
The History of Software Engineering

Grady Booch

The first computers were human (and for the most part, women)1. The term

“digital” didn’t enter circulation until around 1942, when George Stibitz took

the ideas from another George (Boole) and applied them to electro-

mechanical devices2. It took another decade for John Tukey to popularize

the term “software”3. What, then, of the term “software engineering”?

The Origins of the Term

Many suggest it came from the 1968 NATO Conference on Software

Engineering, coined by Friedrich Bauer4. Others have pointed to the 1966

letter by Anthony Oettinger in Communications of the ACM wherein he

used the term “software engineering” to make the distinction between

computer science and the building of software-intensive systems5. Even

earlier, in the June 1965 issue of Computers and Automation, there

appeared a classified ad seeking a “systems software engineer”6.

All the data I have points to Margaret Hamilton as the person who first

coined the term. Having worked on the SAGE program, she became the

lead developer for Skylab and Apollo while working at the Draper Labs.

According to an (unpublished) oral history, she began to use the term

“software engineering” sometime in 1963 or 1964 to distinguish her work

from the hardware engineering taking place on the nascent US space

program7.

Software Engineering vs. Computer Science

Grace Hopper suggested that programming is a practical art8; Edsger

Dijkstra called the art of programming the art of organizing complexity9;

Donald Knuth referred to programming as art because it produced objects

of beauty10. I suspect that all of these observations are true, but what I like

best is David Parnas’ observation – much like Oettinger’s – that there is a

distinction between “computer science” and the other stuff that we do11.

This is not unlike the distinction between chemical engineering and

chemistry: both are valid, both have their particular sets of practices, both

are very different things. Software engineering is, in my experience, equally

an art and a science: it is the art of the practical.

Engineering in all fields is all about the resolution of forces. In civil

engineer, one must consider static and dynamic forces of the physical and

of human nature; in software engineering, one also must balance cost,

schedule, complexity, functionality, performance, reliability, and security, as

well as legal and ethical forces. Computing technology has certainly

changed since the time of Charles Babbage12, but the fundamentals of

engineering hold true although, as we shall see, each age discovers some

new truth about engineering software.

Turn of the 19th Century: Human Computers

Ada Lovelace was perhaps the first person to understand that programming

was a thing unto itself13. Around that same time, George Boole brought a

new way of thinking to the mathematicians and philosophers of the world,

as expressed in his classic book The Laws of Thought14. At the end of that

century, we saw the first human computers, such as Annie Cannon15,

Henrietta Leavitt16, and others, the so called “Harvard Computers17”

working for the astronomer Edward Pickering. The way these women

organized their work was astonishingly similar to contemporary agile

development practices; they too had a different way of thinking, very

different for their time.

Around the start of the new century, as computational problems began to

scale up and as mechanical aids to calculation became more reliable and

economical, the process of computing underwent further regimentation18. It

was common to see large rooms filled with human computers (again,

mostly women), all lined up in rows. Data would enter one end, a computer

would carry out one operation, and then pass the result to the next

computer. This was in effect the organic manifestation of what today we’d

call a pipeline architecture.

From the Great Depression to World-Word II: Birth of the Electronic

Computer

Efficiency and the reduction of costs were then as they are now important

to every industrial process, and so we saw people such as Frederick

Taylor19 and Frank and Lillian Gilbreth20 (of Cheaper By The Dozen21 fame)

introduce time and motion studies. The Gilbreths also promoted the

concept of process charts – the direct predecessor to flow charts – to codify

industrial processes22. It did not take long for these same ideas in

manufacturing to jump over to the problems of computing.

As the global Great Depression took hold, the Work Progress

Administration was launched as part of Roosevelt’s New Deal. Gertrude

Blanche was put in charge of the Mathematical Tables Project, the

predecessor to today’s Handbook of Mathematical Functions23. This was a

work relief project that employed hundreds of out-of-work mathematicians

and computers (again, mostly women). Blanche’s work developed best

practices for human computing that were extremely sophisticated, including

mechanisms for error checking, which influenced the way early punched

card computing evolved. In 1941, W. J. Eckert published Punched Card

Methods in Scientific Computing which turned out to be, in a manner of

speaking, the first computing methodology or pattern language24.

As the winds of war were gathering in Europe, George Stibitz applied

Boole’s ideas of binary logic to build the first digital adder made of

electromechanical relays. He called this the K Model (the K representing

the kitchen table on which he built it) and thus digital computing was born25.

The idea of building electromechanical mechanisms for computation

spread rapidly, and it was not long thereafter that others realized that relays

could be replaced by vacuum tubes, which were much, much faster. In the

summer of 1944, a serendipitous meeting between John von Neumann

(who at the time was working on the Manhattan Project) and Herman

Goldstine (who was working at the Ballistic Research Laboratory) led to

their connection with John Mauchly (a professor at the Moore School of

Electrical Engineering)26. From this the ENIAC came into prominence, but

most importantly, later yielded the First Draft of a Report on the EDVAC27.

And thus was born a new way of thinking: the concept of a programmable,

electronic computer with its instructions stored in memory.

Grace Hopper, very much in the spirit of Ada Lovelace, then rediscovered

the idea that software could be a thing unto itself, distinct from a machine’s

hardware28. This lead to one of the first instances of abstraction in

programming, the idea that one could devise a programming language at a

level closer to human expression and further from the machine’s hardware.

Furthermore, as Hopper realized, one could use the computer itself to

translate those higher order expressions into machine language; the

compiler was born.

In the lamentations of World War II, the computing world split into three

pieces. In Germany, there was Konrad Zuse29; in a different time and place

his work would have been the center of gravity of modern computing, for he

invented the first high order programming language as well as the first

general purpose stored computer. In England, there was Bletchley Park,

where Alan Turing laid the theoretical foundations for modern computer

science30. However, it took an engineer – most notably Tommy Flowers –

to turn those theories into pragmatic solutions, and from this Colossus was

born31. Dorthey du Boisson32, a human computer, served as the primary

operator of the Colossus. In her experience of leading a team of women

who operated Colossus, she codified the ideas of workflow that eventually

was programmed into the machine itself. In the United States, ENIAC33

then later EDVAC34 dominated the scene. Initially, “programming” was

carried out by wiring up plugboards, a task carried out by human computers

(yet again, mostly women), such as Kay Antonelli, Betty Snyder, Frances

Spence, Ruth Teitelbaum, and Marylyn Wescoff35. The way they organized

their work was reminiscent of the Harvard Computers and thus in a manner

of speaking anticipated the structure of contemporary small development

teams focused on continuous integration.

Post World-Word II: Rise of Computing and Birth of Software

Engineering

The technical and economic forces that would shape modern software

engineering further coalesced in the economic rise at the end of World War

II, where we began to see computing applied to problem domains beyond

the needs of conflict. Herman Goldstein built on the ideas of the Gilbreths

and, together with John von Neumann, invented a notation that eventually

morphed into what today we call flowcharts36. Maurice Wilkes, David

Wheeler, and Stanley Gill invented the concept of subroutines, thus again

raising computing’s levels of abstraction, and making manifest the

pragmatics of algorithmic decomposition37. John Backus took Hopper’s

early work and went further, yielding FORTRAN, the high-level imperative

language that would dominate scientific computing for years to come38.

The commercial world, now unleashed at the end of global conflict, turned

to automatic aids to computing: opportunities for growth quickly outran the

cost and reliability of human computers. The first computer put in

commercial use was the Lyons Electronic Office (LEO)39. John Pinkerton,

LEO’s chief engineer, had the insight that software could be treated as a

component unto itself. Realizing that many low-level programming tasks

kept being written over and over again, he began to bundle these common

routines into libraries, forming what today we’d call an operating system or

framework, yet another rise in programming’s levels of abstraction. Grace

Hopper, Robert Bemer, Jean Sammet and others, influenced by Backus’

work, created COBOL, another imperative language, focused on the needs

of businesses40. With the introduction of IBM’s System/36041, it was now

possible to write software for more than one specific machine. IBM’s

decision to unbundle software from hardware was a transformative event:

now it was possible to develop software as a component that had individual

economic value. Around this time, organizations such as SHARE42

emerged – a predecessor to today’s open source software movement –

giving a platform for third parties to write software for hardware they

themselves didn’t control. In the UK, Dina St. Johnson43 seized on the

business opportunity, and established England’s first software services

business, making manifest the idea that one could outsource software

development to teams with particular computing skills a company with

specific domain knowledge might not possess.

Rise of the Cold War: Software Engineering’s Coming of Age

The rise of the Cold War between the United States and the Soviet Union

generated another set of forces that pushed software engineering to come

of age. Tom Kilburn and his work with Whirlwind44 explored the possibilities

of real-time programming, and that work led directly to the SAGE45 system.

Constructed as a defense against the Soviet threat of sending nuclear-

armed bombers over the Arctic, SAGE led to a number of important

innovations: human-computer interfaces using CRT displays and light

pens, the institutionalization of core memory, the problems associated with

building very large software systems in a distributed environment. Software

development was no longer just a small part of bringing a computer to life,

it was increasingly a very expensive part, and most certainly the most

important part.

So now, here we are in the second half of the 1960s, with the confluence of

three important events in the history of software46: the rise of commercial

software as a product unto itself, the complexities of defense systems such

as SAGE, and the rise of human-critical software as demanded by the US

space program. This is the context in which Hamilton coined the term

“software engineering” and in which the NATO declared that there was a

“software crisis.”

A sort of programming priesthood was the common form of software

development at the time, and – in its time – it made a great deal of sense47.

In that era, the cost of a computer was greater than the cost of its

programmers, and as such, computers would be kept apart in a climate-

controlled room. Much like the pipelined methods of the punched card era,

analysts would take requirements, pass them on to programmers who

would use their flowcharts to devise algorithms, who in turn would pass on

their programs to keypunchers, then the resulting card decks would be

given to the computer operators working in their sacred space. It wasn’t

until the economics of computers changed with the rise of minicomputers

and microcomputers, together with the realization of Christopher Strachey’s

ides of time sharing48, that this model of development changed. This is also

the context in which the basic principles of software project management

came alive, as Fred Brooks so profoundly described in The Mythical Man

Month49. Dr. Brooks made the important insight that software engineering

was not just a technical process, it was a very human process as well.

The economic rise after World War II, given a further boost by the Cold

War, led inevitably to a counter-culture shift, as wonderfully described by

John Markoff in What The Dormouse Said50. Quite literally, the introduction

of personal computing was not only fueled by technical and social

advances, it changed the nature of software engineering: now,

programmers were more expensive than computers, and it was

economically viable to put computers everywhere. This led to Allen Newell

speaking of the enchanted world that computing made possible, as

described in his wonderful essay “Fairytales”51.

From the Sixties to the Eighties: Maturation

Software engineering was forced to mature. Larry Constantine52 was

perhaps the first to introduce the ideas of modular programming, with the

ideas of coupling and cohesion applied as a mechanism for algorithmic

decomposition. Edsger Dijkstra53 took a more formal approach, giving us

an important tool for the software engineering, the idea of structured

programming.

Around the same time, there was important work by researchers such

Robert Floyd54 and Tony Hoare55 who devised formal ways to express and

reason about programs, a true attempt to connect computer science and

software engineering. Niklaus Wirth56 invented Pascal, an effort to explicitly

support best practices in structured programming. Ole Dahl and Kristen

Nygaard57 had the outrageously wonderful idea that yielded the invention of

Simula, a language that was object-oriented rather than algorithmic in

nature.

Winston Royce58 then brought to us the idea of a formal software

development process. Although he is much criticized for what we today call

the waterfall process, his methodology was actually quite advanced: he

spoke of iterative development, the importance of prototyping, and the

value of artifacts beyond source code itself. Coupled with David Parnas’

ideas of information hiding59, Barbara Liskov’s ideas of abstract data

types60, and Peter Chen’s approaches to entity-relationship modeling61, all

of a sudden the field had a vibrant set of ideas whereby to expresses the

artifacts and the processes of software development, leading to the first

generation of software engineering methodologies: Doug Ross62, Larry

Constantine63, Ed Yourdon64, Tom Demarco65, Chris Gane, Trish Sarson66,

and Michael Jackson67 – to name just a few – developed methods for

structured analysis and design that took over the field. Adding the work on

Michael Fagan68 (on software inspections), James Martin69 (on information

engineering), John Backus70 (on functional programming), and Leslie

Lamport71 (on best practices for distributed computing), software

engineering entered in its first golden age.

The Eighties and Onward: Golden Age

However, there was a sea change coming. Faced with growing problems of

software quality, the rise of ultra-large software intensive systems, the

globalization of software, and the shift from programs to distributed

systems, new approaches were needed. Dahl and Nygaard’s ideas of

object-oriented programing gave rise to a completely new class of

programming languages: Smalltalk72, C with Classes73, Ada74, and many

others. While structured methods were useful, they were not all together

sufficient to these new languages, and thus was born the second golden

age of software engineering.

Ada75 – the Department of Defense’s solution to the problem of the

proliferation of programming languages and the changing nature of

software itself – proved to be a catalyst for this era. Some of the structured

method pioneers pivoted: James Martin76 and Ed Yourdon77 celebrated

object-oriented approaches; others brought completely new ideas to the

field: Stephen Mellor78, Peter Coad79, Rebecca Wirfs-Brock80, to name a

few. The Booch Method81 grew out of this primordial soup of ideas, as did

Jim Rumbaugh’s OMT82 and Ivar Jacobson’s Objectory83. Sensing an

opportunity to bring the market to some common best practices, the three

of us united to produced what became the Unified Modeling Language84

(made an Object Management Group standard in 1987) and then the

Unified Process85.

Other aspects of software engineering come into play: Philippe Kruchten’s

4+1 View Model of software architecture86, Barry Boehm’s work in software

economics87 together with his spiral model88; Vic Basili and his ideas on

empirical software engineering89, Capers Jones and software metrics90,

Harlan Mills and clean room software engineering91, Donald Knuth’s literate

programming92, and of course, Watts Humphrey and his Capability Maturity

Model93, to name a few. Simultaneously, these software engineering

concepts influenced the development of an entirely new generation of

programming languages: Bjarne Stroustrup’s C with Classes grew up to

become C++94 which later influenced the creation of Java95; Alan Cooper’s

Visual Basic which invigorated the Windows platform96, Brad Cox’s

invention of Objective-C had a tremendous effect on NeXT and Apple.

Furthermore, Brad’s ideas surrounding component-based engineering97 –

another rise in software engineering’s levels of abstraction – led directly to

Microsoft’s OLE and COM98, which were the predecessors of today’s

microservice architecture99.

The Nineties and the Millenium: Era of Disruptions

But another change was in the wind: the internet100. Suddenly we had a

very rich, as of yet unexplored platform, wherein distribution was the

default, consumers were the new stakeholders, users were measured in

the billions, and participants in this ecosystem were not necessarily reliable

or trustworthy. We were no longer building programs, we were building

systems, often made of parts that we no longer controlled.

By this time, there existed a relatively stable and economically very vibrant

software engineering community. Independent companies existed to serve

the needs of requirements analysis, design, development, testing, and

configuration management. Continuous integration with incremental and

iterative development was becoming norm. The Gang of Four101 – Eric

Gamma, Richard Helm, Ralph Johnson and John Vlissides - gave us

another bump up in software engineering levels of abstraction in the form of

the design pattern. Institutionalized by the Hillside Group102 in 1993,

patterns heavily influenced that generation of software development. Jim

Coplien took the ideas of software design patterns and applied them to

organizational patterns103. Mary Shaw furthered these concepts in her work

on software architecture styles104.

Two other lasting developments of note took place in this era. First, Eric

Raymond105 evolved an important legal framework for open source, making

it possible to scale the ideas first seen in the early days of computing, with

SHARE. Kiran Karnik106, working in India, established the first outsourcing

contracts between General Electric and India, thus laying the foundation for

a transformative economic shift in software development.

With the internet well in place and organizations beginning to embrace its

possibilities, mobile devices hit the scene, and the world changed yet

again. The foundation laid by Brad Cox for component-based engineering

morphed into service-based architectures107 which in turn morphed into

micro-service architectures, evolving as the Web’s technical infrastructure

grew in fits and starts. New programming languages came and went (and

still do), but only a handful still dominate: Java, JavaScript, Python, C++,

C#, PHP, Swift, to name a few). Computing moved from the mainframe to

the data center to the cloud, but coupled with microservices, the internet

evolved to become the de facto computing platform, with company-specific

ecosystems rising like walled cathedrals: Amazon108, Google109,

Microsoft110, Facebook111, Salesforce112, IBM113 – really, every

economically interesting company built their own fortress. This was now the

age of the framework: long gone were the religious battles over operating

systems, and now battles were fought along the lines of the veritable

explosion of open source frameworks: Bootstrap, jQuery, Apache, NodeJS,

MongoDB, Brew, Cocoa, Café, Flutter – truly a dizzyingly and ever-growing

collection.

Today, we no longer build just programs or monolithic systems, we build

apps that live on the edge and interact with these distributed systems. Agile

methods114 – in various personality-led variations – have flowered and have

become the dominant method, in name if not necessarily perfectly in

practice. Hirotaka Takeuchi and Ikujiro Nonaka115 coined the term “scrum”

in 1986 as an agile approach to product development, and later Ken

Schwaber116 and (independently) Jeff Sutherland and Jeff McKenna117

codified those principles in the domain of software development. Around

that same time, Kent Beck118 introduced the concept of extreme

programming while Ralph Johnson119 further developed the idea of

refactoring (which Martin Fowler120 further codified in his book by the same

name, Refactoring). In February, 2001, seventeen agilists met in Snowbird,

Utah, and penned the Agile Manifesto121. The agile approach to software

development entered the mainstream.

Software engineering had entered a new golden age. Git122 and Github123

emerged; Joel Spolsky gave us Stack Overflow124; Jeanettt Wing

introduced the idea of computational thinking125; Andrew Shafer and Patrick

Debois brought us the idea of DevOps126; the full stack developer became

a thing; the Internet of Things127 appeared in every imaginable corner of the

world. Now, all of a sudden, literally everyone could learn how to code (and

many did).

Efforts such as SWEBOK128 (the Software Engineering Body of Knowledge,

first released in 2004 and whose current version was released in 2014) and

the Systems Engineering Body of Knowledge129 by INCOSE exist as an

attempt to codify software engineering best practices.

The Decade Ahead: Big Data and the New Season of Artificial

Intelligence

But software engineering is about to undergo yet another change.

The foundations of artificial intelligence have been around for literally

decades. Over the decades we’ve seen at least four seasons of AI,

manifest by extreme rising and falling of fortunes130. What we have now

feels different: the growth of big data, the abundance of raw computational

power, and the presences of these walled cathedrals have given rise to

economic forces that have made first statistical approaches and now neural

networks viable. Most of these modern advances have been in what I call

signal AI: the use of neural networks and gradient descent to do complex

pattern matching in images, video, and audio signals. The early outcomes

are impressive, as evidenced in IBM’s Watson131 and Google’s AlphaGo132.

In many ways, we are just beginning to understand what is possible and

where the limits of these connectionist models of computation live.

We as an industry have not yet built enough of these AI systems to fully

understand how they may impact the software engineering process, as

they most certainly will. What is the best lifecycle for systems whose

components we teach and that learn, rather than program? How do we test

them? Where does configuration management fit in when data for ground

truth is perhaps more important that the neural network itself? How to be

best architect systems with parts whose operation we literally cannot

explain nor fully trust?

This will be the challenge of the next generation of women and men who

keep software engineering vibrant. Add to this mix the growth of quantum

computing, augmented reality, virtual reality, and the spread of computing

to every human, every device, literally every nook and cranny of the earth

and beyond, this makes for a tremendously exciting time to be in

computing.

In the history of computing, we have seen the progression of systems from

mathematical to symbolic to what Yuval Harari133 calls imagined realities.

Some software is like building a doghouse: you just do it, without any

blueprints, and if you fail, you can always get another dog. Other software

is like building a house or a high rise: the economics are different, the scale

is different, the cost of failure is higher. Much of modern software

engineering is like renovating a city: there is room for radical innovation, but

you are constrained by the past as well as the cultural, social, ethical, and

moral context of everyone else in the city.

One thing I do know. No matter the medium or the technology or the

domain, the fundamentals of sound software engineering will always apply:

craft sound abstractions; maintain a clear separation of concerns; strive for

a balanced distribution of responsibilities, seek simplicity. The pendulum

will continue to swing - symbolic to connectionist to quantum models of

computation; intentional architecture or emergent architecture; edge or

cloud computing – but the fundamentals will stand.

I have named a few dozen women and men who have shaped software

engineering, but please know that there are literally thousands more who

have made software engineering what it is today, each by their own unique

contributions. And so it will be for the future of software engineering. As I

said in closing in my ICSE keynote in Florence in 2015, software is the

invisible writing that whispers the stories of possibility to our hardware.

And you are the storytellers.

This essay is based on my ACM Learning Webinar of the same title

broadcast on April 25, 2018. A recording is available at:

https://www.youtube.com/watch?v=QUz10Z1AfLc

1 Grier, David. When Computers Were Human. Princeton, New Jersey: Princeton University Press, 2007.
2 Ceruszzi, Paul. Computing: A Concise History. Cambridge, Massachusetts: MIT Press, 2012.
3 Leonhardt, David. “John Tukey, 85, Statistician; Coined the World ‘Software.’” New York Times, 28 July 2000.
4 Naur, Peter and Randell, Brian. Software Engineering: Report on a conference sponsored by the NATO Science
Committee. Brussels, Belgium: NATO Scientific Affairs Division, January 1969.
5 Oettinger, Anthony. “President’s Letter to the ACM Membership.” Communications of the ACM, Vol. 9, No. 12,
1966.
6 Computers and Automation. New York, New York: Edmund Berkeley and Associates, June 1965.
7 NASA. Margaret Hamilton, Apollo Software Engineer, Awarded Presidential Medal of Freedom. 6 August 2017.
8 Greenberger, Martin. Management and the Computer of the Future. Cambridge, Massachusetts: Sloan School of
Management, 1962.
9 Dijkstra, Edsgar. “Notes on Structured Programming.” EWD 249. Eindhoven, Netherlands: Technological
University Eindhoven, April 1970.
10 Knuth, Donald. “Computer Programming as Art.” Communications of the ACM, Vol. 17, No. 12, 1974.
11 Parnas, David. “Software Engineering Programs Are Not Computer Science Programs.” IEEE Software,
November/December 1999.
12 Swade, Doron. The Difference Engine: Charles Babbage and the Quest to Build the First Computer. London
England: Penguin Books, 2002.
13 Hollings, Christopher. Ada Lovelace: The Making of a Computer Scientist. Oxford, England: Bodleian Library,
2018.
14 Boole, George. An Investigation of the Laws of Thought. London, England: Walton and Maberly, 1854.
15 Cannon, Annie. In the Footsteps of Columbus. Boston, Massachusetts: Barata and Company, 1983.
16 Johnson, George. Miss Leavitt’s Stars: The Untold Story of the Woman Who Discovered How To Measure The
Universe. New York City, New York: Norton and Company, 2006.
17 Gelling, Natasha. “The Woman Who Mapped the Universe and Still Couldn’t Get Any Respect.” Smithsonian, 18
September 2013.
18 Ceruzzi, Paul. Computing: A Concise History. Cambridge, Massachusetts: MIT Press, 2012.
19 Kanigel, Robert. The One Best Way: Frederick Winslow Taylor and the Enigma of Efficiency. Cambridge,
Massachusetts: MIT Press, 2005.

https://www.youtube.com/watch?v=QUz10Z1AfLc

20 Gilbreth, Frank and Gilbreth, Lillian. Applied Motion Study: A Collection of Papers on the Efficient Method to
Industrial Preparedness. New York City, New York: Sturgis and Walton, 1917.
21 Gilbreth, Frank and Carey, Ernestine. Cheaper By The Dozen. New York City, New York: Thomas Crowell, 1948.
22 Gilbreth, Frank and Gilbreth, Lilian. Process Charts. New York City, New York: American Society of Mechanical
Engineers, 1921.
23 Grier, David. “Gertrude Blanche of the Mathematical Tables Project.” IEEE Annals of the History of Computing,
Vol. 19, No. 4, October/December 1997.
24 Eckert, Wallace. Punched Card Methods in Scientific Computing. New York City, New York: Columbia University
Press, 1940.
25 Stibitz, George and Larrivee, Jules. Mathematics and Computers. New York City, New York: McGraw-Hill, 1957.
26 MacRae, Norman. John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory,
Nuclear Deterrence, And Much More. New York City, New York: American Mathematical Society, 1999.
27 von Neumann, John. First Draft of a Report on the EDVAC. Pittsburgh, Pennsylvania: Moore School of Electrical
Engineering. 1945.
28 Beyer, Kurt. Grace Hopper and the Invention of the Information Age. Cambridge, Massachusetts: MIT Press,
2012.
29 Zuse, Konrad. The Computer – My Life. New York City, New York: Springer, 1993.
30 McKay, Sinclair. Bletchley Park: The Secret Archives. London, England: Aurum Press, 2016.
31 Copeland, Jack. Colossus: The Secrets of Bletchley Park’s Code-breaking Computers. Oxford, England: Oxford
University Press, 2010.
32 Hicks, Mars. Programmed Inequality: How Britian Discarded Woman Technologists and Lost Its Edge in
Computing. Cambridge, Massachusetts: MIT Press, 2018.
33 McCartney, Scott. ENIAC: The Triumphs and Tragedies of the World’s First Computer. New York City, New York:
Walker and Company, 1999.
34 Wilkes, Maurice. Automatic Digital Computers. New York City, New York: John Wiley and Sons, 1956.
35 Top Secret Rosies. Director: LeAnn Erickson. PBS, 2011.
36 Hartree, Douglas. Calculating Instruments and Machines. Urbana, Illinois: University of Illinois Press, 1949.
37 Wheeler, David. “The Use of Sub-routines in Programmes.” Proceedings of the ACM National Meeting, 1942.
38 Sammett, Jean. Programming Languages; History and Fundamentals. New York City, New York: Prentice Hall,
1969.
39 Ferry, Georgina. A Computer Called LEO: Lyons Tea Shops and the World’s First Office Computer. London,
England: Fourth Estate, 2003.
40 Sammett, Jean. Programming Languages; History and Fundamentals. New York City, New York: Prentice Hall,
1969.
41 Pugh, Emmerson. IBM’s 360 and Early 370 Systems. Cambridge, Massachusetts: MIT Press, 2003.
42 SHARE. https://www.share.org
43 Lavington, Simon. “An Appreciation of Dina St Johnston, Founder of the UK’s First Software House. The Computer
Journal, Vol. 52 No. 3, 2009.
44 Redmond, Kent. Project Whirlwind: History of a Pioneer Computer. Maynard, Massachusetts: Digital Press, 1980.
45 Redmond, Kent. From Whirlwind to MITRE: The R&D Story of the SAGE Air Defense Computer. Cambridge,
Massachusetts: MIT Press, 2000.
46 Ornstein, Severo. Computing in the Middle Ages: A View From the Trenches 1955-1983. Bloomington, Indiana:
Author House, 2002.
47 Metropolis, Nicholas. A History of Computing in the Twentieth Century. New York City, New York: Academic
Press, 1980.
48 Pyke, Thomas. “Time-Shared Computer Systems.” Advances in Computers. London, England: Elsevier, 1967.
49 Brooks, Fred. The Mythical Man Month: Essays on Software Engineering. Boston, Massachusetts: Addison-
Wesley, 1975.
50 Markoff, John. What the Dormouse Said. London England: Penguin Books, 2005.
51 Newell, Alan. “Fairytales.” AI Magazine, Vol. 13, No. 4, 1922.

52 Constantine, Larry. Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design.
New York City, New York: Prentice Hall, 1979.
53 Dijkstra, Edsgar. A Discipline of Programming. New York City, New York: Prentice Hall, 1976.
54 Floyd, Robert. The Language of Machines. New York City, New York: W H Freeman, 1994.
55 Daylight, Edgar. The Dawn of Software Engineering: From Turing to Dijkstra. Geel, Belgium: Lonely Scholar, 2012.
56 Wirth, Niklaus. Algorithms + Data Structures = Programs. New York City, New York: Prentice Hall, 1976.
57 Broy, Manfred and Denert, Ernst. Software Pioneers. New York City, New York: Springer, 2002.
58 Royce, Winfred. “Managing the Development of Large Software Systems. Proceedings of the IEEE Weston, 1970.
59 Hoffman, Daniel and Weiss, David. Software Fundamentals: Collected Papers of David L. Parnas. Boston,
Massachusetts: Addision-Wesley, 2001.
60 Liskov, Barbara. Abstraction and Specification in Program Development. Cambridge, Massachusetts: MIT Press,
1986.
61 Chen, Peter. The Entity-Relationship Model: A Basis for the Enterprise View of Data. New York City, New York:
Sagwan Press, 2018.
62 Ross, Douglas. “Structured Analysis: A Language for Communicating Ideas.” IEEE Transactions on Software
Engineering, Vol. 3, No. 1, 1977.
63 Constantine, Larry. Constantine on Peopleware. New York City, New York: Prentice Hall, 1995.
64 Yourdon, Edward. Modern Structured Analysis. New York City, New York: Prentice Hall, 1988.
65 DeMarco, Tom. Structured Analysis and System Specification. New York City, New York: 1979.
66 Gane, Chris and Sarson, Trish. Structured Systems Analysis. New York City, New York: 1979.
67 Jackson, Michael. Software Requirements and Specifications: A Lexicon of Practice, Principles, and Prejudices.
New York City, New York: Addison-Wesley, 1995.
68 Fagan, Michael. “Design and Code Inspections to Reduce Errors in Program Development.” IBM Systems Journal
Vol. 15, No. 3, 1976.
69 Martin, James. Information Engineering. New York City, New York: Prentice Hall, 1989.
70 Backus, John. “Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra
of Programs.” Communications of the ACM, Vol. 21, No. 8, 1978.
71 Lamport, Leslie. “Time, Clocks, and the Ordering of Events in a Distributed System.” Communications of the ACM,
Vol. 21, No. 7, 1978.
72 Goldberg, Adele. Smalltalk 80: The Language. New York City, New York: Addison-Wesley, 1989.
73 Stroustrup, Bjarne. “Evolving a Language In and For the Real World.” ACM History of Programming Language,
2007.
74 Sammet, Jean. “Why Ada is Not Just Another Programming Language.” Communications of the ACM, Vol. 29, No.
8, 1986.
75 Ichbiah, Jean. Rationale for the Design of the Ada Programming Language. Cambridge, England: Cambridge
University Press, 1991.
76 Martin, James and Odell, James. Principles of Object-Oriented Analysis and Design. New York City, New York:
Prentice Hall, 1993.
77 Yourdon, Edward. Object-Oriented Systems Design. New York City, New York: Prentice Hall, 1993.
78 Shlaer, Sally and Mellor, Stephen. Object-Oriented Systems Analysis: Modeling the World In Data. New York City,
New York: Prentice Hall, 1988.
79 Coad, Peter. Object-Oriented Design. New York City, New York: Prentice Hall, 1991.
80 Wirfs-Brock, Rebecca. Designing Object-Oriented Software. New York City, New York: Prentice Hall, 1990.
81 Booch, Grady. Object-Oriented Design with Applications. New York City, New York: Benjamin-Cummings, 1990.
82 Rumbaugh, James. Object Oriented Modeling and Design. New York City, New York: Prentice Hall, 1991.
83 Jacobson, Ivar. Object-Oriented Software Engineering: A Use Case Approach. New York City, New York: 1992.
84 Booch, Grady, Rumbaugh, James, and Jacobson, Ivar. The Unified Modeling Language User Guide. New York City,
New York: Addison-Wesley, 2005.
85 Kruchten, Philippe. The Rational Unified Process. New York City, New York: 2003.
86 Kruchten, Philippe. “Architectural Blueprints: The 4+1 View Model of Software Architecture.” IEEE Software, Vol.
12, No. 6, 1995.

87 Boehm, Barry. Software Engineering Economics. New York City, New York: Prentice Hall, 1981.
88 Boehm, Barry. “A Spiral Model of Software Development and Enhancements.” ACM SIGSOFT, Vol. 11, No. 4,
1986.
89 Boehm, Barry and Rombach, Hans. Foundations of Empirical Software Engineering: The Legacy of Victor Basili.
New York City, New York: Springer, 2005.
90 Jones, Capers. The Economics of Software Quality. New York City, New York: Addison-Wesley, 2011.
91 Mills, Harlan. Software Productivity. New York City, New York: Dorset House, 1988.
92 Knuth, Donald. Literate Programming. Palo Alto, California: Center for the Study of Language and Information,
1992.
93 Humphrey, Watts. A Discipline for Software Engineering. New York City, New York: Addison-Wesley, 1995.
94 Stroustrup, Bjarne. C++: The Programming Language. New York City, New York: Addison-Wesley, 1991.
95 Gosling, James. The Java Programming Language. New York City, New York: Addision-Wesley, 1996.
96 Cooper, Alan. The Inmates are Running the Asylum. New York City, New York: Sams-Pearson Education, 2004.
97 Cox, Brad. Object-Oriented Programming: An Evolutionary Approach. New York City, New York, Addison-Wesley,
1991.
98 Automation Programmer’s Reference. Bellevue, Washington: Microsoft Press, 1997.
99 Newman, Sam. Building Microservices: Designing Fine-Grained Systems. Sebastopol, California: O’Reilly Media,
2015.
100 Hafner, Katie. Where Wizards Stay Up Late. New York City, New York: Simon and Schuster, 1998.
101 Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design Patterns: Elements of Reusable
Object-Oriented Software. New York City, New York: Addison-Wesley, 1994.
102 The Hillside Group. https://hillside.net
103 Coplien, James. Organizational Patterns of Agile Software Development. New York City, New York: Prentice Hall,
2004.
104 Shaw, Mary and Garlan, David. Software Architecture: Perspectives on an Emerging Discipline. New York City,
New York: Pearson, 1996.
105 Raymond, Eric. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. Sebastopol, California: O’Reilly Media, 2001.
106 Karnik, Kiran. The Coalition of Competitors. Delhi, India: Harper Collins India, 2012.
107 Daigneau, Robert. Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful Web
Services. New York City, New York: Addison-Wesley, 2011.
108 Wittig, Michael. Amazon Web Services in Action. New York City, New York: Manning Publications, 2015.
109 Geewax, JJ. Google Cloud Platform in Action. New York City, New York: Manning Publications, 2018.
110 Gurhrie, Scott. Building Cloud Apps with Microsoft Azure. Bellevue, Washington: Microsoft Press, 2014.
111 Hyatt, Michael. Platform: Get Noticed in a Noisy World. Nashville, Tennessee: Thomas Nelson, 2012.
112 Ouelette, Jason. Development with the Force.com Platform. New York City, New York: Addison-Wesley, 2013.
113 Iyengar, Ashok. IBM Cloud Platform Primer. Boise, Idaho: MC Press, 2015.
114 Ashmore, Sondra and Runyan, Kristin. Introduction to Agile Methods. New York City, New York: Addison-Wesley,
2014.
115 Takeuchi, Hirotaka and Nonaka, Ikujiro. “The New New Product Development Game.” Harvard Business Review,
January 1986.
116 Schwaber, Ken. Agile Project Management with Scrum. Bellevue, Washington, Microsoft Press, 2004.
117 Sutherland, Jeff and Sutherland, JJ. Scrum: The Art of Doing Twice the Work in Half the Time. Danavers,
Massachusetts: Currency, 2014.
118 Beck, Kent. Extreme Programming Explained. New York City, New York: Addison-Wesley, 2004.
119 Johnson, Ralph. “Living and Working with Aging Software.” University Of Illinois at Urbana-Champaign, 1994.
120 Fowler, Martin, Beck, Kent, Brant, John, Opdyke, William, Roberts, Don, and Gamma, Erich. Refactoring:
Improving the Design of Existing Code. New York City, New York: Addison-Wesley, 1999.
121 The Agile Alliance. https://agilealliance.org
122 Chacon, Scott and Straub, Ben. Pro Git. New York City, New York: Apress, 2014.
123 GitHub. https://github.com

124 StackOverflow. https://stackoverflow.com
125 Wing, Jeannette. “Computational Thinking.” Communications of the ACM, Vol. 49, No. 3, 2006.
126 Kim, Gene, Debois, Patrick, Willis, John, Humble, Jez, and Allspaw, John. DevOps Handbook. Portland, Oregon: IT
Revolution Press, 2016.
127 Grengard, Samuel. The Internet of Things. Cambridge, Massachusetts: MIT Press, 2015.
128 Guide to the Software Engineering Body of Knowledge, Washington, DC: IEEE Computer Society Press, 2014.
129 INCOSE Systems Engineering Handbook. New York City, New York: Wiley, 2015.
130 Knight, Will. “AI Winter Isn’t Coming.” MIT Technology Review, 7 December 2016.
131 Kelly, John and Hamm, Steve. Smart Machines: IBM’s Watson and the Era of Cognitive Computing. New York
City, New York: Columbia University Press, 2013.
132 AlphaGo. https://deepmind.com/blog/alphago-zero-learning-scratch
133 Harari, Yuval. Sapiens: A Brief History of Humankind. New York City, New York: Harper Collins, 2015.

