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Abstract

We present a novel Cross-Class Relevance Learning ap-
proach for the task of temporal concept localization. Most
localization architectures rely on feature extraction layers
followed by a classification layer which outputs class prob-
abilities for each segment. However, in many real-world
applications classes can exhibit complex relationships that
are difficult to model with this architecture. In contrast, we
propose to incorporate target class and class-related fea-
tures as input, and learn a pairwise binary model to predict
general segment to class relevance. This facilitates learning
of shared information between classes, and allows for arbi-
trary class-specific feature engineering. We apply this ap-
proach to the 3rd YouTube-8M Video Understanding Chal-
lenge together with other leading models, and achieve first
place out of over 280 teams. In this paper we describe our
approach and show some empirical results.

1. Introduction

The problem of video understanding has received in-
creasing attention recently following the rapid advancement
in computer vision image models. Temporal concept local-
ization in particular is a challenging but fundamental prob-
lem in video understanding where the main goal is to iden-
tify video segments that contain a specific concept or action.
Just as the rapid advancement in image understanding is
aided by the large-scale and diverse ImageNet dataset [10],
the recently introduced YouTube-8M dataset [1] brings both
scale and diversity to video data. The 3rd YouTube-8M
Video Understanding Challenge 1 leverages this data to
benchmark video understanding models in a standardized
setting.

∗Authors contributed equally to this work.
1www.kaggle.com/c/youtube8m-2019

Video action localization is a closely related problem
to concept localization. Action localization generally as-
sumes that action classes are mutually exclusive, meaning
that each segment can only contain one class. However, in
the real world applications with many classes, a segment
may contain multiple actions simultaneously. Moreover, in
addition to actions there are also objects of interest that need
to be accurately localized. This complexity is captured by
the diverse set of classes in the YouTube-8M dataset that
include both actions and objects, and where segments are
labelled with multiple classes introducing new modelling
challenges. At scale, the total number of segment-class
pairs becomes prohibitively large. So in this data only a
small subset is sampled and labelled. The labels are binary
where 1 indicates that segment contains a given class, and 0
indicates that it doesn’t contain it. The goal of the challenge
is to build accurate segment models that, given a video, can
identify all segments that contain each of the classes.

Existing approaches primarily apply recurrent [22] or
codebook-based [31] models to extract video and segment
features. Then a fully connected classification layer pre-
dicts class probabilities for each segment. The idea is to
use a common feature extraction backbone, and learn class-
specific weights in the last layer. This architecture makes
it challenging to incorporate any class information such
as hierarchy or class similarity into the model. Further-
more, when number of classes is large and/or few train-
ing examples are available per class, this model is prone
to over-fitting as it learns a separate set of weights for ev-
ery class. To deal with these problems we propose a pair-
wise segment-class model that in addition to segment also
takes as input target class and class-related features, and
predicts segment to class relevance. This facilitates learn-
ing of shared information between classes, and allows for
arbitrary class-specific feature engineering.

To avoid running expensive inference for every segment-
class pair we further propose a candidate generation
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pipeline. Specifically, we apply video level model to sig-
nificantly reduce number of candidate segments for each
class while preserving high recall. To summarize, our con-
tribution in this paper is two-fold. First, we propose a
novel architecture for video concept localization that in-
corporates target class information as input into the model.
We further develop class-specific features that improve lo-
calization performance. Second, we demonstrate practi-
cal and efficient application of the proposed architecture
on the largest video dataset available to date as part of the
3rd YouTube-8M Video Understanding Challenge. Our ap-
proach achieves first place out of over 280 teams.

2. Related Work
The temporal concept localization task is closely related

to video action classification and action localization. Video
action classification task consists of predicting what actions
appear in a given video, while action localization aims to
find segments where each action appears. However, classes
in the YouTube-8M dataset are more diverse than actions,
and include everyday objects that exhibit hierarchy and re-
lationships not found in traditional action classification and
localization datsets [5, 16, 39].

Feature extraction. Feature extraction is a common step
in both tasks. Early works extract hand-crafted features by
tracking pixels over time [38]. Recent works instead em-
ploy deep neural networks that use spatio-temporal con-
volutions such as I3D [6], C3D [35] and two-stream ap-
proaches [11, 6] to capture visual and motion features. The
YouTube-8M video and segment datasets [1] used in our
experiments consist of both video and audio features ex-
tracted from publicly available Inception network [33] and
VGG-inspired acoustic model [15] respectively.

Action Classification. Recurrent models such as
LSTMs [12] and GRUs [9] are natural candidates for video
level action classification as they are well suited to extract
temporal features across time. Applications of recurrent
models on this task can be seen in [31] and [34]. Other
popular approaches for action classification [18, 27] are
based on Fisher Vectors (FV) [28] and Vector of Locally
aggregated Descriptors (VLAD) [17]. These methods rely
on maintaining a hand-crafted codebook. NetVLAD [3]
and NetFV [22] are variations of VLAD and FV methods
that learn the encoding end-to-end using deep networks.
These methods achieve state-of-the-art performance on the
YouTube-8M video classification task [22, 31, 34, 25], and
we also leverage them in our pipeline.

Action Localization. Action localization task can be
partitioned into two groups: fully-supervised and weakly-
supervised. In the fully supervised setting, models are
trained using frame-level annotations indicating action
boundaries. [7, 30] perform fully supervised action local-
ization is a two stage manner, first predicting proposals and

further classifying proposals into action classes. GTAN [20]
learns a set of Gaussian kernels used to predict intervals
of actions in a single-stage manner. The network is opti-
mized end-to-end using classification loss and two regres-
sion losses to predict action boundaries.

On the other hand, weakly supervised action localization
models predict action classes and boundaries only based on
high level action category labels. This can be formulated
as multi-instance multi-label learning problem [41], where
multiple instances describe an example having multiple la-
bels. For example, W-TALC [26] extends the work of STPN
[24] which introduces attention module to identify sparse
subset of video frames associated with actions by having
novel objective functions based on multiple-instance learn-
ing and activity similarity.

Datasets. Some notable datasets for action classification
include Moments in Time [23], Something-Something [13],
UCF101 [32], Sports1M [19]. Thumos [16], MultiThumos
[39] and ActivityNet [5] are popular datasets used in recent
work for action localization. Another category of datasets
used for spatio-temporal localization include MSRActions
[40], AVA [14] and UCFSports [29]. Compared to these,
Youtube-8M [1] is by far the largest multi-class dataset with
over 3.8K classes that contain a very broad and diverse set
of actions and objects.

Pairwise Relevance Learning. It is common in struc-
tured prediction tasks to design a pairwise compatibility
function over input-output pairs [36]. This can be seen for
example in [2], where joint image-class model is trained to
embed classes and measure compatibility between images
and classes for zero-shot classification. Our approach fol-
lows similar intuition, and we aim to learn a general pair-
wise model to predict segment to class relevance.

3. Approach

Given a video v, we use xv
i to denote the i’th frame

in v. We follow [1] and represent video by a sequence of
frames xv = [xv

1,x
v
2, ...,x

v
Fv
], where Fv is the total num-

ber of frames in v. We assume that features have been ex-
tracted for each frame so xv

i is a vector in Rd. Segment
xv
i:j = [xv

i ,x
v
i+1, ...,x

v
j ] is a sub-sequence of consecutive

frames from i to j with j > i. The temporal concept local-
ization problem is formulated as predicting relevance of a
given segment xv

i:j to class c. The ground truth binary label
for this task is denoted by ycv,i:j ∈ {0, 1}, where positive
label 1 indicates that xv

i:j is relevant to c and negative label
0 indicates that xv

i:j is not relevant to c. For a large database
of videos and classes, it’s impractical to label all segment-
class pairs. Typically only a subset of pairs is sampled and
labelled, so ycv,i:j is unknown for most segments xv

i:j . In the
following sections we outline our approach to this problem
and show empirical results.
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Figure 1: (a) shows commonly used classification architec-
ture where a vector of class probabilities is predicted for
each segment. (b) shows our proposed CCRL architecture
where segment xv

i:j and class features ω(c) are jointly used
as input to a binary relevance model.

3.1. Candidate Generation

At scale, the number of segments can become pro-
hibitively large making model inference very expensive. To
address this, we propose a candidate generation stage to sig-
nificantly reduce the set of segments that need to be scored
for each class. We use video level candidate generation
and select videos that are likely to contain segments with a
given class. The main motivation for this is that predicting
whether video contains a class is significantly easier than lo-
calizing where exactly it appears. This is evidenced by the
performance of video models from the previous edition of
the YouTube-8M challenge that focused on video classifica-
tion. Winning solutions were able to achieve nearly 0.9 in
mean average precision on this task [31] even though there
were over 3.8K classes. Moreover, labelling videos is sig-
nificantly easier than labelling segments with precise start
and end times. YouTube-8M dataset has video level labels
for more than 6M videos but only 47K videos have segment
labels. Using video models thus also allows us to leverage
information from the much larger video dataset and transfer
it to segment prediction.

Our candidate generation stage uses a video level model
to predict class probabilities for every video in the corpus.
Then, given a target class c, we sort videos according to
probability for c and take top-K. All segments from the top-
K videos are treated as candidates for c and are passed to
the segment model. By leveraging leading approaches for
video classification [31] we are able to reduce the number
of candidate segments by over 20x while still achieving near
perfect 99.7% average segment recall across classes.

3.2. Traditional Approach to Classification

Typical architecture for segment/video classification
consists of feature extraction backbone followed by a clas-
sification layer where a separate set of weights is learned for
each class. The main idea is that the backbone learns to ex-
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Figure 2: t-SNE reduced bag-of-words description vectors
for a subset of Youtube-8M classes. Different colors repre-
sent clusters found by applying k-means. Clear hierarchical
relationships between classes can be observed from this di-
agram.

tract visual information generally useful for prediction, and
classification layer learns to transform this information into
class-specific predictions. Formally, given a segment xv

i:j

the model outputs a prediction vector:

ŷv,i:j = f(xv
i:j) (1)

where ŷv,i:j = [ŷ1v,i:j , ŷ
2
v,i:j , ..., ŷ

C
v,i:j ] contains predictions

for all target classes. This architecture is illustrated in Fig-
ure 1a.

Despite its popularity, this architecture has several disad-
vantages. First, in many real-world applications classes of-
ten have close hierarchical relationships. An example of this
is shown in Figure 2. Here, we show t-SNE [21] visualiza-
tion of the bag-of-words descriptions for a subset of classes
in YouTube-8M. From the figure we can observe complex
and hierarchical inter-class relationships common in these
domains. For example, a number of classes are related to
automobiles. These are sub-divided into economy, sports
and luxury, and can be further partitioned by manufacturer
etc. Incorporating this information or any other class related
features is non-trivial in the traditional model. It typically
requires loss modification and/or manual weight manipula-
tion in the classification layer [2]. Second, class-specific
weights are only updated when examples of that class are
encountered during training. For classes with few training
examples this can result in under/over-fitted models. Accu-
rately labelling video segments is a difficult task and most
datasets including YouTube-8M have highly sparse labels.

In the following section we propose a different archi-
tecture for segment classification that avoids most of these
problems.



Table 1: Performance of the segment candidate genera-
tion models evaluated by Recall at 100K segments for each
class.

Model Recall@100K
Logistic 0.9713
LSTM 0.9931
Ensemble [31] 0.9969

3.3. Cross-Class Relevance Learning

To incorporate class information into the model and pro-
mote cross-class information sharing, we propose a pair-
wise architecture. Specifically, our architecture takes both
segment and target class as input and predicts relevance
probability. We train a single pairwise model that cap-
tures general notion of “relevance” between all segments
and classes. This architecture is shown in Figure 1b. Us-
ing ω(c) to denote extracted features for class c, our model
outputs relevance probability between segment xv

i:j and c:

ŷcv,i:j = f
(
xv
i:j , ω(c)

)
(2)

Pairwise architecture allows us to encode arbitrary class in-
formation into the model in a principled way. By training a
single model for all classes we can automatically learn rela-
tionships between classes that are useful for the target task.
To further illustrate this point, consider an example where f
is a decision tree model and ω(c) simply outputs class index
c. The decision tree can use class index to group classes in
each sub-tree and automatically learn an implicit hierarchy.
This is not possible with traditional classification architec-
tures. Another advantage is that a learned model can po-
tentially generalize to new unseen classes during training as
long as ω(c) can reasonably encode them.

We train this model with a binary cross entropy objective
using all labelled segments:

L =−
∑
yc
v,i:j

ycv,i:j log
(
f(xv

i:j , ω(c))
)

+ (1− ycv,i:j) log
(
1− f(xv

i:j , ω(c))
) (3)

During inference, given a segment xv
i:j we need to deter-

mine which classes are relevant for xv
i:j . Naive approach

requires C forward passes through the model, one for every
class. This quickly becomes prohibitively expensive, espe-
cially for datasets such as YouTube-8M that have thousands
of classes. However, we note that after candidate generation
step we only need to consider a small subset of segments for
each class. The two-stage approach makes inference in our
model practical and scalable, and we run it without difficul-
ties on the large scale YouTube-8M data.

Table 2: Private leaderbooard performance of segment mod-
els with and without candidate generation (CG)

Model Without CG With CG
ConvNet [4] 0.7454 0.8036
LSTM [31] 0.7681 0.8023
Transformer [37] 0.6524 0.7955
NetVLAD [3] 0.7243 0.8023
NetFV [22] 0.7203 0.8028
CCRL 0.7711 0.8091
Ensemble - 0.8329

3.4. Class Features

We conducted extensive investigation on the types of
class features that can be encoded with ω(c). Here, we
present one interesting feature that significantly improves
performance. Given a segment xv

i:j and target class c, our
goal is to compare xv

i:j to all labelled relevant and irrelevant
segments for class c. The main idea is similar to clustering
in that if xv

i:j is relevant for c then it should be “close” to
other relevant segments and “far” from irrelevant ones. We
formalize this as follows:

SIMpos(x
v
i:j , c) =

∑
u 6=v

∑
yc
u,k:l=1

dist(xv
i:j ,x

u
k:l)

SIMneg(x
v
i:j , c) =

∑
u 6=v

∑
yc
u,k:l=0

dist(xv
i:j ,x

u
k:l)

where dist(xv
i:j ,x

u
k:l) is a distance function between seg-

ments xv
i:j and xu

k:l. SIMpos and SIMneg compute total dis-
tances to relevant (positive) and irrelevant (negative) seg-
ments respectively. Any similarity function can be used for
dist. Empirically, we found cosine of the angle between seg-
ment feature encodings (e.g. RNN hidden states) to work
well. Adding these features significantly improved localiza-
tion accuracy, and further demonstrates the flexibility of the
proposed architecture that allows to explore virtually any
class-related features.

4. Experiments

We conduct experiments on temporal localization task
as part of the 3rd YouTube-8M Challenge. This chal-
lenge dataset is an extension of the original YouTube-8M
dataset [1], which contains 6.1M videos described by 2.6B
audio-visual frame features. The videos are labelled across
3862 classes, and have an average of 3 labels per video.
The extended dataset contains 237K human-verified seg-
ment class labels from 47K videos with approximately 5
segments per video. The videos in the extended dataset are
labelled with 1000 classes which is a subset of the original
3862 classes.



Table 3: Private leaderboard performance for top-5 teams
as well as our individual models. Our team “Layer6 AI”
achieved first place.

Team Leaderboard Rank
Layer6 AI 0.8329 1
BigVid Lab 0.8262 2
RLin 0.8255 3
bestfitting 0.8171 4
Last Top GB Model 0.8046 5
ConvNet 0.8036 6
LSTM 0.8023 7
Transformer 0.7955 8
NetVLAD 0.8023 7
NetFV 0.8028 7
CCRL 0.8091 5

Challenge data is split into a publicly available labelled
set and two held-out test sets (public and private leader-
boards). For all experiments, we split the labelled set into
90% Strain and 10% Sval sets and tune hyperparameters us-
ing Sval set. We use the chosen hyperparameters to the re-
train on the full 100% labelled set. Results for the held-out
set are reported by submitting our model predictions to the
leaderboard through the Kaggle platform. We report results
on the private leaderboard which corresponds to the larger
held-out test set that was used to rank teams at the end of
the competition.

The challenge task is to predict a ranked list of up to
100K segments for each class. This list is evaluated against
the ground truth using mean average precision (mAP):

mAP =
1

C

C∑
c=1

∑n
i=1 Prec(i)× rel(i)

Nc
(4)

where Prec(i) is precision at rank i and rel(i) is 1 if seg-
ment at rank i is relevant and 0 otherwise; Nc denotes the
total number of relevant segments in class c. In addition to
mAP, we use average class recall to evaluate the quality of
the segment candidate generation model.

4.1. Implementation

We compare popular temporal localisation models
against our proposed CCRL architecture. To make com-
parison fair all models share the same candidate segment
generation pipeline.

Candidate Generation Models For segment candidate
generation we consider logistic and LSTM models that were
part of the winning solution for the YouTube-8M video clas-
sification challenge [31]. Logistic model described in [1] is
a fully-connected architecture with a sigmoid activation to
output class probability predictions. The input features are
composed by concatenating RGB and audio inputs for each
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Figure 3: Average precision performance for individual
classes for CCRL and LSTM models.

frame. LSTM model is a stack of bi-directional LSTM lay-
ers followed by a uni-directional LSTM layer with a cell
size of 1024. A fully-connected layer is then used for clas-
sification from the final hidden state of the uni-directional
LSTM layer. We also evaluate model ensemble obtained
through knowledge distillation [31].

Segment Models For segment classification we con-
sider latest neural network architectures for temporal learn-
ing. These include Convolutional Neural Networks (Con-
vNet) [4], LSTM [31], Transformer [37], NetVLAD [3] and
NetFV [22]. In ConvNet model, two layers of width 2 con-
volutions are applied along the video frames. Frame rep-
resentations from last layer are then combined via average
or max pooling and passed to classification layer. Trans-
former model first compresses frames into segment repre-
sentations using a convolutional layer, then three blocks
of self-attention are applied followed by a fully connected
classification layer. LSTM is initialised with pre-trained
video LSTM model used for candidate generation. We then
fine-tune it for localisation task using segment level binary
cross entropy loss. NetVLAD [3] and NetFV models are
based on [22]. We modify the original implementation by
removing batch norm layers and switching from mixture-
of-experts [1] to logistic regression. These modifications
lead to more stable learning and better accuracy.

For CCRL, we use tree-based gradient boosting ma-
chines (GBMs) to learn non-smooth class relationships that
are difficult to capture with deep learning. We use predic-
tions from segment candidate generation models as addi-
tional input features for each segment. Class features in-
clude one-hot class encoding and various versions of sim-
ilarity features outlined in Section 3.4. We use the XG-
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Figure 4: Qualitative example of instance localization for CCRL and LSTM models. Top-3 segments for class “skateboard-
ing” are shown for each model. LSTM makes a mistake on segment x90:95 where frames resemble skateboarding but actually
show a skateboarder falling. CCRL is able to correctly identify all relevant segments.

Boost [8] package for GBM training in all experiments.

4.2. Results

Table 1 summarizes results for segment candidate gen-
eration models. We focus on recall here since the primary
aim for candidate generation is to capture as many relevant
segments as possible. From the table we see that candidate
generation is able to reduce total number of segments from
around 2.2M to 100K and still achieve near perfect recall.
The model ensemble in particular is able to achieve recall of
0.9969 which indicates that virtually all relevant segments
are included in the candidate set.

Table 2 compares leaderboard model performance for all
segment models before and after applying candidate gener-
ation. We observe significant increase in performance with
up to 20% gain in mAP after candidate generation. This
indicates that candidate generation is able to successfully
transfer information from the much larger video classifica-
tion dataset and improve localization. Notably, models that
perform worse on their own, such as transformer, benefit
more from the candidate generation. We also see that CCRL
is the best performing model both with and without candi-
date generation. Strong performance suggests that CCRL
is a promising approach for concept localization and poten-
tially other related tasks. Model ensemble further improves
performance and gives our best accuracy of 0.8329. We ex-
perimented with various ensemble techniques but found that
simple averaging worked best here.

Figure 3 shows average precision performance for CCRL
and LSTM models for a subset of classes clustered accord-

ing to their bag-of-words descriptions. Here, we can see
the benefits of cross-class learning. For example, LSTM
performs significantly worse for classes “BMW 3 Series
(E30)” and “Samsung Galaxy”, while related classes have
higher performance. However, CCRL is able to achieve
more consistent accuracy across classes in a given clus-
ter. One explanation for the more consistent scores can
be attributed to better information sharing between classes.
However, also observe that for some clusters such as the
Xbox products, our model struggles to achieve consistent
performance. Further architectural improvements or addi-
tional features can be beneficial here and we leave it for
future work.

Table 3 shows the final leaderboard scores for top-5
teams as well as individual models. Our team “Layer6 AI”
achieved first place outperforming the second team by 0.67
points in mAP. We also see that individual models have
strong performance and all place in the top-10 on the leader-
board. Our best single model places 5’th on the leaderboard
and can be used on its own, particularly in production envi-
ronments where model ensembles can be difficult to man-
age.

Figure 4 shows a qualitative example comparing CCRL
and LSTM predictions on one video. Each row repre-
sents one of five labelled segments for this video with class
“skateboarding”. To evaluate localization, we examine the
top-3 predicted segments from each model. From the fiig-
ure we see that LSTM makes a mistake on segment x90:95

where frames resemble skateboarding but actually show a
skateboarder falling. CCRL is able to correctly identify all



relevant segments.

5. Conclusion
We propose cross-class relevance learning approach for

temporal concept localization. Our approach uses a pair-
wise model that takes both segment and target class as input
and predicts relevance. This promotes information sharing
between classes, and allows for extensive class feature engi-
neering. We apply our approach to the YouTube-8M video
understanding challenge together with other leading mod-
els and achieve first place. In the future, we aim to explore
additional features to describe classes as well as pairwise
architectures for joint prediction.
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