
   

 

 

 

 

Abstract 

 

In the 3rd YouTube-8M Video Understanding Challenge, 

datasets with video-level and segment-level annotation 
were provided for classifying video segments. Based on 

the winning solutions of the previous years, we extended 

the video-level classification to segment-level by 
employing techniques such as Knowledge Distillation, 

Exponential Moving Average to train a set of Deep Bag 

of Frames models. We achieved 0.795 MAP@100,000 
score for our best single model and 0.817 for an 

ensemble of models, which leads to the 4th place on the 
leaderboard. In this paper we describe the details about 

the strategies and techniques used during the 

competition. 
 

1. Introduction 

With the rise of mobile platform and internet, visual 

understanding has becoming increasingly important for 

building online services for searching videos and making 

recommendations. Due to the sheer amount of data and 

computation requirement, the task remains challenging and 

unsolved. The YouTube-8M Video Understanding 

Challenge is one of the most popular challenge aims to 

tackle this challenge. During the first two years, the 

challenge has been focusing on solving video-level 

classification with the YouTube-8M datasets [11], and it 

has been successfully generated promising solutions. With 

the newly released YouTube-8M Segments dataset, the 3rd 

challenge is intended to classify videos with high temporal 

resolution. The model needs to predict the precise time in 

the video where the label actually appears. High temporal 

localization capability powers a whole range of applications 

including searching and localizing within a video and 

discovering interesting action moments. 

1.1. YouTube-8M and YouTube-8M Segments Dataset 

The YouTube-8M is a large-scale labeled video dataset 

that consists of more than 6.1 million of YouTube videos, 

with annotations from a vocabulary of 3862 unique tags. It 

comes with pre-computed frame representation consists of 

1024 image and 128 audio features instead of raw videos. 

 

The YouTube-8M Segments dataset is an extension of 

the YouTube-8M dataset with segment-level annotation. It 

provides ~237K video segments with human-verified labels. 

Each segment is 5 second long and the annotation covers 

1000 classes from the validation set of the YouTube-8M 

dataset. About 5 segments were extracted from one video 

and labeled. Similarly, each segment comes with time-

localized frame-level features. 

 

There are 2,062,258 segments of 89,506 videos in the test 

set. 

1.2. Task definition and Evaluation Metric 

The YouTube-8M Video Understanding Challenge aims 

to solve the following task: given a query tag (e.g. one out 

of the 1000 classes in the dataset), the model needs to 

predict a list of segments ordered by their relevance to the 

query.  

 

The model is then evaluated according to the Mean 

Average Precision (MAP) metric, specifically, the first 

100,000 predictions will be evaluated with MAP@100,000 

defined as: 

𝑀𝐴𝑃@100,000 =
1
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Where C is the number of classes, P(k) is the precision at 

cutoff k and n is the number of segments predicted per class, 

rel(k) is an indicator function equal to 1 if the item at rank 

k is a relevant (correct) class, or 0 otherwise, and Nc is the 

number of positively labeled segments for each class. In this 

work, we used 1000 classes (C=1000). 

2. Related work 

The task is previously formulated as a classification 

problem, i.e., for each segment in the dataset, the model 

predicts a probability score for each class which will then 

be used to sort the segments according to the query class. 

Since one segment consists of a sequence of frames, the 
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classification model should be able to effectively aggregate 

the corresponding frame vectors. 

 

During the two previous challenges, successful models 

were proposed to aggregate frame sequences efficiently. 

These models mainly fall into two categories: recurrent 

neural networks (RNNs) and features distribution capturing 

models.  RNNs such as LSTM [17] and GRU [10] process 

the sequence in temporal fashion. By contrast, features 

distribution capturing models such as Deep Bag of Frames 

(DBoF) [11], NetVLAD [8] and FVnet [3] discard the 

temporal ordering and treat the sequence as a set. Besides 

that, context gating is often introduced to allow capture 

dependency between features as well as capturing prior 

structure of the output space to them. 

 

In the 2nd YouTube-8M Video Understanding Challenge, 

Lin, Rongcheng et al. designed a model NeXtVLAD [2] 

which was shown to be both effective and parameter 

efficient in aggregating temporal information. Moreover, 

Knowledge Distillation with On-the-fly Naive Ensemble [5] 

was also shown to be useful for video classification task.  

 

For the 3rd challenge, the competition host provided 

starter code to help competitors get familiar with the dataset 

and the competition, besides training code on video level, 

scripts to evaluate models on segment level labels are also 

provided. 

 

3. Approach 

Since the labeled video segments dataset are relatively 

small, we decided to fine-tune the video-level models 

produced by the winning teams during previous challenges. 

As illustrated in Fig. 1, models were trained in two stages: 

1) DBoF, NetVLAD, NetVLAD_light, NextVLAD, LSTM 

(moe and logistic) model were  trained on the YouTube-8M 

dataset with the video-level labels; 2) fine-tune them on 

segment-level labels from YouTube-8M Segments dataset.  

 

 
Fig.1. Overview of my network architecture for video temporal localization task, the left part is stage 1 model, it was trained on video-

level frames. The right part is the stage2 model, it was fine-tuned using labeled segments and their previous and later segments as 

context, EMA was used. 

 

In stage 2, we extracted n frames before and after each 5-

second segment from the video to feed into the model. This 

allows the model to capture more context from the video for 

each segment which shown to be useful in our experiment. 

The count of context frames n was selected by experiments, 

and we can obtain an optimal result with n=15 for RNN 

models and 5 for non-RNN models. After selecting the 

context frame, DBoF, NetVLAD, NetVLAD_light, 

NextVLAD stage1 models were retrained by sample same 

count of frames. 

 

 

Exponential Moving Average (EMA) was shown to be 

useful to stabilize the model weights for this type of tasks 

[1]. In stage 2, we used the EMA of model variables to 

validate the model and used in the inference phase. It works 

by making the models more stable and less sensitive to the 

iterations we chose. 

We also adopted the Knowledge Distillation strategy 

from the winning teams in last year's competition. It was 

used by the 3rd place team [2], as introduced in [5], distilled 

knowledge from on-the-fly mixture prediction was used to 

teach each sub model. 



   

 

 

 

 
Fig.2. Overview of knowledge distillation architecture, a mixture of 3 DoF models with on-the-fly knowledge distillation. 

 

For this dataset, semi-supervised learning techniques 

such as mean-teacher introduced in [23] was supposed to 

be promising. We therefore used the predictions of the test 

set to calculate a consistency cost during training. 

Specifically, the probabilities predicted by using current  

 

model weights was treated as student output, and the 

predictions by using EMA weights were treated as teacher 

output, the MSE loss was calculated on these two outputs 

(Fig. 3). Meanwhile, the flipped frames were fed into the 

student model to increase diversity for the inputs. 

 

 
Fig.3. Overview of mean-teacher architecture, the consistency cost was calculated on test segments. 

 

For some reason, the inference part of the starter code is 

inefficient on both space and computation. It takes 4-5 

hours to generate a submission and hard to ensemble 

different models. 

 

To improve it, we modified the code to use GPU and save 

the probabilities as 16-bit integer data to a file. Then the 

segments were sorted by their probabilities, and the top 

100k segments from 2M segments was selected for each 

class in test set. By doing so, the inference time reduced 

 

from ~250 minutes to less than 20 minutes. This was shown 

to be effective for generating results for the model ensemble 

when evaluating the models on the leaderboard. 

4. Experiments 

4.1. Training Details 

The segments were split into 5 folds by tfrecord files, 

models were trained on 4 folds and validated on 1 folds.  



   

 

 

 

 

The implementation was built based on the TensorFlow 

[9] starter code and merged the 1st and the 3rd position 

solution to it. All the models were trained using the Adam 

optimizer [12], the first stage models were train on all train 

and validate Youbute-8M videos and their labels using the 

parameters from winner solutions on two Nvidia 2080TI 

GPUs, but when training non-RNN models, I sampled 15 

frames randomly with replacement. 

 

For stage 2, models were trained using 0.1x learning rate 

of the stage1, and selected the checkpoints by the 

MAP@100k score on validate set after 10 epochs. 

 

4.2. Results 

4.2.1 Compare different model settings 

 

Most experiments were performed with DBoF model, as 

shown in Table 1. While the EMA, context-segments 

feeding and knowledge distillation improved the score 

significantly, mean-teacher model did not improve the 

score. 

 

 
Table 1. The model performance under different settings on 

DBoF Model. MixDBoF model means knowledge distillation 

model. 

 

 

4.2.2 Compare different model structures 

 

For the model structures, we tested DBoF, NextVLAD, 

NetVLAD, NetVLAD_light, LSTM_moe, LSTM_logistic 

models from winner solutions of last 2 competitions.   

 

As shown in Table 2, DBoF model has the best MAP 

score, after applying knowledge distillation on the model, 

average ensemble of 5 folds improved score slightly by 

0.002. Presumably because it used 3 sub-models’ 

predictions on the fly. Contrary to what we believe, adding 

more context frames to the LSTM model did not improve 

the score. 

 

 
Table 2. The performance of different models. 

 

5. Final Ensemble 

As a common practice in a competition, ensemble a set 

of models can often improve the performance further. 

However, since more models are involved in every 

prediction, it is not suitable to deploy the ensemble in 

product environment. We therefore suggest using the 

knowledge distillation strategy to transfer the knowledge 

from the trained models to small and efficient networks.  

 

Models with and without using context segments were 

trained and the predictions were weighted averaged. As 

time was limited, knowledge distillation strategy was used 

only on NextVLAD and DBoF model with context frames 

feeding. The weights were decided by the score of the 

validation set and the public test set, the score of the 

ensemble model on private leaderboard is 0.814.  

 

More complex ensemble strategy which uses second-

level model was designed and implemented, it’s a 

LightGBM model which use probabilities of each model 

and some statistics on them as features, the target is the 

target score (0 or 1) of the label on every labeled segments, 

this means that we have 237k samples for LightGBM model, 

this model increased the score by 0.003, which was 0.817 

on the private leaderboard. 

6. Conclusion 

In this paper, we presented a solution to the challenge of 

temporal localization on the YouTube-8M dataset. By 

combining context segments feeding inputs, Knowledge 

Distillation and EMA, the solution achieved 4th place 

(score: 0.817) in the 3rd YouTube-8M video understanding 

challenge. Detailed evaluations for different model 

architectures and data handling strategies were provided for 

balancing the speed and accuracy. 
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