

The 3rd YouTube-8M Large-Scale Video Understanding Workshop

October 28, 2018

Agenda (Morning)

Time	Content	Presenter
9:00 - 9:05	Opening Remarks	Paul Natsev
9:05 - 9:20	Overview of 2019 YouTube-8M Dataset & Challenge	Joonseok Lee
Session 1		
9:20 - 9:50	Invited Talk 1: Human action recognition and the Kinetics dataset	Jitendra Malik
9:50 - 10:20	Invited Talk 2: Learning from Narrated Videos	Jean-Baptiste Alayrac
10:20 - 10:40	Coffee Break	
Session 2		
10:40 - 11:00	MediaPipe: A framework for building perception pipelines	Chris McClanahan
11:00 - 12:00	Oral Session 1 Logistic Regression is Still Alive and Effective:The 3rd YouTube 8M challenge solution of the IVUL-KAUST team Multi-attention Networks for Temporal Localization of Video-level Labels A segment-level classification solution to the 3rd YouTube-8M Video Understanding Challenge	 IVUL-KAUST (#11) Locust (#13) bestfitting (#4)
12:00 - 2:00	Lunch on your own	

Agenda (Afternoon)

Time	Content	Presenter
Session 3		
2:00 - 2:30	Invited Talk 3: Detecting Activities with Less	Cees Snoek
2:30 - 3:00	Invited Talk 4: From video-level to fine-grained recognition and retrieval of interactions	Dima Damen
3:00 - 4:00	 Oral Session 2 MOD: A Deep Mixture Model with Online Knowledge Distillation for Large Scale Video Temporal Concept Localization Cross-Class Relevance Learning for Information Fusion in Temporal Concept Localization Noise Learning for Weakly Supervised Segment Classification in Video 	 RLin (#3) Layer6 AI (#1) zhangzhaoyu (#8)
4:00 - 4:30	Coffee Break	
Session 4		
4:30 - 6:00	Poster Session	All Accepted Posters

Overview of 2019 YouTube-8M Dataset & Challenge

Joonseok Lee (joonseok@google)
On behalf of the YouTube-8M team

The Multiple Aspects of Video Understanding

Describing the **content:** what is visible/audible?

Inferring the central topics: what is the story about?

Describing the structure & style: how is the story told?

Inferring creator / viewer intent:

- why capture this video?
- why watch this video?

YouTube-8M: Primary Objectives

- Advance the state-of-the-art in Video Understanding
 - By providing a large, free, realistic, labeled video dataset
 - By democratizing research on large-scale video understanding
- Create a representative video annotation benchmark
 - Balancing dataset size and class diversity with training time
 - Key design principles:
 - Preserve the organic distribution as much as possible
 - Make sure all data can fit on a commodity hard disk
 - Make sure a good model can be trained on 1 GPU in < 1 day</p>

The Dataset: YouTube-8M (2018 edition)

- 6.1M videos
- 350,000 hours
- 2.6B audio-visual features
- 3,862 classes
- 3.0 labels/video

2019 YouTube-8M Challenge: What's New?

YouTube-8M Segments (NEW for 2019)

- 1,000 classes (out of 3,862 YT8M vocab) selected based on temporal-localizability.
 - E.g., Typing, Squirrel, Sunset, ...
 as opposed to PC Game, Concert, Football, ...
- 5 segments/video sampled to label
 - Tried to have at least one positive and one negative segment.
 - ~80% videos have both positive and negative segments.
- 230K human-verified segment labels collected.

YouTube-8M Segments (NEW): Label Distribution

Previous Years: Video-level Classification

Temporal Localization Task

This Year: Segment-level Classification

2019 YouTube-8M Challenge Task

- Training data:
 - Frame-level features
 - Visual Inception-V3 bottleneck features extracted from pixels (1024D)
 - Audio Resnet-ish bottleneck features extracted from spectrograms (128D)
 - Video-level noisy labels for 6M+ videos (cover the main themes in the video)
 - New in 2019: 5s-long Segment-level human-verified labels for 230k+ segments
- Goal:
 - New in 2019: Predict target segment topics from the sequence of frame-level features and noisy video-level labels (+some segment-level validation set)
 - Segment topics are from 1,000 entities (subset of 3,862 YT8M vocab)
- New in 2019: Removed model size restriction

Evaluation Metrics

Mean Average Precision (MAP): Mean per-class AUC of P-R curves

$$mAP = \frac{1}{|E|} \sum_{e} AP(e) = \frac{1}{|E|} \sum_{e=1}^{|E|} \sum_{i=1}^{N} P_{e}(i) \Delta R_{e}(i)$$

 With this change from global Average Precision (gAP), it is more important to precisely predict rare classes. (Each class is equally important regardless of available samples.)

Where were the participants from?

- 283 teams
- 341 competitors
- Participants from 40+ countries
- Total of 3,753 submissions

Country	#Competitors
USA	108
India	46
China PRC	32
Russia	19
Japan	17
Hong Kong	15
France	14
Korea	12
Canada	12
Taiwan	9
UK	7
Ukraine	6
Pakistan	6
Germany	6
Sweden	4
Saudi Arabia	4
Turkey	3
Thailand	3

Competition Progression

Competition Progression

Did the models overfit the Public Test data?

Logistics

Agenda (Morning)

Time	Content	Presenter
9:00 - 9:05	Opening Remarks	Paul Natsev
9:05 - 9:20	Overview of 2019 YouTube-8M Dataset & Challenge	Joonseok Lee
Session 1		
9:20 - 9:50	Invited Talk 1: Human action recognition and the Kinetics dataset	Jitendra Malik
9:50 - 10:20	Invited Talk 2: Learning from Narrated Videos	Jean-Baptiste Alayrac
10:20 - 10:40	Coffee Break	
Session 2		
10:40 - 11:00	MediaPipe: A framework for building perception pipelines	Chris McClanahan
11:00 - 12:00	Oral Session 1 Logistic Regression is Still Alive and Effective:The 3rd YouTube 8M challenge solution of the IVUL-KAUST team Multi-attention Networks for Temporal Localization of Video-level Labels A segment-level classification solution to the 3rd YouTube-8M Video Understanding Challenge	 IVUL-KAUST (#11) Locust (#13) bestfitting (#4)
12:00 - 2:00	Lunch on your own	

Agenda (Afternoon)

Time	Content	Presenter
Session 3		
2:00 - 2:30	Invited Talk 3: Detecting Activities with Less	Cees Snoek
2:30 - 3:00	Invited Talk 4: From video-level to fine-grained recognition and retrieval of interactions	Dima Damen
3:00 - 4:00	 Oral Session 2 MOD: A Deep Mixture Model with Online Knowledge Distillation for Large Scale Video Temporal Concept Localization Cross-Class Relevance Learning for Information Fusion in Temporal Concept Localization Noise Learning for Weakly Supervised Segment Classification in Video 	 RLin (#3) Layer6 AI (#1) zhangzhaoyu (#8)
4:00 - 4:30	Coffee Break	
Session 4		
4:30 - 6:00	Poster Session	All Accepted Posters

Poster Session Location

We are on **3rd** floor now. (317BC)

Poster session will be on the same floor, right outside of our room.

Please set up your poster

MediaPipe

A framework for building perception pipelines

Chris McClanahan, Google Research

What is MediaPipe?

MediaPipe is Google's **cross-platform** framework for building **perception pipelines**

Widely used at Google in **research & products** to process and analyze video, audio and sensor data

- Dataset preparation pipelines for ML training
- ML inference pipelines
- Media processing pipelines

MediaPipe in Production

Mobile: Visual Search, Lens

Server: Video Previews Cross-platform: **Motion Photos**

AR: YouTube, ARCore, Duo

Android

Server / Browser

YT8M Feature Extraction & Model Inference with MediaPipe

New Tools for YT8M

- Feature extraction / Dataset preparation pipeline:
 - Local video path in TFRecord in -> features in TFRecord out.
- Model inference pipelines:
 - Local video path in TFRecord + features in TFRecord in -> annotated video out
 - YT8M features in TFRecord in -> labels out
 - Web Interface

MediaPipe Concepts

A MediaPipe **Graph** represents a **perception pipeline**

Each node in the pipeline is a MediaPipe **Calculator**

A pair of nodes are connected by a **Stream**, which carries a sequence of **Packets** with ascending timestamps

input sequence example StringToSequenceExample SEQUENCE_EXAMPLE Audio SEQUENCE_EXAMPLE UnpackMediaSequence RESAMPLER_OPTIONS **YT8M Feature Extraction** INPUT_FILE_PATH OpenCvVideoDecoder AudioDecoder AddHeader AverageTimeSeriesAcrossChannels TensorFlowSessionFromFrozenGraph SESSION ImageFrameToTensor Input: video path in TFRecord ION TensorFlowInference RationalFactorResample TensorSqueezeDimensions Example command: \$./extract_yt8m_features \ TensorToMatrix inception3_pca_mean_matrix MelSpectrum --calculator_graph=feature_extraction.pbtxt \ --input_side_packets=/tmp/input.tfrecord \ inception3_pca_projection_matrix UBTRAHEND MatrixSubtract StabilizedLog --output_side_packets=/tmp/output.tfrecord MatrixMultiply **TimeSeriesFramer** TensorFlowSessionFromFrozenGraph_2 SESSION MatrixToTensor MatrixToVector SESSION TensorFlowInference_2 vggish_pca_mean_matrix TensorToMatrix 2 vagish pea projection matrix SUBTRAHEND MatrixSubtract 2 Convolution AvgPoolMaxPool MatrixMultiply 2 Concat Dropout Fully connected MatrixToVector 2

Output: features in TFRecord

STRING - sequence_example_to_serialize

sequence_example_StringToSequenceExample_2

SEQUENCE_EXAMPLE PackMediaSequence SEQUENCE_EXAMPLE

Model Inference - Local video

Input: features in TFRecord (generated by feature extraction)

Input: segment size & overlap

Input: path to video file (for rendering video)

Output: annotated video

Model Inference - Web Interface

- Easy way to test your models on the dataset
- Automatically looks up YT8M id & TfRecord
- See segment labels synced with video
- Live demo using <u>baseline model</u>...
 - Deep Bag-of-Frame (DBoF)

MediaPipe Tech Stack

docs.mediapipe.dev

viz.mediapipe.dev

Desktop/Server Examples

- YouTube 8M feature extraction and model inference
- Data preparation using MediaSequence (e.g., for DeepMind Kinetics i3d)
- Face detection
- Object detection
- Hand tracking

Mobile Examples

mediapipe.dev

Thank you for your attention.

Closing Remarks

Final Private Leaderboard

The Winner: Layer6 Al

- Members
 - Junwei Ma (Layer6 Al)
 - Satya Krishna Gorti (Layer6 Al)
 - Maksims Volkovs (Layer6 Al)
 - Ilya Stanevich (Layer6 Al)
 - Guangwei Yu (Layer6 Al)
- Score on public evalset: 0.84429 (#1)
 Score on private evalset: 0.83292 (#1)

Special Thanks to

- #3: Team **RLin** (#3 in 2018)
 - Rongcheng Lin (University of North Carolina at Charlotte)
 - Jing Xiao (University of North Carolina at Charlotte)
 - Jianping Fan (University of North Carolina at Charlotte)
- #5: Team **Last Top GB Model** (#1 in 2018, #5 in 2017)
 - Miha Skalic (University Pompeu Fabra)
 - Mikel Bober-Irizar (Royal Grammar School Guildford)
 - David Austin (Intel)

Acknowledgments

Challenge Organizers

Ke Chen Nisarg Kothari

Hanhan Li

Joe Ng

Sobhan Naderi Parizi

David Ross

Javier Snaider

Zheng Xu

+ Big thanks to all speakers and participants!!

Poster Session Location

We are on **3rd** floor now. (317BC)

Poster session will be on the same floor, right outside of our room.

Thanks again for participation.

Ideas or suggestions are welcome for the competition!