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Figure 1: Architecture of the attention models. Left: overall hierarchical architecture; Right: implementation of the
attention module. Frame-level features in each segment go through a segment-level attention module and produce
segment-level features, which are used to compute a segment-level loss with segment-level annotations. All segment-level
features in a video are input into a video-level attention module and produce a video-level features, which are used to
compute a video-level loss with video-level annotations.

Abstract

In this report, we present our solution for the 3rd

YouTube-8M Video Understanding Challenge for a task of
temporal localization of topics within a video. Our team
achieves the 9th place in the Public Leaderboard and the
11th place in the Private Leaderboard with a difference of
4.5 × 10−4 from the 10th gold medal winner. Overall, we
train 20 different models independently and use their en-
semble to predict segment scores. Along with a video clas-
sifier, we generate final scores for each segment. We use
one-loss or two-loss training strategies for different mod-
els to make full use of video-level annotations and segment-
level annotations. Furthermore, we adopt a teacher-student
model and deep clustering to generate pseudo-labels to in-
crease the amount of fully-annotated data.

1. Brief problem description
The task of the 3rd YouTube-8M Video Understand-

ing Challenge is to predict a topic for a 5-second length
segment within a video. Videos are annotated with over
3800 topics, but only 1000 are included in the final eval-
uation for segment-level predictions [1]. The training set
only includes video-level annotations, whereas the valida-
tion set incorporates both video-level and segment-level an-
notations.

Predictions are evaluated based on the Mean Average
Precision (mAP) @ 100000, which is computed as follows

mAP@100000 =
1

C

C∑
c=1

∑n
k=1 P (k)× rel(k)

Nc
,

where C is the number of topics (classes), P (k) is the pre-
cision for top-k sorted predictions, n is the number of seg-
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ments predicted per class, rel(k) equals 1 if the item at rank
k is a correct class, and 0 otherwise, and Nc is the number
of positively-labeled segments for the each class.

2. Our solution
Our overall solution is illustrated in Fig. 2. We design

three different architectures (blue, green and red blocks),
each with multiple model variations, for segment predic-
tion and train each model separately. Some of our models
(e.g., the logistic model) only have one loss computed using
the segment-level annotations in the validation set, whereas
some models (e.g., the attention models) have two losses
computed using both segment-level and video-level annota-
tions in the training and validation sets. For prediction, we
first use the model ensemble technique to combine the re-
sults of different segment-prediction models, then fuse the
segment scores with video scores that are predicted by a
video classifier trained on the whole training set.

To make full use of the validation set with segments-level
annotations, we split it into two subsets of equal size: V1 to
be used for training and V2 for validation. For models with
only the segment-level loss, we use V1 for training and V2

for validation. For models with two losses, we train on both
the training set and V1 and validate on V2.

To increase the amount of fully (segment-level) anno-
tated data, we generate pseudo-labels.

The models will be elaborated in Section 3, and the train-
ing and prediction strategies in Section 4.

3. Models overview
We introduce our first two architectures for the segment

prediction task: the segment-loss logistic model and the
double-loss attention models. We will introduce these two
categories of models in Section 3.1 and Section 3.2. In ad-
dition, we also adopt a video classification model to predict
scores for each video as a whole, which are utilized to refine
the segment scores. This will be described in Section 3.3.

3.1. Logistic model

We start with training a simple segment-wise logistic
model (S-Logi) provided in the started code. We use V1

for training the model. We then modify the original ver-
sion of the model to predict a label for each frame instead
of each segment and then mean-pool the predicted scores
of all 5 frames in each segment to obtain its segment-level
prediction. We refer to this model as the frame-wise logistic
model (F-Logi).

3.2. Attention models

Inspired by weakly-supervised action detection [4], we
design a hierarchical double-attention architecture as shown
in Fig. 1 to take advantage of the video-level annotations in

both the training set and the validation set and the segment-
level annotations in the validation set. There are two at-
tention modules: a segment-level attention module and a
video-level attention module; each module computes a loss
based on the corresponding annotations: segment-level loss
and video-level loss. Apart from the basic implementation
of the attention modules ( Section 3.2.1) shown in the right
of Fig. 1, we also design two different variations for the
video-level module: Non-local Attention Module (Section
3.2.2), and Squeeze-Excitation Attention Module (Section
3.2.3). We also consider other module designs within this
hierarchical architecture, such as FCFC described in Sec-
tion 3.2.4.

3.2.1 Basic attention models

In the basic attention model (refered to as Att2, Loss2), we
adopt the attention implementation shown in the right part
of Fig. 1 for both segment-level attention and video-level
attention modules.

3.2.2 Non-Local attention model

In the non-local attention model (NL), the segment-level
attention module is the same as the one in the basic model.
For the video-level attention, to make use of correlations be-
tween different frames, we insert a temporal non-local block
[7] at the beginning of the video-level attention module. So
the input features to the video-level attention module are the
output of the non-local block.

3.2.3 Squeeze-Excitation attention model

In the squeeze-excitation attention model (SE), the
segment-level attention module is the same as the one in
the basic model. For the video-level attention, to aggregate
video global information, we insert a temporal squeeze-and-
excitation block [3] at the beginning of the video-level at-
tention module. So the input features to the video-level at-
tention module are the output of the squeeze-and-excitation
block.

3.2.4 FCFC model

The FCFC model (FCFC) uses the same video-level atten-
tion module as the non-local attention model and uses a
double fully-connected strategy to implement the segment-
level module. In its segment-level module, it first applies
fully-connected computation for features of each frame in-
dependently and then applies a second fully-connected layer
with respect to each feature channel of all frames. In this
way, we combine information across different channels and
across all frames in the segment without introducing as



many parameters as a feature-flatten/fully-connected layer
would do.

3.3. Video classification model

As some of our models (such as the logistic model) are
trained with segment-level annotations only, they are not
able to take advantage of the large training set which only
has video-level annotations. Therefore, We expect a good
video classification model fully trained on the training set
to help refine predictions for segments. The obtained video-
level classification scores are assumed to provide effective
guidance for predicting segments in the same video. The
segments in the video are less likely to belong to low-scored
video categories since low scores indicate that these cate-
gories probably don’t exist in the video at all. And vice
versa.

Concretely, we use last year’s 1st place model [5] to pre-
dict for each video in the test set. The predicted video
scores are fused with segment scores predicted by the en-
semble of the above-mentioned models (model ensemble
will be described in Section 4.3). We use simple element-
wise multiplication of both scores and have tried differ-
ent combinations, such as pfinal = pvideo × p2segment ,
pfinal = p2video×psegment, and pfinal = pvideo×psegment,
where p refers to a score in one category.

4. Training and prediction strategies

4.1. Data expansion via pseudo-labels

Considering that only a small portion of the entire dataset
has segment-level annotations, we try to expand the an-
notated data by producing pseudo segment labels so that
the trained models can generalize better. We consider
two methods to generate pseudo labels: 1) teacher-student
model [6, 9]; 2) deep clustering [2].

1. Teacher-student model uses a well-trained segment
classifier (e.g., the logistic model) to predict pseudo
labels for the unlabeled segments in both the training
set and validation set. The pseudo labels are post-
processed to clean noise using the video-level anno-
tations [8].

2. Deep clustering labels each frame by clustering. It
first labels each frame in the annotated segments with
their segment-level labels, then clusters all the video
frames based on their deep features using k-means. In
each cluster, the labeled frames vote to generate a label
list in a decreasing-count order. The unlabeled frames
are assigned the top label from the list if this label also
exists in the frame’s video-level annotations. If not, the
following ones from the list will be considered until a
label is assigned or the list is finished.

4.2. Training

For logistic models, we train them only on the validation
set with one (segment-level) loss. However, for the attention
models, we use both segment-level and video-level labels
and optimize for two losses.

Considering that only a part of the training data has
segment-level annotations, we only use the annotated seg-
ments to compute the segment-level loss by masking out all
the others, whereas we use all the frames in one video to
compute the video-level loss. We now describe three differ-
ent ways to train the whole network.

1. One loss training (S1). It only uses the anno-
tated segments in the validation set to train the logistic
model.

2. Two loss: two-step training (S2). First, we pre-
train the whole double-attention network using only
the video-level loss on both the training set and V1.
Then, using the pre-trained model as initialization, we
finetune the segment module using segment-level loss
on v1 (the last fully-connected layer to generate the
segment-level scores is initialized using the last pre-
trained fully-connected layer that generates the video-
level scores). We reduce the learning rate for finetun-
ing.

3. Two loss: end-to-end training (S3). This strategy
trains the whole network from end to end in one pass
with the two losses at the same time. We use equal
weights for both losses.

4.3. Prediction

We use the model ensemble strategy to generate the final
prediction scores of each segment. We train all 20 mod-
els independently. When inferring on the test set, we av-
erage the class score from a set of segment classifiers in a
weighted manner. Table 1 shows our five weighting strate-
gies.

Table 1: Weights for the model ensemble

Arch. Num. E1 E2 E3 E4 E5
NL 2 0.09 0.06 0.11 0.08 0.05
SE 2 0.09 0.06 0.11 0.08 0.05
Att2 2 0.09 0.06 0.11 0.08 0.05
FCFC 1 0.08 0.05 0.1 0.07 0.04
Loss2 1 0.05 0.03 0.05 0.04 0.02
F-Logi 3 0.09 0.14 0.05 0.08 0.12
S-Logi 1 0.06 0.14 0.04 0.05 0.12
Cluster 6 0 0 0 0.12 0.16
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Figure 2: Training and ensemble schema. We train 4 + 8 + 8 models for three types of architectures independently and
multiply the averaged segment scores with their corresponding video classification score to generate the finial submission
file.

5. Experiments

We use different training strategies (S1, S2, or S3) to
train different models after testing different combinations
of these strategies on the models mentioned above. Based
on our experimental observation, the most efficient and ef-
fective way is to use S1 to train a simple network that does
not contain too many parameters and use S2 or S3 to train a
deep neural network to mitigate overfitting.

5.1. Hyperparameter search

To search for hyperparameters, we train models on the
V1 and evaluate their performance on V2 simultaneously.
Once the evaluation metric (e.g., the mean average preci-
sion) plateaus, we retrain the model using the strategy S1
with the same hyperparameters but doubling the training it-
erations.

5.2. Performance on the test set

5.2.1 Individual models

Table 2 summarizes the mean average precision (mAP) for
each model.

Table 2: Performance (mAP) of individual models.

Architecture Model Training mAP

Logistic F-Logi S1 0.791
S-Logi S1 0.789

Attention

NL S2 0.789
SE S2 0.788
Att2 S2 0.788
FCFC S2 0.784
Loss2 S3 0.778

Pseudo Label Cluster S2 0.786

5.2.2 Ensemble of different models

Table 3 shows the mAPs of ensemble of different models.
We use E1 and E4 as our final scores in the Kaggle leader-
board.

Table 3: Performance (mAP) of model ensemble

Model E1 E2 E3 E4 E5
mAP (Pub) 0.7957 0.7868 0.7874 0.7941 0.7932
mAP (Priv) 0.7864 0.7774 0.7778 0.7846 0.7831
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