
SceneScript: Reconstructing Scenes With An
Autoregressive Structured Language Model

Armen Avetisyan1, Christopher Xie1, Henry Howard-Jenkins1, Tsun-Yi Yang1,
Samir Aroudj1, Suvam Patra1, Fuyang Zhang2†, Duncan Frost1,
Luke Holland1, Campbell Orme1, Jakob Engel1, Edward Miller1,

Richard Newcombe1, and Vasileios Balntas1

1 Meta Reality Labs 2 Simon Fraser University
https://projectaria.com/scenescript

Fig. 1: footnotesize(top) Given an egocentric video of an environment, SceneScript di-
rectly predicts a 3D scene representation consisting of structured scene language com-
mands. (bottom) Our method generalizes on diverse real scenes while being solely
trained on synthetic indoor environments. (last column, bottom) A notable advantage
of our method is its capacity to easily adapt the structured language to represent novel
scene entities. For example, by introducing a single new command, SceneScript can
directly predict object parts jointly with the layout and bounding boxes.

Abstract. We introduce SceneScript, a method that directly produces
full scene models as a sequence of structured language commands using
an autoregressive, token-based approach. Our proposed scene represen-
tation is inspired by recent successes in transformers & LLMs, and de-
parts from more traditional methods which commonly describe scenes
as meshes, voxel grids, point clouds or radiance fields. Our method in-
fers the set of structured language commands directly from encoded vi-
sual data using a scene language encoder-decoder architecture. To train
SceneScript, we generate and release a large-scale synthetic dataset
called Aria Synthetic Environments consisting of 100k high-quality in-
door scenes, with photorealistic and ground-truth annotated renders of
egocentric scene walkthroughs. Our method gives state-of-the art results
in architectural layout estimation, and competitive results in 3D object
detection. Lastly, we explore an advantage for SceneScript, which is
the ability to readily adapt to new commands via simple additions to
the structured language, which we illustrate for tasks such as coarse 3D
object part reconstruction.

†Work done while the author was an intern at Meta.

https://projectaria.com/scenescript

2 Avetisyan et al.

1 Introduction

Scene representations play a crucial role in machine learning and computer vi-
sion applications, enabling accurate understanding of the environment. Over the
years, researchers have explored various options such as meshes, voxel grids,
point clouds, and implicit representations, aiming to represent complex real-
world scenes with high-fidelity. Each of these exhibits distinct advantages and
limitations that impact their suitability for different tasks. Meshes offer detailed
geometric information but can be expensive in both computation and mem-
ory. Voxel grids provide a volumetric representation but suffer from a trade-off
between resolution and memory requirements. Point clouds are efficient in rep-
resenting sparse scenes but lack semantics and explicit connectivity information.
Implicit representations, such as DeepSDF [32] and NeRF [25], can be infinitely
precise but lack interpretability and editability. The selection of an appropriate
representation directly impacts the performance and efficacy of various tasks in-
cluding object recognition, scene understanding, and 3D reconstruction. In this
paper, we propose a novel scene representation based on structured language
commands as a more efficient and versatile solution.

Our motivation stems from the recent advancements in the field of Large Lan-
guage Models (LLMs) and “next token prediction” autoregressive methods [30],
coupled with recent works on exploring generation of sequences to represent
geometric structures. For example, PolyGen [28] demonstrated the ability to de-
scribe 3D meshes as a sequence of vertices and faces generated using transform-
ers [45]. Similarly, CAD-as-Language [14] showcased the effectiveness of gener-
ating Computer-Aided Design (CAD) primitives to represent 2D CAD sketches.
Our main goal is to directly infer a metrically accurate representation
of a full scene as a text-based sequence of specialized structured language
commands.

Our method, denoted SceneScript, autoregressively predicts a language of
hand-designed structured language commands in pure text form. This language
offers several distinct advantages: 1) As pure text, it is compact and reduces
memory requirements of a large scene to only a few bytes. 2) It is crisp and
complete since the commands are designed to result in sharp and well-defined
geometry (similar to scalable vector graphics). 3) It is interpretable, editable
and semantically rich by design via the use of high-level parametric commands
such as make_door(*door_parameters). 4) It can seamlessly integrate novel
geometric entities by simply adding new structured commands to the language.
5) The fact that the scene representation is a series of language tokens similar
to [30] opens up a plethora of potential new applications in the future such as
ways to edit the scene, query it, or spin up chat interactions.

We mainly focus on the problems of architectural layout estimation and ob-
ject detection as proxy tasks for the efficacy of our SceneScript language as
a scene representation. Architectural entities such as walls, doors, and windows
are highly structured entities, making them an ideal test-bed. However, one no-
table drawback of language models is that they require vast amounts of data for
training. Since there is no existing dataset of scene walkthroughs and their cor-

SceneScript 3

responding structured language commands, we publicly released Aria Synthetic
Environments (ASE), a synthetically generated dataset of 100k unique interior
scenes. For each scene, we simulate egocentric trajectories with an entire suite
of sensor data from Project Aria [24]. We also release multiple sources of ground
truth including depth and instance segmentations. Importantly, for each ren-
dered egocentric sequence, the architectural layout ground truth is given in our
proposed SceneScript language.

While architectural layout serves as a test-bed, we demonstrate that our
method SceneScript can easily be extended to new tasks via simple exten-
sions to SceneScript language while keeping both the visual input and network
architecture fixed. We illustrate this on the problem of 3D object detection,
which results in a method that jointly infers architectural layout and 3D ori-
ented bounding boxes. Additionally, we demonstrate more proof-of-concept ex-
periments that show that our method results in a significantly lower barrier
to entry for new tasks including representing coarse 3D object reconstruction,
curved entities, composition of entities, and entity states.

Our core contributions are:

– We propose SceneScript, a method that jointly predicts architectural layout
and object bounding boxes of a scene in the form of structured language
commands given a video stream.

– We demonstrate that SceneScript can easily be extended to completely
new tasks with simple additions of commands to our structured language,
significantly lowering the barrier to entry for new tasks.

– We release a large-scale synthetic dataset, named Aria Synthetic Environ-
ments, comprized of 100k unique high-quality 3D indoor scenes with GT,
which will enable large scale ML training of scene understanding methods.

– We show that training SceneScript on Aria Synthetic Environments leads
to generalization on real scenes (see videos/demos on the project page).

2 Related Works

2.1 Layout Estimation

Layout estimation is an active research area, aiming to infer architectural el-
ements. Scan2BIM [27] proposes heuristics for wall detection to produce 2D
floorplans. Ochmann et al. [29] formulate layout inference as an integer linear
program using constraints on detected walls. Shortest path algorithms around
birds-eye view (BEV) free space [5] and wall plus room instance segmentation [7]
have also been explored.

Furukawa et al. [13] utilize a Manhattan world -based multi-view stereo al-
gorithm [12] to merge axis-aligned depth maps into a full 3D mesh of building
interiors. RoomNet [21] predicts layout keypoints while assuming that a fixed
set of Manhattan layouts can occur in a single image of a room. LayoutNet [53]
improves on this by predicting keypoints and optimising the Manhattan room
layout inferred from them. Similarly, AtlantaNet [34] predicts a BEV floor or

4 Avetisyan et al.

Table 1: Complete set of structured language commands designed for detailing archi-
tectural layouts and object bounding boxes. Supported data types can include int,
float, bool. It is important to note that the language’s extensibility allows for easy
augmentation by introducing new commands like make_prim, make_pillar, or enhanc-
ing existing commands, such as incorporating is_double_door (bool).

make_wall (int) make_door (int) make_window (int) make_bbox (int)

id int
a_x float
a_y float
a_z float
b_x float
b_y float
b_z float

height float

id int
wall0_id int
wall1_id int

position_x float
position_y float
position_z float

width float
height float

id int
wall0_id int
wall1_id int

position_x float
position_y float
position_z float

width float
height float

id int
class int

position_x float
position_y float
position_z float
angle_z float
scale_x float
scale_y float
scale_z float

ceiling shape and approximates the shape contour with a polygon resulting in
an Atlanta world prior. SceneCAD [2] uses a graph neural network to predict
object-object and object-layout relationships to refine its layout prediction.

Our approach stands out by requiring neither heuristics nor explicitly defined
prior knowledge about architectural scene structure. In fact, our method demon-
strates geometric understanding of the scene which emerges despite learning to
predict the GT scene language as a sequence of text tokens.

2.2 Geometric Sequence Modelling

Recent works have explored transformers for generating objects as text-based
sequences. PolyGen [28] models 3D meshes as a sequence of vertices and faces.
CAD-as-Language [14] represents 2D CAD sketches as a sequence of triplets
in protobuf representation, followed by a sequence of constraints. Both Sketch-
Gen [31] and SkexGen [48] use transformers to generate sketches. DeepSVG [6]
learns a transformer-based variational autoencoder (VAE) that is capable of
generating and interpolating through 2D vector graphics images. DeepCAD [47]
proposes a low-level language and architecture similarly to DeepSVG, but ap-
plies it to 3D CAD models instead of 2D vector graphics. Our approach stands
out by utilising high-level commands, offering interpretability and semantic rich-
ness. Additionally, while low-level commands can represent arbitrarily complex
geometries, they lead to prohibitively longer sequences when representing a full
scene.

The closest work to ours is Pix2Seq [8]. Pix2Seq proposes a similar archi-
tecture to ours but experiments only with 2D object detection, thus requir-
ing domain-specific augmentation strategies. Another closely related work is
Point2Seq [49] that trains a recurrent network for autoregressively regressing
continuous 3D bounding box parameters. Interestingly, they find the autoregres-
sive ordering of parameters outperforms current standards for object detection
architectures, including anchors [15] and centers [51].

SceneScript 5

Fig. 2: Aria Synthetic Environments: (top) Random samples of generated scenes show-
ing diversity of layouts, lights and object placements. (bottom - left to right) A top
down view of a scene filled with objects, a simulated trajectory (blue path), renderings
of depth, RGB, and object instances, and lastly a scene pointcloud.

3 SceneScript Structured Language Commands

We first describe our structured language commands that define a full scene
representation including both layout and objects. After this, we introduce our
corresponding large scale training dataset: Aria Synthetic Environments.

3.1 Commands and Parameters

We begin with a parameterization that captures the most common layout ele-
ments. For this purpose we use three commands: make_wall, make_door, and
make_window. Each command comes with a set of parameters that results in
well-defined geometry. For example, the full set of parameters for make_wall
specifies a gravity-aligned 2D plane, while make_door and make_window spec-
ify box-based cutouts from walls. It is worth noting that this parametrization
is arbitrary, and is only made in the context of presenting a proof-of-concept
SceneScript system. There are infinitely many parametrization schemes, in this
work we opt for one that prioritizes ease of use and research iteration speed.

In addition to representing these three major layout entities, we aim to jointly
infer objects as oriented bounding boxes. Thus, we introduce a fourth command:

make_bbox: id, class , position_x , position_y ,
position_z , angle_z , scale_x , scale_y , scale_z

This simple parametrization represents an oriented 3D bounding box that is
assumed to be aligned with gravity (assuming it points in the −z direction).
A summary of these commands and their respective parameters are shown in
Table 1.

6 Avetisyan et al.

While we have described just four commands to capture structure and ob-
jects in an indoor environment, importantly, this text-based parametrization can
readily be extended geometrically and/or even semantically to include states
or other functional aspects. For example, changing the mentioned make_door
command to include parameters such as open_degree allows the language to
represent door states. In Section 6, we demonstrate how such extensions to the
language allows for SceneScript to readily adapt to new tasks including coarse
3D object reconstruction.

3.2 Scene Definition

A single scene can be described as a sequence of our proposed structured language
commands. The sequence requires no specific ordering, and can be of arbitrary
length. From this definition, the 3D scene can easily be obtained by parsing the
commands through a simple custom interpreter.

3.3 Training Dataset

To enable practical indoor scene reconstruction based on our structured language
commands (Section 3.1), we publicly released a new dataset called Aria Synthetic
Environments. It consists of a large number of training pairs of egocentric scene
walkthroughs linked with corresponding ground truth command sequences.

Since transformers require vast amounts of data, we generated 100k synthetic
scenes, which is in comparison infeasible for real-world data. Each synthetic scene
comes with a floor plan model, a corresponding complete 3D scene as well as a
simulated agent trajectory and a photo-realistic rendering of this trajectory. Fig.
2 illustrates the basics of Aria Synthetic Environments. For brevity, we refer the
reader to Appendix A for further details.

4 SceneScript Network Architecture

Our pipeline is a simple encoder-decoder architecture that consumes a video
sequence and returns SceneScript language in a tokenized format. Figure 3
illustrates a high-level overview of our method.

We examine three encoder variants: a pointcloud encoder, a posed image set
encoder, and a combined encoder. The decoder remains the same in all cases.

4.1 Input Modalities and Encoders

The encoder computes a latent scene code in the form of a 1D sequence from
video walkthrough of the scene. The decoder is designed to consume these 1D se-
quences as input. This enables the integration of various input modalities within
a unified framework. As a preliminary, for each scene we assume access to a set
of M posed camera images {I1, ..., IM}, e.g., SLAM output.

SceneScript 7

SceneScript

Im
ag

e
En

co
de

r

Po
s.

 E
m

be
d

an
d

Fl
at

te
n

Scene
ContextVo

xe
lis

e

Sparse 3D
BackboneSparse 3D

Volume
Sparse 3D
Features

Sparse 3D
BackboneSparse 3D

Volume
Sparse 3D
Features

Image
Features

Bidirectional
2D-3D

Transformer

Dense 3D
Volume

Dense 3D
Features

Image
Features

Image
Features

In
iti

al
is

e

Structured Scene Language

Egocentric Sequence

Scene Pointcloud

Script
Sequence

<START>

Autoregressive
Decoder

Points-only

Images + Points

Images-only

Decoder

Lift

Lift

make_wall, id=0, a_x=-2.10, a_y=-7.52, a_z=-0.02, b_x=1.40, b_y=-7.53, b_z=-0.02, height=3.40
make_wall, id=1, a_x=-2.10, a_y=-7.52, a_z=-0.02, b_x=-2.10, b_y=0.47, b_z=-0.02, height=3.40
make_wall, …
…
make_door, id=1000, wall_id=1, position_x=-2.10, position_y=-5.93, position_z=0.93, width=1.32, height=1.92
make_door, id=1001, wall_id=5, position_x=4.90, position_y=-2.28, position_z=0.93, width=1.16, height=1.92
make_door, …
...
make_window, id=2000, wall_id=11, position_x=-3.70, position_y=12.9, position_z=1.38, width=1.48, height=2.08
make_window, id=2001, wall_id=3, position_x=3.00, position_y=-3.78, position_z=1.78, width=2.32, height=2.48
make_window, …
…

(Choice of) Encoder

Fig. 3: SceneScript core pipeline overview. Raw images & pointcloud data are encoded
into a latent code, which is then autoregressively decoded into a sequence of commands
that describe the scene. Visualizations are shown using a customly built interpreter.
Note that for the results in this paper, the the point clouds are computed from the
images using Aria MPS [37] – i.e. are not using a dedicated RGB-D / Lidar sensor.

Point Clouds. A point cloud P = {p1, ...,pN} consists of N points, where pi

is a 3D point coordinate. It can come from passive images using SLAM or SfM ,
or RGB-D / Lidar sensors.

Specifically, we use the Semi-dense Pointclouds from Project Aria’s Machine
Perception Services [37], that are obtained from a visual-inertial SLAM system
using Aria’s monochrome cameras and IMUs. We discretize the point cloud to
5cm resolution, then employ a sparse 3D convolution library [40,41] to generate
pooled features. The encoder Egeo applies a series of down convolutions, resulting
in a reduction of the number of points in the lowest level.

Fgeo = Egeo(P), P ∈ RN×3,Fgeo ∈ RK×512 (1)

where K ≪ N . Fgeo is a condensed latent representation of the point cloud that
contains the necessary scene context. For later use in the transformer decoder,
we treat Fgeo as a sequence of feature vectors where the entries fi, i ∈ 1...K
are sorted lexicographically according to the coordinate of the active site ci, i ∈
1...K. To incorporate positional encoding, we append the coordinates of the
active sites to their respective feature vectors fi ← cat(fi, ci).

Point Clouds with Lifted Features. We additionally explore augmenting
the point cloud with image features. From the original egocentric sequence and
associated trajectory, we sample a set of M keyframes, Ii where i ∈ 1...M , and
compute a set of image features Fi for each. We then project each point into the
set of keyframe cameras and retrieve the feature vector (output by a CNN) at
the pixel location:

fip = Fi(π(p)) p ∈ P, i ∈ 1...M, (2)

where π(·) represents the projection function of a 3D point into the camera. If
π(p) falls outside the image bounds, no feature is retrieved. We combine the set

8 Avetisyan et al.

of lifted features for a point through an average, resulting in a single feature
vector for each point: fp = 1/M

∑M
i=1 fip.

We form our lifted-feature point cloud, P′ = {p′
1, ...,p

′
M}, by concatenating

each point’s lifted feature with the original XYZ location: p′ = cat(fp,p). P′ is
then encoded into a context sequence using sparse 3D convolutions, with only
the input feature channels adjusted to match the new point feature dimension.

End-to-end Encoding of Posed Views. In order to encode the egocentric
sequence more directly without a pre-computed point cloud, we adopt a 2D↔ 3D
bidirectional transformer encoder following the form defined in RayTran [44].

In this formulation, we initialize a volume representation of the scene as a
dense voxel grid of features, V, that coincides with the scene geometry. In turn,
we sample a subset of M keyframes, Ii where i ∈ 1...M , from the full stream of
posed images. And for each of these keyframes we compute image features from a
CNN, Fi. Repeated layers of bidirectional attention enable the image and voxel
grid features to be refined iteratively in successive transformer blocks through
the aggregation of view-point and global-scene information. As in RayTran [44],
the interaction between the two representations is guided by the image-formation
process by leveraging known camera parameters and poses. Attention in these
transformer blocks is restricted by patch-voxel ray intersections, where each im-
age patch attends to the voxels it observes and each voxel location attends to
all the patches that observe it. The resulting voxel grid of features is flattened,
concatenated with an encoded represention of its XYZ location, and passed to
the decoder.

4.2 Language Decoder

We utilize a transformer decoder [45] to decode the scene latent code into a se-
quence of structured language commands. The sequence of tokens passes through
an embedding layer, followed by a positional encoding layer. Together with the
encoded scene code (Section 4.1), the embedded tokens are passed into the sev-
eral transformer decoder layers where a causal attention mask is used to ensure
autoregressive generation. More implementation details can be found in Ap-
pendix C.2.

4.3 Language Tokenization

We refer to the serialization the structured language into a sequence of tokens as
tokenization. The goal is to construct a bijective mapping between a sequence
of structured language commands (Section 3) and a sequence of integer tokens
that can be predicted by the transformer decoder architecture. We utilize the
following schema:

[START, PART, CMD, PARAM_1, PARAM_2, . . . , PARAM_N, PART, . . . , STOP]

SceneScript 9

For example, a sample sequence for a make_door command may look like:

[START, PART, MAKE_DOOR, POSITION_X, POSITION_Y, POSITION_Z,

WALL0_IDX, WALL1_IDX, WIDTH, HEIGHT, PART, . . . , STOP]

This schema enables 1D packing of tokens without requiring fixed-size slots or
padding like other sequence modelling methods such as [47]. Additionally, it does
not impose any limitations on the number or the hierarchy of sub-sequences, as
they are flexibly separated by a PART token. This allows for arbitrarily complex
scene representations.

The tokenized sequence is discretized into integers at a 5cm resolution, then
translated into a sequence of embeddings via learnable lookup table. Note that
by designing the SceneScript language, we also design the tokenization. This
tokenization scheme is notably different from standard NLP tokenization, which
involves Byte-Pair Encodings (BPE) [30].

5 Results

In this section, we introduce the metrics we define to measure performance, and
we discuss some qualitative and quantitative results that give insights to our
proposed SceneScript method.

5.1 Metrics

To evaluate accuracy of the layout estimation, we make use of geometric metrics
applied between the ground-truth room layout and our predicted SceneScript lan-
guage. To do so, we define an entity distance, dE , between a pair of entities of the
same class. Each entity, E, is represented as a 3D plane segment comprising of 4
corners {c1, c2, c3, c4}. The distance between two entities, E and E′ is computed
as the maximum Euclidean distance between each corner and its counterpart as-
signed via Hungarian mathcing, i.e.: dE(E,E′) = max{||ci−c′π(i)|| : i = 1, ..., 4},
where π(i) is the permutation also found via Hungarian matching.

We threshold dE to define the success criteria for the predicted entities. We
compute the following metrics:

– F1 Score @ threshold – the F1 score of the set of predictions is computed at
a single dE threshold.

– Average F1 Score – the F1 score is computed across a range of entity distance
thresholds and averaged.

The scores are computed for each class independently and averaged to overall
score. In addition, scores are computed for each scene and averaged across the
dataset. We use the following range of thresholds (cm) for the average F1 scores:
T = {1, 2, ..., 9, 10, 15, 25, 30, 50, 75, 100}.

10 Avetisyan et al.

Fig. 4: Qualitative samples between our model and SOTA methods on Aria Synthetic
Environments’s test set. Hierarchical methods like SceneCAD suffer from error cascad-
ing which leads to missing elements in the edge prediction module. RoomFormer (a 2D
method extruded to 3D) primarily suffers from lightly captured scene regions which
leave a unnoticeable signal in the density map.

Table 2: Layout Estimation on Aria Synthetic Environments Quantitative
comparison between our method and related recent work.

F1 @5cm Avg F1
Method mean wall door window mean wall door window

SceneCAD ’20 [2] - 0.048 - - - 0.275 - -
RoomFormer ’23 [52] 0.139 0.159 0.148 0.110 0.464 0.505 0.481 0.407
Ours (Point cloud) 0.848 0.930 0.922 0.692 0.784 0.816 0.811 0.724

Ours (Lifted features) 0.903 0.943 0.959 0.806 0.801 0.818 0.822 0.764
Ours (Image-only) 0.661 0.687 0.798 0.497 0.719 0.727 0.772 0.658

5.2 Layout Estimation

We perform scene layout estimation with the the three encoder variants of
SceneScript: a baseline model with sparse3d convolution pointcloud encoder,
an RGB RayTran-based feature volume encoder [44], and our proposed lifted
feature point encoder. The same transformer decoder is being used in all three
scenarios.

To provide comparison to existing works, we include results from two baseline
methods, namely SceneCAD [2] and the recent RoomFormer [52]. For these
experiments SceneCAD and RoomFormer were both trained on Aria Synthetic
Environments. Note that SceneCAD only predicts walls.

Table 2 shows the main results for our F1-based metrics on Aria Synthetic
Environments. SceneScript exhibits a substantial performance advantage over
SOTA layout estimation baselines across multiple metrics. Both baseline meth-

SceneScript 11

Table 3: 3D Object Detection Performance comparison against state-of-the-art
methods on an 3D object detection task trained and evaluated by F1-score at 0.25 and
0.5 IoU thresholds. By simply adding a make_bbox command SceneScript can achieve
competitive object detection results.

(a) Aria Synthetic Environments

F1
Method Input @.25 IoU @.50 IoU

3DETR ’21 [26] Points 0.201 0.078
Cube R-CNN ’23 [4] RGB 0.394 0.228
ImVoxelNet ’22 [36] RGB 0.584 0.516

Ours Points 0.620 0.577

(b) ScanNet [10]

F1
Method Input @.25 IoU @.50 IoU

3DETR ’21 [26] Points 0.480 0.349
3DETR-m ’21 [26] Points 0.536 0.407
SoftGroup ’22 [46] RGB Points 0.622 0.573

Ours RGB Points 0.506 0.406

ods encounter a significant decline in accuracy when dealing with finer details.
See Figure 4 for qualitative comparisons between our method and baseline meth-
ods.

Encoder Ablation. The results demonstrate that SceneScript is robust to
the encoding strategy chosen to encode the egocentric capture. It is able to
infer highly accurate scene layouts in all configurations tested, and in each case
SceneScript outperforms the included baselines by a significant margin.

Relative comparison of the encoder strategies reveals that leveraging the
pointclouds from a highly specialized and well-tuned system is still able to offer
advantages of an, almost, entirely learned approach such as RayTran [44]. A
light extension in the form of lifted image features can widen this gap even
further. In particular, we observe that the discrepancy between the encoders
becomes particularly apparent as the complexity of the scene increases in the
form of increased room count – more details are included in Appendix F.2.
In Appendix F.2, we also show a quantitative evaluation of per-entity error
distances, which aids in further attribution of relative performance gains between
the encoding methods.

5.3 Object Detection

In this section, we perform evaluation of SceneScript for object detection on
both Aria Synthetic Environments and ScanNet [10]. For comparison, we include
recent and state-of-the-art baseline methods, namely Cube-RCNN [4], ImVoxel-
Net [36], 3DETR [26], and SoftGroup [46].

Worth noting is that SceneScript does not predict a confidence score for
each make_bbox command. This means that fair computation of the conventional
mAP metric for this task is not possible, as detections cannot be ranked across
scenes. Among other issues, this results in a metric that varies with the order in
which scenes are evaluated. We therefore report F1-score-based metrics, which
do not exhibit this order variance. Further discussion of this, and mAP numbers
for the baselines for reference, can be found in Appendix G.4.

12 Avetisyan et al.

Fig. 5: Example scene reconstructions on scenes from Aria Synthetic Environments.
(left) Visualisation of the decomposed meshes used to create make_prim training pairs.
(right) Views of full scene predictions, as well as close ups highlighting the fidelity of ob-
ject reconstruction through the prediction volumetric primitives enabled by make_prim.

In Table 3a, all methods were trained on Aria Synthetic Environments.
3DETR performs poorly due to its encoder being designed for relatively clean
datasets such as ScanNet [10], while semi-dense point clouds from Aria Syn-
thetic Environments exhibit more noise and less uniformity (see Figure 3 for
an example). Cube R-CNN and ImVoxelNet both operate on RGB images, and
detections are tracked for the entire sequence via a tracker [4] to provide com-
petitive performance. In Table 3b, our method provides similar performance to
both 3DETR and SoftGroup.

Through the addition of the make_bbox command, SceneScript demon-
strates object detection performance on par with SOTA baselines on multiple
object detection datasets. This result illustrates the extensibility of a token-based
approach, and that our proposed SceneScript language representation does not
suffer compared to specialised object detection network architectures.

6 Extending the SceneScript Structured Language

A key advantage offered by SceneScript’s structured language prediction paradigm
is that the expressiveness of its reconstruction can be tailored without requiring
a change to the method. Up to now, we have focussed on showcasing the efficacy
of SceneScript for representing simple layout elements and objects as bounding
boxes. In this section, we showcase this characteristic by increasing the fidelity
of our scene representation by introducing coarse 3D object reconstruction.

6.1 Objects as Volumetric Primitives

We turn to a language based on volumetric primitives, motivated by works such
as [43, 50]. Using simple primitives such as cuboids and extruded cylinders, en-
ables us to coarsely represent arbitrary object categories while maintaining ob-
ject semantics (e.g. tabletops can be represented by a single cuboid). Thus, this
language can describe many object categories simultaneously.

SceneScript 13

Fig. 6: Example scene reconstructions on real scenes with the addition of the
make_prim command. Note that SceneScript was trained only on synthetic data.

This representation requires only one additional command over the layout
and box commands already discussed previously, namely:

make_prim: bbox_id , prim_num , class , center_x , center_y
, center_z , angle_x , angle_y , angle_z , scale_x ,
scale_y , scale_z

This command and its parameters describe a volumetric primitive (cuboid or
extruded cylinder) via its 3D center, 3D rotation, and 3D scale. The prim_num
parameter can be associated with semantics, e.g. tabletops of different tables
typically have the same prim_num.

Dataset. To obtain ground truth make_prim commands that align with the
objects in Aria Synthetic Environments, we first run an extension of Yang et
al . [50] to obtain cuboid and extruded cylinder primitives of a database of 3D
CAD models (ABO [9], which was used to populate Aria Synthetic Environ-
ments). See Figure 5 (left) for example decompositions. For this proof-of-concept
experiment, we use three categories: table, chair, and sofa. We then convert these
decomposed primitives into make_prim commands that are aligned with the ob-
jects in the dataset, which results in training pairs.

Results. We show qualitative results on Aria Synthetic Environments in Fig-
ure 5. In Figure 6, we show inferences in a few real-world environments despite
only having trained on our simulated dataset. These results demonstrate that
SceneScript’s general purpose architecture is capable of coarsely reconstructing
objects of multiple categories through addition of a new command.

6.2 Further Extensions

In this section, we have explored just one extension of SceneScript’s struc-
tured scene language in order to demonstrate its flexibility. The result was
greatly increased expressiveness of the scene reconstruction. In Appendix H, we

14 Avetisyan et al.

include additional explorations that can further increase the fidelity and accu-
racy of SceneScript’s reconstructions. These explorations include reconstruct-
ing curved walls, inferring object states (such as door opening angles), as well as
direct prediction of parametric models using object models deployed commonly
by tech artists (e.g., blender geometry nodes) for object reconstruction.

7 Interactive Scene Reconstruction

Scene reconstruction often occurs offline, on pre-recorded walkthroughs of an
environment, or derivatives of them, such as a point cloud. However, we take
advantage of SceneScript’s inference occurring at an interactive rate, which
takes between 2-5s depending on the size of the environment, by implementing
streaming of SceneScript’s live reconstructions into a modern VR headset.
This enables an interactive experience where the user can see the reconstruction
overlaid onto the environment they are exploring in real-time. See the video
recording on the website for examples.

With this the user can actively refine the results, for example through more
thorough exploration of areas that may have been missed. Visualisations of this
interface are included in the bottom half for Figure 1.

8 Limitations and Future Work

SceneScript exhibits certain limitations that should be acknowledged. First,
the structured language commands are manually defined, which requires hu-
man intervention at this stage. Secondly, due to the higher-level nature of our
commands, it can be challenging to capture fine-grained geometric details with
extremely high precision (i.e. mm). As a consequence, the resulting reconstruc-
tions based on this representation tend to lead to simpler and coarser geometries,
potentially missing intricate nuances at the very high detail level. These limita-
tions potentially highlight areas for future research and optimization, aiming to
automate the command definition process and explore techniques to enhance the
representation’s ability to capture intricate geometric details accurately. How-
ever, we believe that the ability to built scene representations that are based on
structured language commands will be a key part in complex and efficient meth-
ods of scene reconstruction in the future, enabling them to be used in conjunction
with general purpose LLMs.

9 Conclusion

We introduced SceneScript, a novel reconstruction method that is based on
a tokenized scene representation. SceneScript autoregressively predicts a se-
quence of structured scene language commands given a video stream of an indoor
space. This tokenized scene representation is compact, editable and intepretable.
In addition, we showed that a strength of SceneScript is the ability to extend to

SceneScript 15

arbitrary elements (e.g. Bezier curves, object part decomposition) with minimal
changes. This research opens up new directions in representing 3D scenes as lan-
guage, bringing the 3D reconstruction community closer to the recent advances
in large language models such as GPT-class models [30].

References

1. Aria, P.: Project aria machine perception services (2023), https : / /
facebookresearch . github . io / projectaria _ tools / docs / data _ utilities /
core_code_snippets/mps, accessed: 2023-11-27 21, 28

2. Avetisyan, A., Khanova, T., Choy, C., Dash, D., Dai, A., Nießner, M.: Scenecad:
Predicting object alignments and layouts in rgb-d scans. In: Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XXII 16. pp. 596–612. Springer (2020) 4, 10

3. Bash, B.: Procedural table with geometry nodes in blender (2023), https://
blenderbash.gumroad.com/l/daghsw, accessed: 2023-05-23 34

4. Brazil, G., Kumar, A., Straub, J., Ravi, N., Johnson, J., Gkioxari, G.: Omni3D: A
large benchmark and model for 3D object detection in the wild. In: CVPR. IEEE,
Vancouver, Canada (June 2023) 11, 12, 26, 29

5. Cabral, R., Furukawa, Y.: Piecewise planar and compact floorplan reconstruction
from images. In: 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition (2014) 3

6. Carlier, A., Danelljan, M., Alahi, A., Timofte, R.: Deepsvg: A hierarchical gener-
ative network for vector graphics animation. In: Advances in Neural Information
Processing Systems (2020) 4

7. Chen, J., Liu, C., Wu, J., Furukawa, Y.: Floor-sp: Inverse cad for floorplans by se-
quential room-wise shortest path. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (2019) 3

8. Chen, T., Saxena, S., Li, L., Fleet, D.J., Hinton, G.: Pix2seq: A language modeling
framework for object detection. In: International Conference on Learning Repre-
sentations (ICLR) (2022) 4

9. Collins, J., Goel, S., Deng, K., Luthra, A., Xu, L., Gundogdu, E., Zhang, X.,
Yago Vicente, T.F., Dideriksen, T., Arora, H., Guillaumin, M., Malik, J.: Abo:
Dataset and benchmarks for real-world 3d object understanding. CVPR (2022) 13

10. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE (2017) 11, 12, 27

11. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular
SLAM. In: European Conference on Computer Vision (ECCV) (September 2014)
21

12. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Manhattan-world stereo. In:
2009 IEEE Conference on Computer Vision and Pattern Recognition (2009) 3

13. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interi-
ors from images. In: 2009 IEEE 12th international conference on computer vision
(2009) 3, 31

14. Ganin, Y., Bartunov, S., Li, Y., Keller, E., Saliceti, S.: Computer-aided design
as language. Advances in Neural Information Processing Systems 34, 5885–5897
(2021) 2, 4

https://facebookresearch.github.io/projectaria_tools/docs/data_utilities/core_code_snippets/mps
https://facebookresearch.github.io/projectaria_tools/docs/data_utilities/core_code_snippets/mps
https://facebookresearch.github.io/projectaria_tools/docs/data_utilities/core_code_snippets/mps
https://blenderbash.gumroad.com/l/daghsw
https://blenderbash.gumroad.com/l/daghsw

16 Avetisyan et al.

15. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on
computer vision. pp. 1440–1448 (2015) 4

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 22

17. Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751 (2019) 22

18. Jones, R.K., Barton, T., Xu, X., Wang, K., Jiang, E., Guerrero, P., Mitra, N.J.,
Ritchie, D.: Shapeassembly: Learning to generate programs for 3d shape structure
synthesis. ACM Transactions on Graphics (TOG) 39(6), 1–20 (2020) 34

19. Jones, R.K., Charatan, D., Guerrero, P., Mitra, N.J., Ritchie, D.: Shapemod: macro
operation discovery for 3d shape programs. ACM Transactions on Graphics (TOG)
40(4), 1–16 (2021) 34

20. Jones, R.K., Walke, H., Ritchie, D.: Plad: Learning to infer shape programs with
pseudo-labels and approximate distributions. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2022) 34

21. Lee, C.Y., Badrinarayanan, V., Malisiewicz, T., Rabinovich, A.: Roomnet: End-to-
end room layout estimation. In: Proceedings of the IEEE international conference
on computer vision (2017) 3

22. Liu, C., Kim, K., Gu, J., Furukawa, Y., Kautz, J.: Planercnn: 3d plane detection
and reconstruction from a single image (2019) 31

23. Loop, C., Blinn, J.: Resolution independent curve rendering using programmable
graphics hardware. In: ACM SIGGRAPH 2005 Papers, pp. 1000–1009 (2005) 31

24. Meta: Project aria. https://projectaria.com/ (2022), accessed: 2023-08-30 3
25. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,

R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021) 2

26. Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3d object
detection. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 2906–2917 (2021) 11, 26, 27, 29

27. Murali, S., Speciale, P., Oswald, M.R., Pollefeys, M.: Indoor scan2bim: Building
information models of house interiors. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (2017) 3

28. Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P.: Polygen: An autoregressive gen-
erative model of 3d meshes. In: International conference on machine learning. pp.
7220–7229. PMLR (2020) 2, 4

29. Ochmann, S., Vock, R., Klein, R.: Automatic reconstruction of fully volumetric
3d building models from oriented point clouds. ISPRS journal of photogrammetry
and remote sensing 151, 251–262 (2019) 3

30. OpenAI: Gpt-4 technical report (2023) 2, 9, 15, 22, 23
31. Para, W., Bhat, S., Guerrero, P., Kelly, T., Mitra, N., Guibas, L.J., Wonka, P.:

Sketchgen: Generating constrained cad sketches. In: Advances in Neural Informa-
tion Processing Systems (2021) 4

32. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition (2019) 2

33. Pearl, O., Lang, I., Hu, Y., Yeh, R.A., Hanocka, R.: Geocode: Interpretable shape
programs (2022) 34

34. Pintore, G., Agus, M., Gobbetti, E.: Atlantanet: inferring the 3d indoor layout
from a single 360 image beyond the manhattan world assumption. In: Proceedings
of the European conference on computer vision (ECCV) (2020) 3

https://projectaria.com/

SceneScript 17

35. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detec-
tion in point clouds. In: proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 9277–9286 (2019) 27

36. Rukhovich, D., Vorontsova, A., Konushin, A.: Imvoxelnet: Image to voxels projec-
tion for monocular and multi-view general-purpose 3d object detection. In: Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
pp. 2397–2406 (2022) 11, 27, 29

37. Somasundaram, K., Dong, J., Tang, H., Straub, J., Yan, M., Goesele, M., Engel,
J.J., De Nardi, R., Newcombe, R.: Project aria: A new tool for egocentric multi-
modal ai research. arXiv preprint arXiv:2308.13561 (2023) 7, 20

38. Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding bench-
mark suite. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 567–576 (2015) 27

39. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks (2014) 22

40. Tang, H., Liu, Z., Li, X., Lin, Y., Han, S.: TorchSparse: Efficient Point Cloud In-
ference Engine. In: Conference on Machine Learning and Systems (MLSys) (2022)
7, 22, 27, 28, 29

41. Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Searching Efficient
3D Architectures with Sparse Point-Voxel Convolution. In: European Conference
on Computer Vision (ECCV) (2020) 7, 22, 28

42. Tomasi, C., Kanade, T.: Detection and tracking of point. Int J Comput Vis 9(137-
154), 3 (1991) 21

43. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstrac-
tions by assembling volumetric primitives. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017) 12

44. Tyszkiewicz, M.J., Maninis, K.K., Popov, S., Ferrari, V.: Raytran: 3d pose esti-
mation and shape reconstruction of multiple objects from videos with ray-traced
transformers. In: Computer Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part X. pp. 211–228. Springer
(2022) 8, 10, 11, 22

45. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017) 2, 8, 22

46. Vu, T., Kim, K., Luu, T.M., Nguyen, X.T., Yoo, C.D.: Softgroup for 3d instance
segmentation on 3d point clouds. In: CVPR (2022) 11, 27

47. Wu, R., Xiao, C., Zheng, C.: Deepcad: A deep generative network for computer-
aided design models. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (2021) 4, 9

48. Xu, X., Willis, K.D., Lambourne, J.G., Cheng, C.Y., Jayaraman, P.K., Furukawa,
Y.: Skexgen: Autoregressive generation of cad construction sequences with dis-
entangled codebooks. In: International Conference on Machine Learning (ICML)
(2022) 4

49. Xue, Y., Mao, J., Niu, M., Xu, H., Mi, M.B., Zhang, W., Wang, X., Wang, X.:
Point2seq: Detecting 3d objects as sequences. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8521–8530 (2022) 4

50. Yang, K., Chen, X.: Unsupervised learning for cuboid shape abstraction via joint
segmentation from point clouds. ACM Transactions on Graphics (TOG) 40(4),
1–11 (2021) 12, 13

51. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and track-
ing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (2021) 4

18 Avetisyan et al.

52. Yue, Y., Kontogianni, T., Schindler, K., Engelmann, F.: Connecting the dots:
Floorplan reconstruction using two-level queries. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2023) 10

53. Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: Reconstructing the 3d room
layout from a single rgb image. In: Proceedings of the IEEE conference on computer
vision and pattern recognition (2018) 3

SceneScript 19

A Aria Synthetic Environments

Fig. 7: Randomly selected scenes from Aria Synthetic Environments. (top) Birds eye
view renderings demonstrating room layouts and furniture arrangements. (bottom)
Ego-centric close-up renderings showing scene details.

A.1 Large Scale Training Dataset

Aria Synthetic Environments consists of 100k training pairs with photo-realistically
rendered indoor scenes coupled with structured language commands. In addition
to these training sequences, Aria Synthetic Environments also provides an addi-
tional 1k scenes for testing. Figure 7 presents example scenes from the dataset.
To the best of our knowledge, this is the largest synthetically generated and
annotated dataset to date.

Specifically, a training pair for SceneScript consists of a 3D scene model
represented through a rendered video sequence (input) and associated with a
sequence of commands (ground truth). An example training pair for our method
is shown in Figure 8.

Generation. Each of our synthetic indoor scenes are generated in the following
way:

1. Start with:
– A floor plan defining the layout of all rooms
– A corresponding 3D model (room & object geometry, materials and il-

lumination)
2. A trajectory is estimated going through the 3D scene model, simulating an

agent walking around wearing an Aria sensor
3. A photo-realistic RGB rendering of the trajectory is generated with addi-

tional annotation data (depth and instance segmentation maps)

20 Avetisyan et al.

Fig. 8: Example of training data pair. A scene with objects is shown on the left, while
the respective GT SceneScript language description is shown on the right.

4. A SLAM -based point cloud inferred from the synthetic video sequence and
aligned with the initial 3D scene model/floor plan

Table 4: Comparison between existing indoor datasets. P-R: Photo-realistic; Ego: Ego-
centric; Camera: Either Fisheye(F) or Pinhole(P), or panorama photo(360); Seg: object
and layout segmentations rendered to images; L-GT: Layout entity ground-truth, such
as individual wall/window/door parameters.

Type Name Scenes Trajectory P-R Ego Camera Depth Seg L-GT License

Syn

ASE (Ours) 100k ✓ ✓ ✓ F ✓ ✓ ✓ Agreement needed
ProcTHOR 10k × × ✓ P ✓ ✓ ✓ Apache2.0
HyperSim 461 ✓ ✓ ✓ P ✓ ✓ × Special license

Structured3D 3,500 × ✓ ✓ P ✓ ✓ ✓ MIT
SceneNet RGB-D 57 ✓ ✓ ✓ P ✓ ✓ × Special license

InteriorNet 10k/1.7M ✓ ✓ ✓ F, P ✓ ✓ × Agreement needed

Real
Zillow Indoor 2,564 × ✓ × 360 × × ✓ Apache 2.0

HM3D 1,000 × ✓ × P ✓ × × MIT
ScanNet 1,513 ✓ ✓ × P ✓ ✓ × Special license (data)

Dataset Properties. An overview of properties of existing indoor datasets is given
in Table 4. Note that we define ego-centric as wearing a real camera on the head
or chest or having a synthetic camera with similar trajectory. In particular, we
follow the Aria ego-centric specifications [37]. Also note that InteriorNet con-
tains 15k sequences rendered from 10k randomly selected layouts and 5M images
from 1.7M randomly selected layouts, with 3 images per layout. Aria Synthetic
Environments is especially useful for machine learning tasks not just due to its

SceneScript 21

sheer scale (allowing algorithms to generalize well), but also the wide variety of
available ground truth annotations. For example, the layout ground truth (L-
GT) is critical for training SceneScript, but not included in the majority of
other datasets.

Aria Synthetic Environments is made publicly available to the research com-
munity. Users must agree to a standard licence to prevent data misuse and it is
to be used for non-commercial purposes only.

A.2 Semi-dense Point Clouds from Video Sequences

We utilize the open-source Machine Perception Services (MPS) from Project
Aria [1] to estimate a SLAM trajectory and generate a point cloud map of
the scene. Similarly to LSD-SLAM [11] they maximize the extracted geometric
information from a video sequence by estimating points for all image regions
with non-negligible gradient. Each point is parameterized by an inverse distance
and its associated Gaussian uncertainty in the frame in which it is first observed.
KLT-based [42] epipolar line-searches in subsequent frames provide sub-pixel ac-
curate short and large-baseline measurements that are absorbed using a Kalman
filter update. While points are associated with a final estimated uncertainty, they
consider utilizing this information in a probabilistically-sound way as beyond the
scope of their work, and instead choose to sub-select points whose uncertainty
is below a predefined threshold.

B Structured Language Commands

Command parameters can have data types such as float or int. The full list
of parameters for each command can be found in Table 1 of the main paper.
Below, we provide detailed descriptions of each parameter:

– Wall parameters
• id: The ID of the wall.
• (a_x,a_y,a_z)/ (b_x,b_y,b_z): The x, y, z coordinates of the first / second

corner of the wall.
• height: The height of the wall. Note that we assume the walls are straight and

gravity-aligned.

– Door/Window parameters
• id: The ID of the door/window.
• wall0_id,wall1_id: The IDs of the (potentially two) walls that a door/win-

dow is attached to.
• position_x,position_y,position_z: The x, y, z coordinates of the centre of

the door/window.
• width, height: The width and height of the door/window.

22 Avetisyan et al.

C Network Architectures

C.1 Point Cloud Encoder

The point cloud encoder is essentially a ResNet-style [16] encoder that employs
sparse 3D convolutions [40, 41] in place of standard 3D convolutions. It uses a
total of 5 down convolutional layers with a kernel size of 3 and a stride of 2. This
architecture effectively reduces the number of points (i.e. active sites) by ≈ 1000.
As a result, the feature sizes are manageable in terms of size and can be used
effectively in the subsequent Transformer decoder [45]. The point cloud encoder
consists of ≈ 20M optimizable parameters, which contribute to its capacity and
ability to capture intricate geometric information.

C.2 Transformer Decoder

Our implementation includes a transformer decoder consisting of 8 layers, each
with 8 heads for multi-head attention, and a feature dimension of 512. This
configuration results in a relatively modest set of ≈ 35M parameters. Our vo-
cabulary size is 2048, which we also use as the maximum sequence length of
tokens. While we could theoretically increase the vocabulary size to accommo-
date a larger number of tokens, in practice the majority of the released rendered
scenes can be accurately represented using significantly fewer tokens than 2048.

In some scenarios, we employ nucleus sampling [17] with a top-p probability
mass during autoregressive inference. By using nucleus sampling, we limit the
selection of next tokens to a subset with a cumulative probability threshold, al-
lowing for greater exploration at inference time. Quantitative results are decoded
greedily.

D Training Methodology

We use the AdamW optimizer with a default initial learning rate of 10−4 and
weight decay as well as dropout enabled. For the image-only Raytran-based
encoder model [44], we found that an initial learning rate of 10−3 provided
better convergence. We train all our methods with an effective batch size of
64, which may be distributed across multiple nodes. During training, the only
augmentations we perform are: 1) up to 360 degrees of rotation around the z-axis
(since the scenes are assumed to be gravity-aligned), and 2) random subsampling
of point clouds up to a specificed maximum number of points (500k). Training
times lasted approximately between 3 and 4 days.

Our training loss is the standard cross-entropy loss on next token prediction,
similar to how most LLMs are trained [30,39].

E Tokenization Details

The conversion of a parameter x into an integer token t is determined by two
factors: its data type and its magnitude. In general, parameters with int and

SceneScript 23

make_wall, make_door,
make_window

make_wall, make_door,
make_window, +make_bbox

make_wall, make_door,
make_window, make_bbox
+make_prim

Fig. 9: An illustrative example of how the expressiveness of SceneScript’s reconstruc-
tion increases through the addition of new commands. (left) Layout commands only:
walls, doors and windows. (middle, left) Addition of make_bbox enriches the scene
reconstruction with bounding boxes for detected objects. (middle, right) Addition of
make_prim adds volumetric primitives for detected chairs, sofas and tables. (right)
Close-up illustrating the fidelity possible with just these five commands.

bool data types are converted using the t = int(x) operation. For float pa-
rameters, the conversion involves t = round(x/res), where res represents the
resolution. Note that by designing the SceneScript language, we also design the
tokenization. This is notably different from standard NLP tokenization, which
involves Byte-Pair Encodings (BPE) [30].

F Additional Results: Layout Prediction

In this section, we present additional qualitative results, comparisons with re-
lated works and more evaluations with respect to extending SceneScript.

F.1 Visualization of High-Level Commands

Figure 9 presents a visual example of how the fidelity of SceneScript’s re-
construction can be increased through the addition of new commands. Ini-
tially, structural room layouts are represented by three commands: make_wall;
make_door; and make_window. Just through the addition of make_bbox, scene
content is now present in the reconstruction in the form of object detections.
Finally for the commands discussed in the main paper, make_prim for the three
selected target classes enables not just the capture of the scene’s overall structure
and content, but also much finer reconstruction of scene objects themselves.

Importantly, each of these levels of detail is enabled without change to
SceneScript’s network architecture, and instead just by increasing the expres-
siveness of the structured language it infers.

Note that the volumetric primitive commands for detected objects are a proof
of concept. We trained our models for the object primitive commands only on
a subset of the available object types from the Aria Synthetic Environments.
Supported object class labels are “chair ”, “sofa” and “table”. Objects with these
labels are modeled by cuboid and cylinder primitives. Detected bounding boxes
of object instances with unsupported classes remain empty.

24 Avetisyan et al.

Fig. 10: F1-Score model performance graphs for our various encoder variants as func-
tions of the number of rooms in a scene.

F.2 Model Performance with respect to Scene Complexity

The Average F1-score graphs of Figure 10 demonstrate the performance of our
SceneScript model with varying encoders as a function of the number of rooms
in a scene. Our SceneScript model performs constantly well when inputting
points only or lifted features. As opposed to this, performance drops drastically
with increasing room number when encoding scenes only using images. We posit
that the decrease in performance is due to the model’s lack of occlusion reasoning.
With increasing number of layout elements, the rays linked to image observations
traverse more scene space by going through a higher number of rooms when
ignoring wall intersections. This likely results in our model falsely attending to
occluded image observations.

F.3 Failure Cases

In this section, we detail observed failure types for the task of layout estimation
on Aria Synthetic Environments. Aside from expected errors such as slightly
incorrect wall corner, window and door placement, or entirely missed, we observe
two notable failure modes for SceneScript.

The more common of the two occurs due to non-complete exploration of the
target scene. In this scenario there are significant portions of the scene struc-
ture that are poorly observed, potentially not at all, making the ground truth
structure near unpredictable.

An especially interesting failure mode is the reconstruction of accurate room
structure, but at an incorrect Z-value. For the point cloud-based encoder config-
urations, we suspect that this failure mode is caused by particular sensitivity to
noise to point outliers in the Z-direction. This failure mode is also observed in
the image-only encoder configuration, suggesting it also exhibits more sensitivity
to in the Z direction than XY.

We visualize a couple of examples for each of these failure types in Figure 11.
Worth noting is that this figure is comprized of scenes taken from the worst 10
predictions out of the 1000 scene test set, as defined by wall entity distance.

SceneScript 25

Fig. 11: Examples from two notable failure types observed in SceneScriptpredictions.
(top) Limited exploration of the scene makes the ground truth difficult, or in some
cases potentially impossible to predict. (bottom) Accurate overall room structure is
predicted, but at an incorrect Z value.

Therefore, while clearly illustrating the failures described, they should not be
taken as representative of general prediction quality.

F.4 Quantitative Evaluation of Layout Predictions

We include an additional breakdown of the entity distance accuracy metrics
in Table 5. This breakdown of accuracy makes apparent that the improvement
offered by lifting image features onto the semi-dense point cloud comes largely
in the prediction of windows and doors. Following the same trend as the results
included in the main paper, we observe that windows appear to be the most
challenging class to predict accurately. However in spite of this challenge, the
90th percentile of window predictions falls within 0.5m of the ground truth for
all encoder setups tested.

26 Avetisyan et al.

Table 5: Accuracy reported as raw entity distance for the encoder setups tested for
SceneScript.

Entity Distance (cm)
Wall Door Window

Method med. p90 med. p90 med. p90
Point Cloud 4.7 7.2 5.0 6.7 6.9 37.6

Lifted Features 4.8 7.1 4.8 6.1 5.9 26.2
Image-only 6.7 17.3 5.8 8.9 9.0 45.7

G Additional Results: Object Detection

G.1 Implementation Details

Training Details of SceneScript. As outlined in the paper, a significant ad-
vantage of SceneScript lies in its seamless adaptability to other tasks through
the addition of new language commands. Here, for instance, we integrate make_bbox
to denote 3D oriented bounding boxes.

Notably, no architectural changes to SceneScript have been implemented
to facilitate training for object detection. We utilize the point cloud encoder and
language decoder detailed in Section C. The entire training objective is a single
cross-entropy loss, which stands as the de facto-standard in training LLMs. The
model is trained for ≈ 200k iterations using an effective batch size of 64. For
this experiment, we only trained a point cloud version of SceneScript.

Baseline Implementation Details. We list implementation details for each
method below:

3DETR [26]: We downloaded the weights for both 3DETR and 3DETR-m,
trained for 1080 epochs on ScanNet, from the official Github repository. We
evaluated both models on each ScanNet validation examples, subsampled to 40k
points. Predictions were thresholded at probability 0.5. We attemped to run
NMS in 3D, but achieved worse results, thus the numbers reported in the main
paper do not include NMS.

We trained 3DETR (not 3DETR-m) on Aria Synthetic Environments using
almost the same configuration as trained on ScanNet. The differences include: a
batch size of 128, a PointNet set aggregation downsampling to 4096 (compared
to 2048 for ScanNet), 512 furthest point samples as detection queries (compared
to 256 for ScanNet), and 200k points per example.

Cube R-CNN [4]: This method predicts 3D bounding boxes from a single RGB
image. To obtain 3D bounding box predictions for an entire scene, we accu-
mulate per-frame predictions via a matching-based tracker. At a high-level, we
match predictions of the same class between frames with Hungarian matching
with a cost based on IoU and bounding box distances. Then the final bounding

SceneScript 27

box parameters are computed as a running average of the matched and tracked
predictions. For evaluation, the accumulated predicted boxes were thresholded
at probability 0.5.

ImVoxelNet [36]: This model predicts 3D bounding boxes from a set of RGB
images. We trained this method using 10 consecutive frame snippets from Aria
Synthetic Environments. During evaluation, we run the model on overlapping 10-
frame snippets and apply the same bounding box tracker as described for Cube
R-CNN. For evaluation, the accumulated predicted boxes were thresholded at
probability 0.1.

SoftGroup [46]: Since this is primarily a 3D semantic instance segmentation
method, we extract axis-aligned bounding boxes from the predictions by utiliz-
ing the predicted instance masks and computing the minimum and maximum
extents of the point set belonging to each instance. The geometric mean of these
extents serves as the box center, and the difference between the maximum and
minimum extents provides the box scale. Since the bounding boxes are intended
to be axis-aligned, the angle is kept at 0. By combining this information with the
predicted semantic class, one can conduct evaluations over 3D bounding boxes.
We used a publically available checkpoint provided by the authors to conduct in-
ference and extract bounding boxes for evaluation following the aforementioned
procedure.

Note that for ScanNet [10], we use the axis-aligned bounding boxes for ground
truth as extracted in [26,35].

G.2 Sparse Encoder with 3DETR Head

Table 6: Replacing the 3DETR encoder with a SparseCNN results in better perfor-
mance on Aria Synthetic Environments.

F1
Method Input @.25 IoU @.50 IoU

3DETR ’21 [26] Points 0.201 0.078
SparseCNN [40] + 3DETR [26] Points 0.381 0.191

We run an experiment that confirms that 3DETR’s standard settings are
well-suited to ScanNet [10] and SUN RGB-D [38], but perform poorly on Aria
Synthetic Environments. For this experiment, we use the same sparse point cloud
encoder that SceneScript uses (see Section C.1) while using the 3DETR decoder.
Similar to the pure 3DETR model trained on Aria Synthetic Environments, we
increased the number of detection queries to 512, and used 200k points per
example for training. We denote this model as SparseCNN+3DETR. Due to
lack of resources, this model was only partially trained.

28 Avetisyan et al.

Ground TruthSceneScript (Ours)ImVoxelNetSparseCNN + 3DETR Cube R-CNN3DETR

Fig. 12: Qualitative results of predicted bounding boxes on Aria Synthetic Environ-
ments. Each bounding box is colored by its class. The colors are: table, sofa, shelf, chair,
bed, floor_mat, exercise_weight, cutlery, container, clock, cart, vase, tent, flower_pot,
pillow, mount, lamp, ladder, fan, cabinet, jar, picture_frame, mirror, electronic_device,
dresser, clothes_rack, battery_charger, air_conditioner, window.

In Table 6, we show that replacing 3DETR’s Transformer encoder with a
sparse CNN encoder [40, 41] results in stronger performance. We hypothesis
that this is due to the non-uniformity of the point clouds arising from Project
Aria’s semi-dense point clouds from its Machine Perception Services [1]. The
first two columns of Figures 12 and 13 qualitatively demonstrates more accurate
predictions with this encoder replacement.

G.3 Qualitative Results on Aria Synthetic Environments

In Figure 12, we show qualitative results of all the methods trained on Aria Syn-
thetic Environments. This figure demonstrates the difficult of predicting objects
in Aria Synthetic Environments as it is very cluttered. Also, due to the generated
trajectories not necessarily visiting every part of the scene, some ground truth
bounding boxes have very little points associated with them (see the ground
truth in row 3. The lower right corner has very few points yet there are bound-
ing boxes present).

Most methods tend to correctly predict the larger categories (e.g. bed and
sofa). However, the small object categories (e.g. jar and flower_pot) are much
harder to detect, thus the ground truth for these categories typically have 0

SceneScript 29

Ground TruthSceneScript (Ours)ImVoxelNetSparseCNN + 3DETR Cube R-CNN3DETR

Fig. 13: Qualitative results of predicted bounding boxes on Aria Synthetic Environ-
ments. Each bounding box is colored by its IoU with its matched ground truth bounding
box. The color is interpolated from green (IoU = 1.0) to yellow (IoU = 0.5) to red (IoU
= 0).

IoU with predictions (see Figure 13 for qualitative predictions visualised with
IoU scores). This leads to relatively low F1 scores for some of the baselines
(e.g. 3DETR) due to averaging the F1 scores across classes, while visually
the predictions look relatively reasonable. We also include results from Spar-
seCNN+3DETR (details can be found in Section G.2). It can be seen from
Figures 12 and 13 that it qualitatively performs better on Aria Synthetic Envi-
ronments than a pure 3DETR model.

Table 7: mAP for baselines trained on Aria Synthetic Environments.

mAP
Method Input @.25 IoU @.50 IoU

3DETR ’21 [26] Points 0.148 0.040
SparseCNN [40] + 3DETR [26] Points 0.308 0.115

Cube R-CNN ’23 [4] RGB 0.383 0.181
ImVoxelNet ’22 [36] RGB 0.648 0.572

30 Avetisyan et al.

G.4 mAP Metrics for Baselines trained on Aria Synthetic
Environments

In Table 7, we list the mAP values for methods trained on Aria Synthetic Envi-
ronments.

G.5 Discussion of Average Precision Metric

Average precision (AP) has become a standard metric for measuring 3D object
detection performance. A general outline of the procedure required to calulate
this metric is to collect detections across a number of scenes, rank each by de-
scending confidence. Average precision is then computed from this detection pool
by framing it as an information retrieval task: order of retrieval determined by
the confidence ranking; success of a retrieval determined by an IoU threshold
(typically 0.25 or 0.5 for 3D object detection). This framing enables the gen-
eration of a precicision-recall curve for the detector, with the average precision
given by an approximation of the area underneath this curve.

A drawback of this information retrieval framing is that it is order variant,
and requires that the relative certainty of detections across scenes be deter-
minable. While many prior detection methods regress a logit that can naturally
represent this certainty, e.g . the classification logit is often used, SceneScript’s
detections are more binary: either the object is present in the predicted sequence
or not. Within a single scene, we may be able to leverage a heuristic such as se-
quence order to determine relative certainty, i.e. most certain detections appear
sooner in the prediction order (although we have not investigated whether this
actually occurs). However, to determine a similar heuristic between scenes would
require too many assumptions to be considered a robust and fair evaluation con-
figuration.

Fig. 14: Precision-recall variance with scene order. The precision-recall curves are plot-
ted for SceneScript’s predictions of the table class on the same 10 scenes, however the
order of those scenes is shuffled for each evaluation. The inability sort predictions across
scenes leaves the AP@0.5IoU metric sensitive to the order that scenes are evaluated.

SceneScript 31

Table 8: Illustration of how average precision is negatively affected by the inability
to sort across scenes. Two idential sets of detections are produced by detectors 1 and
2. Detector 1 outputs an absolute measure of confidence allowing for sorting across
scenes. However, it is only possible to determine the relative confidence of predictions
within a scene for detector 2. This results in a lower AP, as there is no opportunity to
rank good predictions from scene B above bad predictions from scene A. We assume
there are 3 GT entities in each scene for AP and F1 computation.

Detector 1 Detector 2
w/ absolute conf. relative conf. only

Scene A B B A B A A A A B B B
Certainty high high high med. low low - - - - - -
Success 1 1 1 0 0 0 1 0 0 1 1 0

AP 0.5 0.34
F1 0.5 0.5

To further illustrate this point, we consider an evaluation setup where we use
prediction order within scenes as a proxy for relative certainty, without sorting
across scenes. In Figure 14 we show precision-recall curves computed over 10
scenes from Aria Synthetic Environments validation set using the assumption.
Importantly, each curve on this graph are the same detections on the same
scenes, but with the scenes simply evaluated in a new, random order each time.
Not only is the resulting metric variant with the order of scenes, but low certainty
predictions at the end of ascene’s predictions may appear earlier in the ranked
pool of detections than high certainty predictions from another scene. If these
are incorrect, they will arteficially lower the precision achievable, and in turn
lower the average precision for a method. A toy example of this is included in
Table 8.

For these reasons, in the main paper we choose to use a F1-score-based
metrics to evaluate detection performance. These are not sensitive to ordering
as also illustrated in Table 8.

H Further Extensions of SceneScript

H.1 Extending SceneScript with Curved Entities

In previous layout estimation work, such as [13, 22], methods leverage a pla-
nar assumption and use robust estimation procedures custom tailored to planar
primitive fitting. Extending such methods to more complex, non-planar entities
is non-trivial and requires significant effort. In contrast, we show that our struc-
tured language-based approach makes it straightforward to extend to curved
walls, as for example extruded Bezier curves [23], simply by defining a new
make_curved_wall command.

The curved wall command is a simple Bezier parametrisation consisting of
4 additional parameters: the x, y values of the 2 control points that define the
wall curvature. Explicitly, our planar wall command changes to:

32 Avetisyan et al.

Fig. 15: Non-planar wall geometry extensions to SceneScript. Examples of input point
clouds (top row), the prediction 3D shape (middle row), and ground truth wall shape
(bottom row). (left) Examples of Bezier parameterisation for curved walls. (right) Re-
sults for wall primitive compositions. We observe that both simple extensions to the
parameterisation of the walls can be accurately described and predicted by SceneScript.

make_curved_wall: a_x , a_y , a_z , b_x , b_y , b_z , c1_x ,
c2_y , c2_x , c2_y , height , thickness

where c1x , c1y , c2x , c2y are the Bezier control points.
We generate a synthetic curved walls dataset to train SceneScript. Example

Bezier walls with a qualitative evaluation are in Figure 15 (left). The predic-
tions are nearly indistinguishable compared to ground truth, indicating that our
method can learn to predict such complex primitives.

In a synthetic test bed, we evaluate the capability of our model to infer the
control points of walls parameterized on extruded Bezier curves. Quantitative
results are shown in Table 9.

H.2 Extending SceneScript to Compositions of Wall Primitives

To demonstrate the extensibility of SceneScript’s structured language, and
similarly to the reconstruction of object primitives explored in the main paper,

SceneScript 33

Fig. 16: Results for detecting door state estimation. We visualize the predicted layout
on top of the input point cloud.

Table 9: Quantitative assessment of the reconstruction of curved walls using extruded
Bezier curves as parameters. Token accuracies gauge performance based on a tokenized
1D sequence of the structured language, allowing for a specified slack of +/- N tokens.
The IOU is calculated by comparing the interpreted geometry with the GT geometry.
We achieve virtually error-free results indicating efficient interplay between parameter-
ization and modelling capability of our method.

Token Acc. Slack 1 Token Acc. Slack 3 IOU
0.993 1.0 0.990

we demonstrate representing complexly shaped walls as compositions of cuboids.
We define a new parametrization for this class of walls as follows:

make_wall: a_x , a_y , ...
make_wall_prim: pos_x , pos_y , pos_z , size_x , size_y ,

size_z

where the make_wall_prim command describes a cuboid to be composed with its
parent wall entity. We added such cuboid compositions to a base wall in Figure 15
(right). In this proof-of-concept, the results of Table 10 clearly demonstrate the
ability of the network to infer compositions of cuboids on base walls only from
a noisy surface point cloud.

Table 10: Correctly predicted parameters of composite walls as a percentage . Slack
n indicates estimation of composite wall parameters within bounds of n ∗ 5cm.

Occlusion Levels
No Light High

Sl
ac

k 1 99.6 95.9 92.6
3 99.9 96.4 93.3
5 100 98.2 95.5

34 Avetisyan et al.

make_table,
height=1.26,
sides_num=7,
size0=2.5,
size1=1.94,
top_thickness=0.27,
bottom_thickness=0.05,
bottom_position=-0.46,
bottom_inset=0.4,
leg_position=0.38,
top_leg_radius=0.17,
bottom_leg_radius=0.05,
...

make_table,
height=1.12,
sides_num=4,
size0=2.28,
size1=1.62,
top_thickness=0.05,
bottom_thickness=0.27,
bottom_position=-0.26,
bottom_inset=0.08,
leg_position=0.12,
top_leg_radius=0.07,
bottom_leg_radius=0.05,
...

In
pu

t I
m

ag
es

Pr
ed

ic
tio

n

Fig. 17: Two real-world inferences based on a Blender Geometry Node [3] obtained
online. Input RGB images are recorded on an Aria device. We visualize a subset of the
predicted language as well as the geometry obtained by inputting that prediction into
the Geometry Node.

H.3 Extending SceneScript to Object States

Yet another simple extension to our SceneScript language allows us to represent
door states, w.r.t their opening configuration. For this, we simply change the
original door representation to include a list of parameters that define door
state as follows:

make_door: id, wall_id , pos_x , pos_y , pos_z , width ,
height , open_degree , hinge_side , open_direction

hinge_side represents which side of the door the hinge is on, open_direction
determines whether the door opens into the room or outside of the room, and
open_degree is the angle of the opening. In Figure 16 (second), we qualitatively
demonstrate object state estimation. We annotated our doors with a new com-
mand parameterisation extended by door hinge position, wall opening side and
opening angle. As with our other extensions, our model is able to handle this sit-
uation without issue. This small GT language extension demonstrates effective
state estimation while the input and network architecture remain unchanged.

H.4 Extending SceneScript to Blender Parametric Object Models

Parametric modelling offers detailed high-quality geometry representations along
with interpretability and editability by design [18–20,33]. The Blender commu-
nity offers readily accessible Geometry Nodes of diverse object categories as a
procedural language. We investigate the use of a particular Geometry Node for
tables [3]. Not only can we directly incorporate this parametric model into our
SceneScript language, but we can also use it to generate data by randomly
sampling its parameters similar to [33].

SceneScript 35

We design a simple proof-of-concept experiment where we render synthetic
RGB images of random tables, composite them on a random image background,
and learn to predict the ground truth Blender procedural language. In Figure 17,
we demonstrate two real-world inferences of tables using this language, showing
our method is capable of predicting reasonable parameters to reconstruct these
tables. Interestingly, in the second example the model predicts a high sides_num
to approximate the circular tabletop, which was not on the training set.

	SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model

