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Abstract

In the field of video understanding, fewer segment anno-
tations are available comparing to the video level annota-
tions. This work proposes a weakly supervised EM process
for the segment localisation task, which leverages the large
amount of existing video labels. Briefly speaking, the basic
idea is to perform Expectation-step and Maximization-step
to iteratively estimate segment labels and fit models. Our
experimental results show the advantage of our method in
the task of segment localisation. In the 3rd YouTube-8M
video understanding challenge, our final models achieve an
MAP score of 81.0% on the public board, which outper-
forms the baseline method for more than 10% MAP.

1. Introduction

Thanks to the development of digital cameras and smart
phones, numerous videos are recorded, uploaded and shared
on Internet. The understanding of video content has various
applications such as video recommendation, searching and
intelligent robots, etc.

A number of large-scale video classification datasets,
including Youtube-8m [1], Kinetics-400, Kinetics-600,
Kinetics-700 [10, 5] and Moments in Time [15] are intro-
duced to accelerate the study of video understanding al-
gorithms. However, due to the expensive cost of segment
annotations, few video segment localisation datasets have
been proposed. To boost segment localisation algorithms,
The 3rd YouTube-8M video understanding competition [1]
introduces the Youtube-8M Segment dataset which has a
few human verified segment labels in a small portion of the
origin dataset. Participants are encouraged to leverage the
large amount of training video labels and design robust seg-
ment localisation algorithm having only a small number of
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segment labels.
In this article, we extend work in [1] and search for

models that are robust for video content localisation task.
Specifically, we find models such as NextVLAD network
[12], Transformer [21] and BiGRU [7] efficient. In addi-
tion, to leverage the large-scale video classification dataset,
we propose a weakly supervised EM process for the video
segment localisation task. By estimating segment label and
fitting models iteratively, our models achieve the top score
in the 3rd YouTube-8M video understanding challenge.

2. Related Work

In this section, we provide a brief review of most recent
researches on video classification, segment localisation and
weakly supervised method for video understanding.

2.1. Video Classification

Video classification task has made considerable pro-
gresses in recent years thanks to the evolution of deep learn-
ing. C3D [20] uses 3D convolutional nerual networks to
extract spatio-temporal features from videos, showing that
3D CNN is a good descriptor for action recognition tasks.
Based on 3D CNN, P3D [19], S3D [26], I3D [6] and Slow-
Fast network [8] are proposed to better model the spatio-
temporal features. In the mean time, feature aggregation
methods [2, 12, 14] are extended to the video classification
task.

2.2. Segment Localisation

Segment Localisation has attracted attentions in recent
years. ActivityNet [4] is introduced to boost segment pro-
posal and temporal localization algorithms. BSN [13] is
the state-of-art model for the temporal action proposal task.
In addition, LFB [24], Action Transformer [9] and Three
Branches [25] are proposed to localize actions in space and
time.



2.3. Weakly supervised Method

Weakly supervised EM algorithm for text classification
is studied in [17]. For the video segment localisation task,
various methods are proposed [16, 18, 23, 27] to leverage
available video labels.

3. YouTube-8M
YouTube-8M is a large-scale labeled video dataset that

consists of millions of YouTube video IDs. Video data is
pre-computed to audio visual features to fit on a single hard
disk and ease the training process. Labels are machine-
generated from a diverse vocabulary of 3,800+ visual en-
tities. The goal of the competition is to accelerate research
on large-scale video understanding.

3.1. YouTube-8M V2

The YouTube-8M V2 dataset, updated in 2018, is
a cleaner version of the original YouTube-8M dataset.
YouTube-8M V2 includes 6.1 million videos and 3862
classes. The dataset was used for the 2nd YouTube-8M
video understanding challenge. YouTube-8M V2 is also one
of the datasets used in the 3rd YouTube-8m temporal local-
isation challenge. Although YouTube-8M V2 contains only
video level labels, temporal localisation models could also
benefit from it due to its large scale.

3.2. YouTube-8M Segments

The YouTube-8M segments dataset is an extension of
the YouTube-8M dataset with human-verified segment an-
notations. The goal is to temporally localize the entities
in the videos, i.e., find out when the entities occur. Note
that segments are annotated only on a very small portion of
YouTube-8M V2 dataset. Precisely, there are 237K segment
labels for 1000 classes.

4. Models
In this section, we will introduce the models that we use

for the segment localisation task. We treat the temporal lo-
calization problem as video segment classification problem.
We use two kinds of models, the frame level models and se-
quence models. The frame level models take one segment
as input and output predictions for each segment, while the
sequence models take the entire video as input and make
predictions for every five seconds.

4.1. Logistic Model

Logistic Model is one of the frame level models. The
logistic model averages features along time axis. Predic-
tions are made using full connected layer and sigmoid ac-
tivation. The logistic model is a simple but efficient starter
model. Our logistic model achieves 72.30% mAP on the

public board, which is 10% higher than the official logistic
model baseline.

4.2. NeXtVLAD

The NeXtVLAD network [12] is another frame level
model that we use. It is an extension of the feature aggrega-
tion NetVLAD network [2].

Considering a video withN frames andD feature length.
NetVLAD with K clusters will encode each frame xi to
K×D dimensional vector by describing frame xi using the
distance between xi and cluster cj and soft assignment for
each cluster:

vij = αj(xi)(xi − cj),
i ∈ {1, ..., N}, j ∈ {1, ..., K}

(1)

where cj is the N dimension cluster anchor point and αj(xi)
measures soft weight of cluster cj to xi. The measurement
function is modeled using a fully-connected layer with soft-
max activation:

αj(xi) =
ew

T
j xi+bj∑K

s=1 e
wT

s xi+bs
(2)

The video feature is obtained by adding all frame encoded
features and concatenating descriptors from each cluster:

u = [

N∑
i

vi1,

N∑
i

vi2, ...,

N∑
i

viK ]T (3)

In the NeXtVLAD aggregation network, as shown in
Figure 1b, the frame feature xi is first mapping to λD di-
mensional space by linear transformation, denoted as x̂i.
x̂i is then splitted to G lower-dimensional feature vectors
{x̃gi |g ∈ {1, ..., G}}. The distance between feature vectors
and clusters is calculated in the low dimension space:

vgij = αg(x̂i)αgj(x̂i)(x̃
g
ij − cj),

i ∈ {1, ..., N}, j ∈ {1, ..., K}, g ∈ {1, ..., G}
(4)

where the proximity measurement of the decomposed vec-
tor x̃gi consists of two parts:

αgj(x̂i) =
ew

T
gj x̂i+bgj∑K

s=1 e
wT

gsxi+bgs
(5)

αg(x̂i) = σ(wTg x̂i + bg) (6)

in which σ(.) is a sigmoid function. αgk(.) measures the
soft assignment of x̂gi to the cluster j while αg(x̂i) is the
learned attention over groups.

The final video feature is obtained by aggregating the
encoded features over time and groups, similar to Eq.3:

u = [
∑
ig

vgi1,
∑
ig

vgi2, ...,
∑
ig

vgiK ]T (7)
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Figure 1. We describe the models that we use for this task. Some normalization layers and broadcast operations are ignored and we use
only rgb features for simplicity. Numbers indicate the input/output dimension. For frame level model (a) and (b), the input feature X is of
length 5. For sequence model (c) and (d), the input is the entire video and is thus of length 300. (a) Logistic Model: the model averages
features along time axis. Prediction is made for the averaged feature. (b) NeXtVLAD: we set cluster number to 128, cluster feature to
256 and group number to 8. The softmax operation is performed along cluster axis. C is the learnable clusters.

⊗
denotes broadcasting

element-wise multiplication, and
Á

denotes broadcasting element-wise subtraction. (c) BiGRU: the entire video is first passed to forward
GRU layers and backward GRU layers. Encoded vectors from forward GRU and backward GRU are then concatenated along the last
dimension. Segment vectors are obtained by averaging encoded feature for every five time steps. (d) Transformer: the entire video is
passed through two Transformer blocks. Average pooling is performed every five time steps to get the segment vectors

4.3. BiGRU

Gated recurrent units (GRU) [7] are gating mechanisms
in recurrent neural network. We use GRU in both forward
and backward directions (BiGRU) to encode video feature.

In one GRU cell, feature xt is encoded as following:

ht = (1−zt)◦ht−1+zt◦σh(whxt+Uh(rt◦ht−1)+bh) (8)

where ht−1 is the output of GRU cell in the last time step,
w,U, b are learnable parameters. σh is the hyperbolic tan-
gent. The update gate vector zt and the reset gate vector rt
are represented as:

zt = σg(wzxt + Uzht−1 + bz) (9)

rt = σg(wrxt + Urht−1 + br) (10)

in which σg is the sigmoid activation function.
The output feature for one GRU layer is obtained by con-

catenating the output vectors of the GRU cell in each time

step. As shown in 1c, the entire video is first passed to for-
ward GRU layers and backward GRU layers. Encoded vec-
tors of forward GRU and backward GRU are then concate-
nated along the feature dimension. Segment vectors are ob-
tained by performing average pooling every five time steps.
Final predictions are made based on segment feature.

4.4. Transformer

Proposed in [21], Transformer is the working horse in
most language tasks. We utilize Transformer to boost con-
tent localization performance by leveraging context infor-
mation.

Set the hidden dimension within Transformer same as
feature size D. In self-attention layer, the entire video input
X ∈ RN × RD is first encoded to Query Q, Key K and
Value V by three different linear transformations:

Q = Xwq + bq, Q ∈ RN ×RD (11)

K = Xwk + bk, K ∈ RN ×RD (12)



V = Xwv + bv, V ∈ RN ×RD (13)

The encoded feature of the self-attention layer is calculated
as follows:

U = αsoftmax(
QKT

√
D

)V (14)

U is then taken into LayerNorm layer [3] and Feed Forward
Layer [21] to get the output of the transformer block. As
shown in Figure 1d, the entire video is passed through two
Transformer blocks. Average pooling is performed every
five time steps to get the segment vectors. Final predictions
are made based on segment feature.

5. EM Process
We will describe our weakly supervised EM algorithm

to leverage both video labels and segment labels in this sec-
tion. In the rest of this section, F denotes the model we use
in the process. {(X, y)} denotes video feature and label in
YouTube-8m V2 dataset. {(Xs, ys)} denotes segment fea-
ture and label in YouTube-8m Segments dataset. We split
a small portion of the segment dataset as validation dataset
{(Xs,val, ys,val)}. We note S the number of segments, C
the number of classes. BCE denotes the binary cross en-
tropy loss for multi-label tasks. The process is described in
Algorithm 1.

5.1. Training Loss

Two kinds of losses, namely video loss and segment loss,
are used in the EM process.

The video loss is used when we have only video level
labels. The video prediction is made by averaging segment
predictions:

ŷvideo = mean(ŷseg), ŷseg ∈ RS ×RC (15)

The video loss could be represented as:

lossvideo(y, ŷvideo) = BCE(y, ŷvideo) (16)

The segment loss is used when segment labels are avail-
able. Note segment labels could be missing for certain
classes and for some segments. The segment loss is thus
calculated only for the classes and the segments where seg-
ment labels are available:

lossseg(ys, ŷseg) = BCE(ys, ŷseg ◦ 1ys=0 or 1) (17)

where 1ys=0 or 1 is the masking function to mask segments
and classes that is not annotated.

5.2. Model Initialization

Given the frame level model or sequence model F , the
model is first pre-trained on dataset {(X, y)} using video
loss lossvideo. The model is fine-tuned on the dataset
{(Xs, ys)} using segment loss lossseg .

Input:
Video feature and label in yt8m-v2 dataset, {(X, y)};
Segment feature and label in yt8m seg, {(Xs, ys)};
A small segment validation set, {(Xs,val, ys,val)};
Test set in yt8m seg, {(Xs,test)};

Output:
Segment prediction for test set, {(ŷs,test)};

1: Initialize model F ;
2: Pre-train F on {(X, y)};
3: Fine-tune F on {(Xs, ys)};
4: for i = 1 to iterations do
5: E-step: use F to predict segment label on {(X)}

with threshold δ, get {(X, ŷs,1)};
6: E-step: use F to predict segment label on {(X, y)}

with threshold δ and using assumption that only
video label could appear in the video, get
{(X, ŷs,2)};

7: M-step: train model F1 on {(X, ŷs,1)};
8: M-step: train model F2 on {(X, ŷs,2)};
9: Fine-tune F1, F2 on {(Xs, ys)};

10: F ← max(F1, F2) based on the performance on
{(Xs,val, ys,val)};

11: end for
12: Get the final prediction on {(ŷs,test)} on {(Xs,test)}

using F ;
13: return {(ŷs,test)};

Algorithm 1: EM process for video content localisation

5.3. Expectation Step

The Expectation step is to estimate the segment annota-
tions for dataset {X}. We propose two estimation methods.

The first method assumes that only video labels can ap-
pear in the video segments, so the estimated segment labels
that are not belong to the corresponding video labels are
masked out:

ŷs,1 = 1F (X)>δ ◦ 1y=1 (18)

in which δ is the threshold.
In multi-label classification setting, some labels may be

missing from the training set. As mentioned in [22], label
correlation can improve the performance of the multi-label
classifier. With this in mind, our second expectation method
removes the video label prior condition during label estima-
tion:

ŷs,1 = 1F (X)>δ (19)

5.4. Maximization Step

The maximization step optimizes model parameters
based on current observed data. After previous expectation
step, we have two method annotated datasets {(X, ŷs,1)}
and {(X, ŷs,2)}. Though noisy, these two sets are good
choices for model pre-training. We train model F1 and F2



on {(X, ŷs,1)} and {(X, ŷs,2)} respectively using segment
loss lossseg . Since we do not have missing segment label
in these two datasets, the masking function in lossseg will
always output 1.

Estimated dataset {(X, ŷs,1)} and {(X, ŷs,2)} could be
noisy and biased. Trained models F1 and F2 are thus prob-
ably also biased. We fine-tune F1 and F2 on the human-
annotated dataset {(Xs, ys)}.

Finally, we evaluate models F1 and F2 on validation set
{(Xs,val, ys,val)}. The better model is picked for the next
EM iteration.

6. Experiments
This section provides implementation details and

presents our experimental results on the YouTube-8M
dataset.

6.1. Implementation Details

Our implementation bases on the TensorFlow start code.
All of the models are trained using the Adam optimizer [11]
on two GPUs. We train one logistic model, two Transform-
ers, one NeXtVLAD model and one BiGRU model. The lo-
gistic model and one transformer take parts in the segment
label prediction steps. Other models are only pre-trained
and fine-tuned in the last EM iteration to boost results. The
final prediction is made by averaging outputs of two Trans-
formers, one NeXtVLAD model and one BiGRU. Models
are trained for five epochs for both pre-training and fine-
tuning. The threshold for positive labels are set to 0.9.

For Transformer models, we train one Transformer us-
ing early fusion for rgb and audio feature and the other late
fusion. Both of them are set to have two Transformer lay-
ers. We set learning rate to 0.00025 and batch size to 512
videos.

For NeXtVLAD network, we apply late fusion for rgb
and audio feature. We use similar setting proposed in [12].
We set number of groups to 8, cluster size to 128, hidden
dimension to 2048, dropout rate to 0.5. The base learning
rate to 0.0004, batch size is set for 4800 segments.

For BiGRU model, we apply early fusion for rgb and
audio feature. We use two GRU layers. The base learning
rate is set to 0.00025 and batch size is set to 512 videos.

6.2. Model Evaluation

We evaluate the performance of our models in each EM
iteration. In Table 6.2, the first block is the performance
of the logistic model trained purely on YouTube-8M V2
dataset. The second block is the performance of models
in the first EM iteration. The third block are models in
the second EM iteration. The last block is the final result
which aggregates models in the third block. The Trans-
former early model is pre-trained on the video-label-prior

Model Private mAP Public mAP
Logistic 0.715 0.723

Transformer early 0.773 0.781
Transformer late 0.770 0.773

Transformer early 0.787 0.796
Transformer late 0.792 0.800

NeXtVLAD 0.763 0.771
BiGRU - -

Ensemble 0.803 0.811

Table 1. The mAP scores of submissions during challenge. The
first block is the performance of the logistic model trained purely
on video label dataset. The second block is the performance of
models in 1st EM iteration. The third block are models in 2nd EM
iteration. The forth block is the final model which aggregates four
models in the third block.

dataset {(X, ŷs,1)}. The Transformer late, NeXtVLAD as
well as BiGRU are pre-trained on the label-corrected dataset
{(X, ŷs,2)}.

We can observe that models are becoming more and
more accurate as EM algorithm performs. Among these dif-
ferent types of models, Transformer achieves the best result.
The final ensemble model boost the performances due to the
diversity of datasets and the diversity of models.

7. Conclusion
In this paper, frame level models and sequence models

are studied to support temporal localization task for video
understanding. We introduce a weakly supervised EM pro-
cess which leverages the large amount of video classifi-
cation dataset. By performing proposed EM process, our
model achieves strong performance only using few super-
vised segment labels. Combining frame level models and
sequence models with EM process, our final model achieves
one of the top scores in the 3rd YouTube-8M video under-
standing challenge.
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