
‭DMA Interoperability Developer‬
‭Documentation:‬
‭Overview of the Technical Framework‬

‭Important Information‬

‭This document provides a high level overview of WhatsApp’s technical solution for‬
‭facilitating interoperability pursuant to Article 7 of Regulation (EU) 2022/1925 (the “Digital‬
‭Markets Act” or “DMA”). It constitutes part of WhatsApp’s Reference Offer pursuant to‬
‭Article 7(4) of the DMA.‬

‭Further detailed technical documentation, containing technical implementation guidance‬
‭and a breakdown per technical requirement, will be shared with qualified partners.‬

‭Table of Contents‬

‭Section 1 - Overview of Implementation and Milestones‬

‭Section 2 - Overview of WhatsApp’s Technical Solution‬

‭Appendix: Required Features‬

‭Glossary‬

‭Page‬‭1‬



‭Section 1 - Implementation and Milestones‬
‭WhatsApp has devised a sequenced, milestone-based approach to facilitate‬
‭implementation of WhatsApp’s technical framework for interoperability with eligible‬
‭third party messaging services (“Partners”). The suggested sequencing below breaks‬
‭down the implementation process into milestones that are accompanied by testable‬
‭experiences. The testing enables the Partner to verify whether the implementation of‬
‭each milestone component was successful.‬

‭Note:‬‭Partners can communicate with their WhatsApp‬‭point of contact for assistance while‬
‭completing each milestone and when testing integration points.‬

‭Suggested Sequencing‬
‭There are‬‭five main milestones‬‭to implementing interoperability‬‭with WhatsApp.‬
‭The breakdown below highlights the main activities to be completed in each milestone,‬
‭as well as proposed testing to verify successful completion. Further specifics will be‬
‭provided in the detailed technical documentation (which is organized by milestone).‬

‭Getting started‬

‭•‬ ‭Review the requirements and create a work plan‬

‭Milestone 1: Identities - Verification, User Enlistment and Authentication‬

‭•‬ ‭Build out the public key fetch APIs to allow the WhatsApp server to fetch public‬
‭keys to verify user tokens‬

‭•‬ ‭Build and test user enlistment‬
‭•‬ ‭Request and Responses‬

‭Test‬‭- enlist a user and verify successful response‬

‭Page‬‭2‬



‭Milestone 2: Chat Protocol and Noise Handshake‬

‭•‬ ‭Chat Channel / Noise Protocol‬
‭•‬ ‭Build out WhatsApp binary protocol -> XML translation to connect and see‬

‭examples‬
‭•‬ ‭Build XML -> WhatsApp binary protocol translation and a ping; connect and‬

‭send ping‬
‭•‬ ‭Build user key fetch XML construction & storage‬

‭Test‬‭- set up chat channel, complete noise handshake,‬‭verify successful responses received‬
‭for ping‬

‭Milestone 3: Enabling Messaging‬
‭3.1 Encryption‬

‭•‬ ‭Build message encryption using the Signal Protocol (or compatible)‬

‭3.2 Enabling Outgoing Messages to WhatsApp‬

‭•‬ ‭Build message XML construction‬
‭•‬ ‭Build text message protobuf construction‬
‭•‬ ‭Send the phone numbers of WhatsApp test accounts you want to use for testing‬

‭Test‬‭- successfully send message from a Partner client‬‭to a WhatsApp client‬

‭3.3  Enabling Incoming Messages from WhatsApp‬

‭•‬ ‭Push notifications‬
‭•‬ ‭Build message XML processing‬
‭•‬ ‭Build message decryption‬
‭•‬ ‭Build text message protobuf parsing/validation‬

‭Test‬‭- successfully receive message from a WhatsApp‬‭client‬

‭Page‬‭3‬



‭Milestone 4: Enabling Integrity and Additional Features‬
‭4.1. Enabling Media‬

‭•‬ ‭Build and test subsequent message types, such as media‬

‭Test‬‭- successfully receive media from a WhatsApp‬‭client‬

‭4.2. Integrity Features‬

‭•‬ ‭Build blocking functionality‬

‭Milestone 5: User Deletion‬

‭•‬ ‭Partner enables and sends a deletion request through the chat channel to‬
‭request removal of user account information from the WhatsApp server.‬

‭Test‬‭- send deletion request‬

‭Once all milestones have been reached, WhatsApp and Partner will jointly test‬
‭the integration.‬

‭Conclusion: Enabling interoperability for Partner app‬

‭•‬ ‭WhatsApp and Partner to agree on rollout/GTM and ongoing monitoring‬

‭Page‬‭4‬



‭Section 2 - Overview of Technical Framework‬
‭This document presents a high level overview of the technical specifications for each‬
‭component of WhatsApp’s technical solution to enable interoperability, as follows:‬

‭•‬ ‭Part 1‬‭: Identities‬‭- Verification, User Enlistment‬‭and Authentication‬
‭•‬ ‭Part 2‬‭: Chat Protocol and Noise Handshake‬
‭•‬ ‭Part 3‬‭: Enabling Messaging‬
‭•‬ ‭Part 4‬‭: Enabling Additional Message Features and Integrity‬
‭•‬ ‭Part 5‬‭: User Deletion‬
‭•‬ ‭Part 6‬‭: Updates and Ongoing Support‬

‭Each part corresponds to a chapter of the detailed technical documentation, to be sent‬
‭separately under NDA to qualified parties.‬

‭General Note on Architecture‬
‭Partner users’ devices connect to the WhatsApp server using WhatsApp’s proprietary‬
‭XML protocol (based on XMPP), as described further below.‬

‭The WhatsApp server interfaces with Partner servers over HTTP in order to facilitate‬
‭user authentication, push notification services, and management of Partner’s users’‬
‭media uploads. Partner’s users’ devices also send HTTP requests to the WhatsApp‬
‭server in order to enlist.‬

‭Note: Supported HTTP Protocols‬‭- Partner servers must‬‭support both the HTTP/1.1 and‬
‭HTTP/2 protocols. This allows WhatsApp’s server to start with the simpler HTTP/1.1 protocol‬
‭and switch to HTTP/2 later to improve efficiency if required.‬

‭Page‬‭5‬



‭Figure 1.0:‬‭Solution Architecture Overview‬

‭Alternative Architecture (Proxy)‬

‭The Partner will have the option to add a proxy or an “intermediary” that sits between‬
‭their client and WhatsApp’s server. The proxy server must maintain a‬‭separate‬‭client‬
‭connection to the WhatsApp server for each individual Partner client on the Partner‬
‭client’s behalf. The client/server protocol including the Noise Protocol can be‬
‭implemented at the proxy level; however, the decryption & encryption of message‬
‭content must‬‭only‬‭happen on the Partner client.‬

‭Requirements for Proxy Architecture‬
‭-‬ ‭The third party proxy server must maintain a single connection to WhatsApp‬

‭Infrastructure per client‬
‭-‬ ‭The third party proxy server’s connection lifecycle must match that of the‬

‭Partner client’s (i.e., the third party proxy server must not maintain a connection‬
‭to the WhatsApp server while the device is offline)‬

‭-‬ ‭The third party proxy server must provide the client’s IP address to WhatsApp‬
‭Infrastructure on connection‬

‭-‬ ‭The third party proxy server must not decrypt messages on the client’s behalf‬
‭(i.e., breaking end-to-end encryption)‬

‭Page‬‭6‬



‭Figure 1.1:‬‭Solution Architecture Overview with Proxies‬

‭Part 1: Identities - Verification, User Enlistment‬
‭and Authentication‬
‭WhatsApp's technical solution utilizes two main identifiers: a user-visible identifier and‬
‭a uniquely generated identifier that is used at the infrastructure level (for protocols, data‬
‭storage, etc.), referred to as an “internal identifier”.‬

‭Note:‬‭Requirements applicable to user-visible identifiers‬‭will be specified in the detailed‬
‭technical documentation.‬

‭1.1  Verification of Identifiers‬

‭Each Partner user is represented by an internal identifier in WhatsApp’s infrastructure‬
‭that is assigned to them upon enlistment.‬

‭When WhatsApp users message Partner users, the WhatsApp client refers to the‬
‭internal identifier assigned to the Partner user at the protocol level. When Partner users‬

‭Page‬‭7‬



‭message WhatsApp users, the Partner client refers to the internal identifier assigned to‬
‭the WhatsApp user.‬

‭WhatsApp requires Partner clients to provide “proof” of their ownership of the Partner‬
‭user-visible identifier when connecting or enlisting. The proof is constructed by the‬
‭Partner service, by providing a cryptographic signature over an authentication token,‬
‭which proves that a device has access ownership to a given Partner user-visible‬
‭identifier at a given point in time.‬

‭The WhatsApp server uses the‬‭standard OpenID protocol‬‭(with some minor‬
‭modifications), alongside the JSON Web Token (JWT), to verify Partner user identities.‬
‭When a Partner user attempts to enlist or connect to the chat channel, the WhatsApp‬
‭server verifies their Partner user-visible identifier before performing the enlistment or‬
‭opening the channels upon enlisting, as well as upon connection to the chat channel,‬
‭as set forth in this section.‬

‭Partner servers are required to generate a signed token verifying the Partner user’s‬
‭identity. The WhatsApp server will periodically fetch the public key from the Partner‬
‭servers. The WhatsApp server uses this public key to verify the tokens generated by‬
‭Partner, as follows:‬

‭(1)‬‭The WhatsApp server periodically fetches the public‬‭key through an HTTP‬
‭endpoint that Partner exposes. This public key is used for signature verification‬
‭of the token.‬
‭(2)‬‭The Partner server generates a token for the authenticated‬‭Partner client.‬
‭(3)‬‭The Partner client provides that token to the‬‭WhatsApp server through either‬
‭the enlistment or the chat channel connection points.‬
‭(4)‬‭The WhatsApp server verifies the token by verifying‬‭the signature using the‬
‭previously fetched public key.‬

‭1.2 Partner User Enlistment‬

‭The WhatsApp server exposes an Enlistment API that Partner clients must use when‬
‭opting in to the WhatsApp network. The API consists of a standard HTTP request.‬

‭The Enlistment API has the following responsibilities:‬

‭Page‬‭8‬



‭•‬ ‭Verify the token, confirm that the provided Partner user-visible identifier is‬
‭also mentioned in the token.‬

‭•‬ ‭Assign an internal identifier to the‬‭Partner‬‭client.‬

‭•‬ ‭Check the‬‭Partner‬‭client’s WhatsApp interop protocol‬‭version number.‬

‭1.2.1 Enlistment Request Example‬

‭The Enlistment API Endpoint is:‬‭https://v.whatsapp.net/3p/interop_reg‬

‭This API is executed by the Partner client to request to enlist the Partner user on‬
‭WhatsApp’s infrastructure.‬

‭After this request successfully completes, the Partner user can login to WhatsApp’s‬
‭chat service, known as chatd.‬

‭1.2.2 Arguments‬

‭Arguments should be passed into an HTTP POST request.‬

‭Arguments‬

‭Argument‬ ‭Size‬ ‭Description‬

‭authkey‬ ‭32 bytes‬ ‭Client static chat auth public key (same as for login).‬

‭This key is saved on the server and used as part of the Noise‬
‭handshake when connecting to the chat channel, a method of‬
‭authenticating the client.‬

‭e_keytype‬ ‭1 byte‬ ‭e2e key type‬
‭(0x05 == curve25519).‬

‭e_regid‬ ‭4 bytes‬ ‭The Registration ID‬

‭RegistrationID is generated by the Signal Protocol‬

‭e_ident‬ ‭32 bytes‬ ‭e2e identity public key‬

‭This is the long term key used to create Signal sessions‬

‭e_skey_id‬ ‭3 bytes‬ ‭e2e skey identifier‬

‭Page‬‭9‬

https://v.whatsapp.net/3p/interop_reg


‭Also referred to as the Signed PreKey ID, generated by the‬
‭Signal Protocol‬

‭e_skey_val‬ ‭32 bytes‬ ‭e2e skey bytes‬

‭The public part of the Signed Prekey (a medium term key),‬
‭generated by the Signal Protocol‬

‭e_skey_sig‬ ‭64 bytes‬ ‭skey signature‬

‭The signature over the Signed Prekey by the Identity Key‬

‭integrator_id‬ ‭ID assigned to the Partner during onboarding e.g., "1"‬

‭A base10 string representation (1-999)‬

‭user_identifier‬ ‭1-4 bytes‬ ‭The Partner user's user-visible identifier, e.g., "alice" or‬
‭"16505551234".‬

‭-‬ ‭Note: Each UTF-8 character is 1-4B‬
‭-‬ ‭Restrictions: Only UTF-8 strings of length 1 to 40 are‬

‭allowed‬

‭token‬ ‭4 kilobytes‬ ‭JWT token issued by Partner server‬

‭Enlistment Request Example‬

‭curl -X POST -k "https://v.whatsapp.net/3p/interop_reg" \‬

‭-H "Content-Type: application/x-www-form-urlencoded" \‬

‭--data-urlencode "user_identifier=alice" \‬

‭--data-urlencode‬

‭"e_ident=x6g6tGpek0Obx65-vVx9t3wNtjJUXcQY2iarR-Aush4" \‬

‭--data-urlencode "e_keytype=BQ" \‬

‭--data-urlencode "e_regid=x6g6tA" \‬

‭--data-urlencode "e_skey_id=_tdJ" \‬

‭--data-urlencode‬

‭"e_skey_sig=BPEcejlI7RhacXe9MvBMUEs_IHctlcDyza24vDrZca0N77YDGqCAXr2VWDALvOc‬

‭TSziNWfVMJ4IDxIENwvyACA" \‬

‭--data-urlencode‬

‭"e_skey_val=_tdJvCOi0-F9hl7iaHhrn42d1GnI3p6LwkFx3BS_jXw" \‬

‭--data-urlencode‬

‭"authkey=mLsPDd27k07BJa54dtt2e9Yz-vJfECLXRAPrFp7YeX4" \‬

‭--data-urlencode "token=eyJraWQiOiIt..." \‬

‭--data-urlencode "integrator_id=1"‬

‭Page‬‭10‬



‭Example Response (Successful)‬
‭Note:‬‭This is a JSON object.‬

‭< HTTP/1.1 200 OK‬

‭{"login":"1-10853634039893@interop", "status":"ok"}‬

‭Example Response (Failure)‬
‭Note:‬‭This is a JSON object.‬

‭< HTTP/1.1 200 OK‬

‭{"reason":"bad_integrator", "status":"fail"}‬

‭1.3  Fetch Public Key for Partner Identity Verification‬
‭The Partner client provides an auth token as the identity proof to WhatsApp server.‬
‭WhatsApp server then cryptographically verifies if the identity does in fact belong to‬
‭the Partner user in question, through the public keys fetched from the Partner server.‬

‭Fetch Public Key API Example‬

‭Sample Request‬

‭GET /.well-known/oauth/openid/jwks‬

‭Sample Response‬

‭{‬

‭"keys": [‬

‭{‬

‭"kid": "370fa58a78d23043256a2cc580f1cf9ed3b9bbe7",‬

‭"kty": "RSA",‬

‭"alg": "RS256",‬

‭"use": "sig",‬

‭"n":‬

‭"ylVSkbdJm-Q76nrrPpv7RaGlQVjRfxw5z9OwkM7qzFdUW15QJFrN8nozL21VnOs-2rAfsoctoA‬

‭8aQVMmtuWsyeGIpdLrupMVsKqC9bS5_7CQFXRGhQbxsZN1WDU9PcyzQamqFMfOEl3Blj3gZr13T‬

‭MHxaOB0IH6OeMDlzUGWIsbrX4_QyYXr2Wj8xNNdZ7NwmRrik0dFTBg_-TjTvBzV10WkhbnHT7Lu‬

‭kri1XSEKhjGqAeD0zfGaixhunx3PcFtuB5HNB9qdpkxMeDUG0oUZ3MX-WY5ppfYMBs8euR1OPG2‬

‭Page‬‭11‬



‭6BAcBM5j4OFuCy8zEv5ornodoa71Af-JbEdyr8smCyw",‬

‭"e": "AQAB"‬

‭}‬

‭]‬

‭}‬

‭Part 2: Chat Protocol and Noise Handshake‬
‭WhatsApp utilizes a slightly modified version of the‬‭Noise Protocol Framework‬‭. This‬
‭protocol is used to encrypt all data traveling between the client and the WhatsApp‬
‭server, similar to TLS.‬

‭As part of the Noise Protocol, the client must perform the Noise Handshake every time‬
‭the client connects to WhatsApp’s chat server. The Noise Handshake is used to‬
‭establish a shared secret to encrypt the communication between the client and server.‬
‭As the last part of the Noise Handshake, the client provides a payload to the server,‬
‭which among many other data points also contains the JWT token.‬

‭2.1  Chat Protocol‬

‭Once the client has successfully connected to the WhatsApp server using the Noise‬
‭Protocol, the client must use WhatsApp’s chat protocol to communicate with the‬
‭WhatsApp server.‬

‭WhatsApp’s chat protocol uses XML to construct stanzas to communicate with the‬
‭server. The data itself is transmitted in binary over the wire.‬

‭2.1.1  WhatsApp’s Chat Protocol Stanzas‬

‭Some example stanzas include the following‬‭(the detailed‬‭technical documentation‬
‭includes more detailed stanzas):‬

‭•‬ ‭<message> To send a message to a WhatsApp user.‬
‭•‬ ‭<iq> Similar to HTTP requests, used to query or set information with the‬

‭WhatsApp server.‬
‭•‬ ‭<ib> For the server to communicate general information to the client, e.g., count‬

‭of messages in the offline mailbox for the client.‬
‭•‬ ‭<receipt> Used by recipients of a message to indicate the status of the message‬

‭to the sender (delivered, requires re-delivery).‬

‭Page‬‭12‬

http://www.noiseprotocol.org/


‭2.1.2  WhatsApp’s Binary Protocol Example‬

‭The WhatsApp binary protocol is used specifically in WhatsApp’s chat protocol. The‬
‭following is an example of how a stanza in WhatsApp’s chat protocol is converted into‬
‭the binary protocol.‬

‭XML:‬

‭<message to='14155551001@s.whatsapp.net' from='14155551000@s.whatsapp.net'‬

‭id='123456' type='text' notify='joe'>‬

‭<body>Body text of message.</body>‬

‭</message>‬

‭List format:‬

‭['message', 'to', ('14155551001', 's.whatsapp.net'), 'from',‬

‭('14155551000', 's.whatsapp.net), 'id', '123456', 'type', 'text', 'notify',‬

‭'joe', [['body', 'Body text of message.']]‬

‭Binary encoded with nibble & hex packing:‬

‭Note:‬‭The binary will be compressed and encrypted‬‭following this step.‬

‭[248, 12, 19, 17, 250, 255, 134, 20, 21, 85, 81, 0, 31, 3, 6, 250, 255,‬

‭134, 20, 21, 85, 81, 0, 15, 3, 8, 252, 6, 49, 50, 51, 52, 53, 54, 4, 56,‬

‭24, 252, 3, <<"joe">>, 248, 1, 248, 2, 237, 117, 252, 14, <<"Body text of‬

‭message.">>].‬

‭Part 3. Enabling Messaging‬
‭WhatsApp clients use the Signal Protocol to implement end-to-end encryption. Partner‬
‭clients must also use this protocol (or one that Partner can demonstrate provides an‬
‭equivalent level of encryption) in order to send and receive messages with WhatsApp‬
‭clients.‬

‭As mentioned in the Enlistment API’s encryption parameters, the Partner client will‬
‭need to generate an identity key as well as some other keying material to be able to‬

‭Page‬‭13‬



‭send and receive messages to WhatsApp clients. This keying material is generated‬
‭using the Signal Protocol.‬

‭Once the keying material is generated and the public keys are uploaded to the‬
‭WhatsApp server, the Partner clients are ready to receive messages from WhatsApp‬
‭clients. To send a message, they must use the chat channel and fetch the keys of the‬
‭relevant WhatsApp user to encrypt a message to them.‬

‭Note:‬‭Only one encryption identity can be associated‬‭with a Partner user account at‬
‭any given time. Therefore, WhatsApp clients only encrypt messages to a single‬
‭device.‬

‭Review the‬‭WhatsApp Security Whitepaper‬‭, available‬‭publicly on the WhatsApp‬
‭website, for more technical information about messaging security and encryption in‬
‭WhatsApp.‬

‭3.1 Enabling Outgoing Messages to WhatsApp‬

‭To create outgoing messages, the Partner will need to build message XML stanzas and‬
‭the content protobuf structures that are then later encrypted using the Signal Protocol.‬

‭More details are provided in the technical documentation.‬

‭3.2   Enabling Incoming Messages from WhatsApp‬
‭Partner clients must be connected to the WhatsApp server to receive messages from‬
‭WhatsApp users. When the client is connected, messages are pushed by the server to‬
‭the client through the chat channel, using the <message> stanza as defined in Part 2‬
‭above.‬

‭Once the message is received through the chat protocol, the client must decrypt the‬
‭payload using the Signal Protocol or equivalent encryption protocol. Once the payload‬
‭is decrypted, the content protobuf can be accessed and the message can be rendered.‬

‭3.2.1  Push Notifications‬

‭In the event that a Partner client is offline, the WhatsApp server will store the encrypted‬
‭messages sent to the user for 30 days in their offline mailbox. In order to facilitate‬
‭timely delivery of messages, the WhatsApp server will notify Partner servers over HTTP‬

‭Page‬‭14‬



‭that their user’s client should reconnect to the WhatsApp server and fetch the latest‬
‭messages waiting for them in their offline mailbox.‬

‭Figure 1.2:‬‭Push Notification Process Flow‬

‭3.2.2 Push API Example‬

‭Whenever there is new activity for the‬‭Partner‬‭user‬‭and the‬‭Partner‬‭client is not‬
‭connected, the WhatsApp server makes a HTTPS POST request to the /push path‬
‭(e.g.,‬‭https://foobar.com/whatsapp/push‬‭) with the‬‭user-visible identifier as the payload.‬

‭Sample Request‬

‭curl --request POST‬

‭--url $BASE_URL/push \‬

‭--header 'Content-Type‬‭:‬‭application/json' \‬

‭--header 'Authorization: Bearer‬

‭eyJhbGciOiJSUzI1NiIsImtpZCI6IjFhWGY4IiwidHlwIjoiSldUIn0.eyJpc3MiOiJXSEFUU0F‬

‭QUCIsImF1ZCI6Imh0dHBzOi8vaW50ZWdyYXRvci5jb20iLCJpYXQiOjE2ODg2NjkyMzIsImV4cC‬

‭I6MTY4ODY3MjgzMn0.lJU_8k9SpbTo-MdGPdMqWNpdXRlNBwYU3HgkDJmHC9FDg6MQgwEByU7hy‬

‭-o2Wo_aO9kf8plJKYJQoxzbGsBfq3uANn4ixKN2TsraV5VxkBtXjhDHRdifYQ1Zk0KlEQ5O1K5o‬

‭V0eU_WWjG7ykkb69AsIbw-phF__-t__zxD8t2fI6TLsqOj3i3zxIBLnR1kuvuHL2DR21JFV74Tm‬

‭AXPXeZQfxLrv542xV7ClJ-ruBGS2hcbO4M_OVvLbyXBPzP8M6nllhc46OzSTmasTnzxlEtb7pGF‬

‭Page‬‭15‬

https://foobar.com/whatsapp/push


‭sn5eJwZVeWWUQ3mbwDS7aTaC538PoA_EX8TpLMqxgO5KkTGngKe8gygwcPFg'‬

‭--tlsv1.3‬

‭--http1.1‬

‭--data '{"to": "alice421"}'‬

‭Sample Response‬

‭200 OK‬

‭The authorization token is a JWT signed using WhatsApp server's private key. The‬
‭Partner server should verify it using the public keys downloaded from‬
‭https://whatsapp.com/.well-known/jwks‬‭.‬

‭Page‬‭16‬

‭Note:‬‭There is no payload expected in the response.‬

https://whatsapp.com/.well-known/jwks


‭Part 4. Enabling Integrity and Additional Features‬
‭To enable integrity features and additional features such as media management, the‬
‭Partner will need to build and test media message types and blocking functionality.‬

‭4.1  Media Management‬

‭Partner messaging servers are responsible for hosting any media elements their client‬
‭applications send to the WhatsApp client application (such as image files). The‬
‭WhatsApp client downloads media from the Partner messaging servers using a‬
‭WhatsApp proxy service.‬

‭Note:‬‭Partner client applications will download media‬‭from the WhatsApp server for‬
‭media messages that are sent by the WhatsApp client application.‬

‭4.1.1 Sending Media to WhatsApp Client‬

‭Figure 1.3:‬‭Partner Client to WhatsApp Client Media‬‭Flow‬

‭Page‬‭17‬



‭1.‬ ‭Partner clients should upload the encrypted media to the Partner server,‬
‭obtaining a‬‭storage_reference‬‭.‬

‭2.‬ ‭Partner clients should send a media message with a download path as‬
‭/interop/whatsapp/download/{integrator_identifier}/{storage‬
‭_reference}/‬‭.‬

‭3.‬ ‭Upon receiving the media message, the WhatsApp client will construct a‬
‭download URL by prepending the WhatsApp media server's URL to the‬
‭download path (e.g.,‬‭http://mmg.whatsapp.net/{download_path‬‭}‬‭)‬
‭which is effectively:‬
‭http://mmg.whatsapp.net/interop/whatsapp/download/{integrat‬
‭or_identifier}/{storage_reference‬‭}/‬‭).‬

‭4.‬ ‭The WhatsApp client makes a download request at the above path to the‬
‭WhatsApp server.‬

‭5.‬ ‭The WhatsApp server then downloads the encrypted media from the Partner‬
‭server by making a GET request to‬‭{3p_base_url}/{storage_reference}‬‭,‬
‭and returns a response to the client.‬

‭4.1.2 Receiving Media from WhatsApp client‬
‭The WhatsApp client will upload encrypted media to WhatsApp's media server to‬
‭obtain a download path (i.e.,‬‭/v/t{file_identifier}‬‭).‬‭The WhatsApp client will‬
‭then pass the download path inside the media message.‬

‭The Partner client should construct the full download URL by prepending WhatsApp‬
‭media base_url for download (e.g.,‬
‭http://mmg.whatsapp.net/v/t{file_reference‬‭}‬‭). The‬‭Partner client should‬
‭then make a HTTP GET request to the endpoint (see example below).‬

‭Sample Request‬

‭GET http://mmg.whatsapp.net/v/t{file_reference}‬

‭Sample Response‬

‭200 OK‬

‭Page‬‭18‬

http://mmg.whatsapp.net/v/t%7Bdownload_path
http://mmg.whatsapp.net/v/t/interop/whatsapp/download/%7Bintegrator_identifier%7D/%7Bstorage_reference
http://mmg.whatsapp.net/v/t/interop/whatsapp/download/%7Bintegrator_identifier%7D/%7Bstorage_reference
http://mmg.whatsapp.net/v/t/%7Bfile_reference


‭Note:‬‭The response header includes the content length‬‭(file size) and content type.‬
‭The response body includes the file data binary.‬

‭4.2  Blocking‬

‭To block a WhatsApp user or to read the current list of users that the Partner client has‬
‭blocked, getting and setting blocklist IQs are used over the chat channel.‬

‭Page‬‭19‬



‭Part 5. User Deletion‬
‭In the case of a Partner user deciding to opt out of the WhatsApp integration, the‬
‭Partner client must send a deletion request through the chat channel to request‬
‭removal of their information from the WhatsApp server.‬

‭If a Partner client does not connect to the WhatsApp server for a period of 30 days, the‬
‭WhatsApp server will automatically un-enlist them. In that case, the Partner client will‬
‭receive an error, and must re-enlist as described previously.‬

‭Part 6. Integration Completion, Ongoing‬
‭Communication & Support‬
‭WhatsApp and Partner will jointly develop a rollout plan once implementation is‬
‭successfully completed.‬

‭Partners will have access to a WhatsApp point of contact for ongoing communication‬
‭and support post-rollout.‬

‭Versioning‬

‭The WhatsApp interop protocol supports versioning.‬

‭Partner clients are required to provide the protocol version they are using when‬
‭connecting to the WhatsApp server.‬

‭Partners can refer to the version changelog that is published with the detailed technical‬
‭documentation. The changelog will list any modifications that have been made to‬
‭processes, endpoints, and other technical implementation details (such as protocol‬
‭enhancements).‬

‭Page‬‭20‬



‭List of Required Features‬

‭The‬ ‭list‬ ‭below‬ ‭outlines‬ ‭the‬ ‭minimum‬ ‭set‬ ‭of‬ ‭features‬ ‭that‬ ‭Partners‬ ‭are‬ ‭required‬ ‭to‬
‭support‬ ‭when‬ ‭requesting‬ ‭integration‬ ‭with‬ ‭WhatsApp‬ ‭for‬ ‭the‬ ‭Interoperable‬ ‭Messaging‬
‭Services,‬ ‭as‬ ‭defined‬ ‭in‬ ‭the‬ ‭Reference‬ ‭Offer‬ ‭and‬ ‭described‬ ‭in‬ ‭this‬ ‭Developer‬
‭Documentation.‬

‭Partner must support the following Required Features:‬

‭Feature Type‬ ‭Feature List‬

‭User Features‬ ‭1.‬ ‭Receiving Messages‬
‭-‬ ‭Text Messages‬
‭-‬ ‭Media Messages‬

‭2.‬ ‭Sending Messages‬
‭-‬ ‭Text Messages‬
‭-‬ ‭(optional) Media Messages‬

‭3.‬ ‭Delivery Receipts‬
‭-‬ ‭Must display to Partner User‬

‭4.‬ ‭Push Notifications‬

‭E2EE Features‬ ‭1.‬ ‭Security Notifications in the chat thread (i.e., Identity Change‬
‭Notifications)‬

‭2.‬ ‭Forward Secrecy‬
‭3.‬ ‭Post Compromise Security‬
‭4.‬ ‭Deniability‬
‭5.‬ ‭Retry Messaging (i.e. receive and send retry receipts)‬

‭Processes and‬
‭Functionality‬

‭1.‬ ‭User Enlistment‬
‭2.‬ ‭Verification of Identifier for Partner Users‬
‭3.‬ ‭Deletion (user account deletion, e.g., upon opt-out)‬

‭Integrity and Safety‬
‭Features‬

‭1. Blocking‬

‭Page‬‭21‬



‭Glossary‬

‭Chat channel -‬‭The communications channel established‬‭and maintained between‬
‭WhatsApp and Partner messaging services. The channel is between the client and the‬
‭server (based on chatd).‬

‭Binary protocol -‬‭The transport protocol on the wire‬‭between the client and Chat‬
‭server; the Chat protocol is encoded into this protocol.‬

‭Chat protocol -‬‭The client/server protocol used to‬‭communicate with WhatsApp’s‬
‭Chat server.‬

‭Devices -‬‭End user mobile devices (iOS and Android)‬‭that are used when sending and‬
‭receiving messages between WhatsApp and Partner messaging services.‬

‭Enlistment (Registration) API‬‭- The set of Application‬‭Programming Interface calls‬
‭that manage the messaging user enlistment process.‬

‭Infrastructure -‬‭The hardware and software resources‬‭comprising the Interoperable‬
‭Messaging Services (servers, API endpoints, etc.).‬

‭Internal identifier‬‭-‬‭A unique identifier for users‬‭of the Partner messaging service‬
‭created and used by WhatsApp. Used at the protocol layer.‬

‭JWT (JSON Web Token) -‬‭An open standard (RFC 7519)‬‭that defines a compact and‬
‭self-contained way for securely transmitting information between parties as a JSON‬
‭object. This information can be verified and trusted because it is digitally signed. (See‬
‭https://auth0.com/learn/json-web-tokens‬‭)‬

‭Noise Handshake -‬‭The exchange of public keys and‬‭the performing of a sequence of‬
‭operations to compute shared secret keys independently by the WhatsApp’s Chat‬
‭server and Partner clients.‬

‭Page‬‭22‬

https://auth0.com/learn/json-web-tokens


‭Noise Protocol -‬‭A framework for building crypto protocols. Noise protocols support‬
‭mutual and optional authentication, identity hiding, forward secrecy, zero round-trip‬
‭encryption, and other advanced features.‬

‭OpenID protocol‬‭- An open authentication protocol‬‭(OpenID Connect (OIDC)) that‬
‭works on top of the OAuth 2.0 framework. OIDC allows individuals to use single‬
‭sign-on to access relying party sites using OpenID Providers. (See‬
‭https://www.pingidentity.com/en/resources/identity-fundamentals/authentication-autho‬
‭rization-standards/openid-connect.html‬‭)‬

‭Signal Protocol‬‭- A set of cryptographic specifications‬‭that provides end-to-end‬
‭encryption for private communications.‬

‭User-visible Identifier -‬‭A unique identifier for‬‭a user of the Partner messaging service‬
‭(phone number, email, etc.). Displayed to the end users.‬

‭User Enlistment -‬‭The process of setting up a new‬‭Partner user on the WhatsApp‬
‭server.‬

‭WhatsApp Chat Server -‬‭The WhatsApp server that sends‬‭and receives messages‬
‭between the WhatsApp client and Partner messaging applications.‬

‭WhatsApp Enlistment Server -‬‭The WhatsApp server that‬‭manages the client‬
‭application and Partner user enlistment on the WhatsApp messaging platform.‬

‭WhatsApp Client -‬‭The WhatsApp client messaging application‬‭that runs on mobile‬
‭devices (iOS and Android).‬

‭XMPP‬‭-‬‭The Extensible Messaging and Presence Protocol,‬‭a set of open technologies‬
‭for instant messaging, presence, multi-party chat, voice and video calls, collaboration,‬
‭lightweight middleware, content syndication, and generalized routing of XML data. (See‬
‭https://xmpp.org/about/technology-overview/)‬

‭Page‬‭23‬

https://www.pingidentity.com/en/resources/identity-fundamentals/authentication-authorization-standards/openid-connect.html
https://www.pingidentity.com/en/resources/identity-fundamentals/authentication-authorization-standards/openid-connect.html
https://xmpp.org/

