistment - The process of setting up a new Partner user on the WhatsApp
servetr.

WhatsApp Chat Server - The WhatsApp server that sends and receives messages
between the WhatsApp client and Partner messaging applications.

WhatsApp Enlistment Server - The WhatsApp server that manages the client
application and Partner user enlistment on the WhatsApp messaging platform.

WhatsApp Client - The WhatsApp client messaging application that runs on mobile
devices (i0OS and Android).

XMPP - The Extensible Messaging and Presence Protocol, a set of open technologies
for instant messaging, presence, multi-party chat, voice and video calls, collaboration,
lightweight middleware, content syndication, and generalized routing of XML data. (See
https://xmpp.org/about/technology-overview/)

Page 23

https://www.pingidentity.com/en/resources/identity-fundamentals/authentication-authorization-standards/openid-connect.html
https://www.pingidentity.com/en/resources/identity-fundamentals/authentication-authorization-standards/openid-connect.html
https://xmpp.org/

