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Abstract

Compared with the previous video-level classification,
the YouTube-8M video understanding challenge of 2019
mainly focuses on temporally localizing the entities from
videos. Specifically, human-verified segment-level annota-
tions are provided for learning temporal localization mod-
els. This paper mainly introduces our system designed for
the challenge. Specifically, we consider utilizing the con-
sistency between segment&video-level predictions and en-
sembling different feature aggregation methods, such as
variants of NetVLAD, Soft-Bag-of-Feature, Gated-Bag-of-
Feature, Fisher Vector and Average Pooling. Experimen-
tal results demonstrate the effectiveness of our system on
this task. Equipped with the proposed system, we achieve
0.82620 in terms of MAP@ 100,000, ranking 2-nd among
all submissions in the challenge.

1. Introduction

Video understanding has been greatly progressed by
large-scale video challenges in the past three years. As
a representative, YouTube-8M challenge progresses video
understanding in many different aspects. Specifically, in
YouTube-8M 2017 challenge (the 1st challenge year), tech-
nologies such as context gating [10], multi-stage training
[[17]], feature aggregation [4] were proposed for multi-label
video classification. And in YouTube-8M 2018 challenge,
participates adopt model compression techniques such as
parameter quantization under limited model-size conditions
(i.e., 1GB). Different from previous challenges, the objec-
tive of the challenge held in this year is to temporally local-
ize the entities in the videos, aiming to achieve a finer-level
understanding of the videos.

Temporal concept localization in videos, which aims to
localize the video segments that contain specific entities in
the video, is a challenging task that introduced in YouTube-
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Figure 1. Examples of video segment annotations in YouTube-8M
Segments dataset. For each video, a small set of segments with a
fixed length of 5 seconds are randomly sampled for human anno-
tation.

8M Large-Scale Video Understanding Challenge of 2019.
Compared to video-level classification, temporal localiza-
tion brings unique challenges as it requires to understand
the videos at the segment level. First, due to the higher cost
of manual labeling, the segment-level labels are scarce. As
shown in Figure[T] only a small set of segments in the video
have been labeled. The problem of insufficient training data
brings difficulties in estimating the real data distribution and
avoiding model overfitting. Second, as the challenge pro-
vides two parts of labels including a large number of auto-
matic generated noisy video-level labels and a small num-
ber of human-verified segment-level labels, how to leverage
the sufficient noisy video labels and the small number of
segment labels to train models for temporal localization is a
difficult problem that worth exploring. Third, temporal lo-
calization is formulated as a segment classification problem
and how to infer the temporal location of entities from the
results of segment classification is also a challenging prob-
lem that needs to explore.

To address the aforementioned challenges, we de-
veloped a system that utilizes the consistency between
segment&video-level predictions for temporal concept lo-



calization. The systems ensembles different feature aggre-
gation methods and more importantly, a new and efficient
inference strategy is proposed to transfer existing video-
classification techniques in solving temporal localization
problems. The proposed refinement inference strategy con-
siders the fact that if an entity has very low confidence in
appearing in a video, then it is also unlikely to appear in
any of the segments in this video. We summarize important
components in our system as follows:

- A mixture of different feature quantization meth-
ods (e.g., GatedDBOF, SoftD-BOF, NetVLAD,
NetFV, ResNetLike, etc) is proposed to generate
video/segment feature representation.

- Weighted binary cross-entropy loss is adopted to in-
crease the influence of positive samples in segment
classification.

- Global video-level prediction is employed to filter out
false-positive segment predictions, boosting the per-
formance of temporal localization.

2. Our Approach

In this section, the proposed pipeline will be elaborated.
We firstly pre-train base models using all the videos, then
those models are fine-tuned on all the segments using a
segment-level loss. Finally, a refinement inference strategy
takes in both the video-level predictions and the segment-
level predictions to obtain the refined segment-level predic-
tions. The overall solution is illustrated in Figure 2]

2.1. Base Models

As the given video data is composed of sequence fea-
tures extracted from video frames, it is important to effec-
tively aggregate the feature frames. We use various pooling
methods to achieve this, including variants of NetVLAD,
Bag-of-Features, Fisher Vector, Average-pooling, and Max-
pooling. The following introduces the architecture of these
models, which are further extended by the Mixture structure

[9ll.

2.1.1 Single Model Architecture

Frame-level Models. Figure [3| shows our general archi-
tecture for the frame-level models. The Learnable Pool-
ing module can be flexibly replaced with different pooling
methods, including NetVLAD, DBOF, NetFV and GRU.
After completing the pooling process, we drop out the com-
pact vector and pass it through an FC and a SE context gat-
ing. Finally, we use the logistic structure as the classifier.
VLAD [3| [7] is a popular descriptor pooling method
for instance-level retrieval and image classification, as it

captures the statistic information about the local descrip-
tors aggregated over the image. However, since the VLAD
algorithm involves a hard cluster assignment that is non-
differentiable, it is hard to apply this algorithm to neural
networks. To address this problem, Arandjelovic et al. pro-
posed NetVLADIZ2] and achieved good results on a weakly-
supervised place recognition task. We utilize the variants of
NetVLAD. including NeXtVLAD from [9] and nonlocal-
NetVLAD from [16]. Bag-of-Visual Words(BOW) [13}14]
and Fisher vector(FV) [8| [12]] are two traditional aggre-
gation methods. Inspired by the cluster soft-assignment
idea of NetVLAD, similar operations are done on tradi-
tional BOF and FV, constructing the DBOF and NetFV[10].
We finally use the GatedDBOF, SoftDBOF, NetFV descrip-
tors with the codes from [16] and [[15]. Gated Recurrent
Unit(GRU)[5] naturally fits to aggregate series information
into a compact vector, so it is concerned as one of our pool-
ing methods.
Video-level Models. Due to the short segment length and
the low sampling rate (1 frame / 1 second), we assume that
the temporal information of the segments is not so important
and video-level models will be appropriate approaches.
Our video-level model is based on a ResNetLike archi-
tecture proposed in [11]. Besides using the original ResNet-
Like model, we do some modifications, including tuning
fully connected channels and adding extra max-pooling fea-
tures, to achieve two more variants.

2.1.2 Mixture Architecture

We adopt the mixture structure [9]] to strengthen the sin-
gle model. The design of the mixture architecture is very
subtle as it combines the idea of knowledge distillation and
also uses the KL divergence to construct an extra regular-
ization term. The on-the-fly distillation is the most attrac-
tive thing since it avoids us re-training models to do knowl-
edge distillation learning. We apply the mixture struc-
ture to the NeXtVLAD, EarlyNetVLAD, LightNetVLAD,
GatedDBOF, SoftDBOF, NetFV, GRU and three versions
of ResNetLike.

2.2. Segment-level Model Fine-tuning

The temporary localization task is attributed to a very-
short-video classification problem. Since segments in
videos somehow can be regarded as short videos, we fine-
tune the segment classification model initialized by the
video-level model.

For one certain segment extracted from a video, suppose
A is the set of 1000 segment-level categories, B is the anno-
tated segment category, and C is the annotated video-level
categories of the video. The Cross-Entropy function (C'E),
which is shown below, only concerns the annotated category
of the segment and regardless of other unlabeled categories:
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Figure 2. An overview of the proposed solution.
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Figure 3. General architecture for the frame-level models.

CE(B,y") = —(y"log(p) + (1 —y*)log(1 —p)), (D)

where y* refers to the label, p is the predicted category
score.

Our experiments show the above loss function results in
a higher average prediction probability for the final 1000
categories, which will have a big impact on the order of the
final predictions. To solve this problem, we consider adding
weak supervision to constrain the predictions of negative
samples. To take the unlabeled categories into considera-
tion, we design a weighted cross-entropy loss for segment-
level model fine-tuning.

As the average number of positive categories of a video
is around 3, most categories in A\C' can be weakly anno-
tated as negative categories. We further regard all categories
in A\C as negative categories to approximate C E(A\C):

_ Zae(a0)CE(a:,0)
|A\C

CE(A\C) )

The overall loss is calculate as:

Loss = CE(B) + ax CE(A\C), 3)

where « is an adjustable parameter and we simply set it to
1.0.

2.3. Inference Strategy

Inferring temporal location of entities from the results of
segment classification is an important step in our system.
More importantly, as it directly affects the performance of
temporal localization, the inference strategy should be care-
fully designed. Hence, we discuss different inference strate-
gies including the basic inference strategy provided by the
challenge as well as several improved strategies in this sec-
tion.

Basic Inference Strategy. The basic version of the in-
ference method creates 1000 minimum heaps for segment-
level predictions. The predictions for each segment are
pushed into the heap of respective categories. Once a heap
size overflows the maximum threshold, the segment with
the least predicted probability in the heap will be popped.
Finally, the segment classification predictions can be con-
verted into the final temporal localization results. However,
it ignores the powerful instructions of global video infor-
mation. In the following part, we will utilize video-level
predictions to improve the segment-level predictions.

Refinement Inference Strategy. The proposed infer-
ence strategy is shown in Figure 4| The main idea is: If a
video contains no food, then neither do the segments within
this video.

Considering the fact that if an entity has very low con-
fidence in appearing in a video, then it is also unlikely to
appear in any of the segments in this video. Based on this
consistency observation, we build a list of candidate labels
for segment classification. The list of candidate labels is ob-
tained from video labels that predicted by pretrained mod-
els, and is quite effective in removing false-positive pre-
dictions on video segments. For example, if our model
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Figure 4. Overview of the proposed refinement inference strategy.

predicts that class 1,2,3,4,5 are more likely to appear in a
given video, then these classes will be considered as candi-
date classes for video segment classification. That means,
if the video segment classification model predicts the labels
that are not in the candidate classes, the predicted labels
will be removed. By incorporating the consistency between
segment-level and video-level predictions in this way, false-
positive predictions on segments can be effectively reduced.

Top rank k. Through simple statistics, we found that
using the top 20 for video label predictions can have a high
recall rate. Top 20 can cover 97% categories and top 100
can cover over 99% categories(top selection is done from
all the 3862 category predictions instead of top 1000 in our
experiments).

So our first thought is to select the top k predicting re-
sults on the video data. These selected classes consist of
candidate categories, and are used to constrain the probable
category scope for each segment.

Confidence threshold to constrain. The top k strategy
is a good way to generate candidate lists, but there exists a
little problem. Some videos contain more detailed category
information, while some video content is more singular and
less scene switching. For content-rich videos, it contains a
large number of categories, while for a single-content video,
the number of categories appears will be small. Top k ig-
nores the diversity of categories between videos.

So the main idea of our second strategy is to consider
the confidence. First, we set a threshold (such as 0.00025
in our experiment). If the prediction score is smaller than
the threshold, then the related category won’t be considered
when predicting the inside segments.

Video number constraint for each category. The last
idea is to simply limit the number of predictable videos for
each category. We predict each video using a video-level
model, and then limits the predicted video number by con-
fidence for each category. Only segments in these videos
will be considered as the corresponding categories.

3. Experiments
3.1. Data

The YouTube-8M Segments Dataset adopted in the 3rd
YouTube-8M Video Understanding Challenge is an exten-
sion of the YouTube-8M dataset [1]. The YouTube-8M
dataset contains about 6.1 million videos, 3862 class la-
bels and 3 labels per video on average, and each video is
pre-processed to extract audio/visual features at both video-
level and frame-level. The YouTube-8M Segments Dataset
consists of 237K human-verified segments on 1000 classes
from the validation set of the YouTube-8M dataset. 5 seg-
ments per video are labeled on average and each segment is
5-seconds long.

3.2. Evaluation

In the competition, the predictions are evaluated by the
Mean Average Precision (GAP) at 100,000.

P(k) x r(k)
N,

MAPQ1 =— Bl
00,000 = ;

where C' is the number of classes, P(k) is the precision
at cutoff &, n is the number of Segments predicted per class,
r(k) equals 1 if the item at rank k is a relevant (correct)
class, or zero otherwise, and NN, is the number of positively-
labeled segments for the each Class. While we should pre-
dict all segments contained in the test set during inference,
only human-rated segments are used in scoring and other
segments that were not explicitly rated are removed from
the prediction list before scoring.

In our experiments, We use MAP of the private leader-
board to evaluate our approaches.

| Model [ Video GAP [ Segment MAP ‘

Mix-NeXtVLAD 0.88433 0.7373
Mix-EarlyNetVLAD 0.88288 0.65238
Mix-LightNetVLAD 0.88142 0.69911
Mix-GatedDBOF 0.8802 0.73679
Mix-Soft DBOF 0.88071 0.74305
Mix-NetFV 0.88251 0.73049
Mix-GRU 0.87659 0.68541
Mix-ResNetLike 0.86499 0.71616
Mix-ResNetLike-Imbalance 0.86284 0.71958
Mix-ResNetLike-Concat 0.86288 0.72541

Table 1. Evaluation of base models.

3.3. Results

Base Models. The first step of experiments is to train mod-
els using the 2018 large-scale YouTube-8M video-level an-
notation data. Mixture architecture is applied to several ba-
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Model Name - Label Refinement Label Refinement
_ - All Data

Mix-NeXtVLAD 0.78638 0.81127 0.81548
Mix-EarlyNetVLAD 0.77147 0.80857 0.81212
Mix-LightNetVLAD 0.77579 0.80625 0.8093
Mix-GatedDBOF 0.79963 0.81122 0.81327
Mix-Soft DBOF 0.80582 0.81237 0.81421
Mix-NetFV 0.77949 0.80967 0.81235
Mix-GRU 0.77332 0.80436 0.8058
Mix-ResNetLike 0.7835 0.8061 0.80928
Mix-ResNetLike-Imbalance 0.78614 0.80796 0.81034
Mix-ResNetLike-Concat 0.78558 0.80825 0.81100

Table 2. Segment MAP comparison for evaluating our approaches.

sic models and ten single models of mixture structure were
constructed.

The trained models were evaluated on last year’s video
label prediction task. As shown in the Table[I} most frame-
level models with the mixture structure can achieve high
scores on the leaderboard, and the simple equivalent weight
ensemble of these models can reach 0.88932 on the private
GAP which is a high score (although we do not consider the
model size limitation).

These single models are regarded as “Base Models” and

were evaluated on this year’s temporal localization task.
Their private MAP scores are shown in the second column.
The Mixture-SoftDBOF achieves the best MAP, followed
by the Mixture-GatedDBOF and the Mixture NeXtVLAD
model.
Fine-tune. We fine-tune our base models on YouTube-8M
Segments Dataset. We randomly sample 5/6 of the seg-
ments dataset as the training set and the remaining data as
the validation set.

As we can see in Table 2] the fine-tuning operation im-
proves our score a lot. Our best model: Mix-SoftDBOF im-
proves nearly 0.06 and some of the other models improve
even more.

We believe that the reasons for the improvement are as
follows: Firstly, the video annotations contain more noise
than the segment manually annotations. Secondly, there ex-
ist differences between long video classification and short
video classification tasks. Therefore, the fine-tuning pro-
cess is meaningful, making our models more adaptable to
the new task.

Refinement Inference Strategy. In this part, we will
demonstrate the efficiency of the new inference method
through experiments. We used the confidence constraint
method to generate a list of candidate labels, and Mix-
NeXtVLAD Model was chosen to generate candidate label
prediction here. Those labels whose predicted confidence
is larger than 0.00025 will be added to the list of candidate

labels. In the segment prediction process, we will remove
the predicted labels that are not in the candidate classes.

The experiment results are shown in the Table 2] The

huge improvement of the MAP illustrates the effectiveness
of this approach.
Model Selection and Data Size Effects. More segments to
train models can improve the final scores. However, more
training data means fewer validation data for selecting mod-
els. In our work, firstly we randomly sampled 5/6 segments
dataset as the training set, and the remaining 1/6 data was
used as our validation set for model selection. By the MAP
on the validation set, a good interval of the training steps
can be found. Then we used all data for model training and
use the previously recorded interval to estimate the training
steps we need. Finally, we used the Stochastic Weight Av-
eraging(SWA) [6] technique to combine those models into
a single one. On the one hand, training step interval estima-
tion improves the tolerance of the model selection. On the
other hand, SWA operation improves the robustness of the
models and can gain higher scores.

As shown in the Table [2] by increasing the number of

trainable labels, we can improve the performance of our
models a lot.
Ensemble. We finally choose Mix-NeXtVLAD, Mix-
GatedDBOF, Mix-SoftDBOF, Mix-EarlyNetVLAD, and
three kinds of Mix-ResNetLike Models for the final ensem-
ble. According to [10]], the ensemble does not bring much
improvement when combining best but similar models, so
the weight of every Mix-ResNetLike Model was reduced to
1/3. More models for ensemble and other ensemble ratios
may bring some improvement to the final MAP scores.

On account of the effectiveness of the refinement infer-
ence strategy, we studied several inference strategies and
found that the refinement method using the constraint of
video number obtained the biggest advancement. More
specifically, we picked the top 2000 videos for each cate-
gory when generating the video-level predictions for refine-



ment. From results in Table B} we observe that the new
refinement approach achieves more promotion than the pre-
vious confidence constrained refinement.

| Inference Strategy | Segment MAP |
Origin 0.80419
Confidence Constrain: 25e-5 0.82326
Video Num Constrain: 2000 0.8262

Table 3. Final Ensemble Results.

4. Conclusion

In this paper, we have introduced a deep learning based
system for temporally localizing the entities from videos.
In our system, we consider utilizing the consistency be-
tween segment&video-level predictions and give the solv-
ing solution for this task. The proposed system firstly pre-
trains models on the noisy video labels, and then fine-tunes
those models on the segment dataset. Finally, by combin-
ing the video&segment-level predictions, our system will
give an outstanding result. Important work we do includes,
applying mixture structure to different models for better
robustness, using new loss function to prevent overfitting
caused by the insufficient segment annotations, and explor-
ing proper strategies for the segment predicting process.
Adding all these designed strategies together, our system
ranked 2nd out of 283 teams worldwide in the competition.
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