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Abstract. We hosted the 2nd YouTube-8M Large-Scale Video Under-
standing Kaggle Challenge and Workshop at ECCV’18, with the task
of classifying videos from frame-level and video-level audio-visual fea-
tures. In this year’s challenge, we restricted the final model size to 1GB
or less, encouraging participants to explore representation learning or
better architecture, instead of heavy ensembles of multiple models. In
this paper, we briefly introduce the YouTube-8M dataset and challenge
task, followed by participants statistics and result analysis. We summa-
rize proposed ideas by participants, including architectures, temporal
aggregation methods, ensembling and distillation, data augmentation,
and more.
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1 YouTube-8M Dataset

Many recent breakthroughs in machine learning and machine perception have
come from the availability of large labeled datasets, such as ImageNet [8], which
has millions of images labeled with thousands of classes. Their availability has
significantly accelerated research in image understanding.

Video provides even more information for detecting and recognizing objects,
and understanding human actions and interactions with the world. Improving
video understanding can lead to better video search, organization, and discovery,
for personal memories, enterprise video archives, and public video collections.
However, one of the key bottlenecks for further advancements in this area, until
recently, has been the lack of labeled video datasets with the same scale and
diversity as image datasets.

Recently, Google announced the release of YouTube-8M [1], a dataset of 6.1+
million YouTube video URLs (representing over 350,000 hours of video), along
with video-level labels from a diverse set of 3,862 Knowledge Graph entities.1

This represents a significant increase in scale and diversity compared to existing
video datasets. For example, Sports-1M [11], the previous largest labeled video

1 This statistics is based on the most recent dataset update on May 14, 2018.



2 J. Lee, A. Natsev, W. Reade, R. Sukthankar, G. Toderici

dataset we are aware of, has around 1 million YouTube videos and 500 sports-
specific classes–YouTube-8M represents nearly an order of magnitude increase
in both number of videos and classes.

YouTube-8M represents a cross-section of our society. It was designed with
scale and diversity in mind so that whatever lessons we learn on this dataset can
transfer to all areas of our lives, from learning, to communication, and entertain-
ment. It covers over 20 broad domains of video content, including entertainment,
sports, commerce, hobbies, science, news, jobs & education, health.

The dataset comes with pre-computed state-of-the-art audio-visual features
from billions of frames and audio segments, designed to fit on a single hard
disk. This makes it possible to get started on this dataset by training a base-
line video model in less than a day on a single machine. Considering the fact
that this dataset spans over 450 hours of video, training from the raw videos is
impractical–it would require 1 petabyte of raw video storage, plus video decoding
and training pipelines that run 20,000 times faster than real time video process-
ing in order to do one pass over the data per day. In contrast, by standardizing
and pre-extracting the frame-level features, it is possible to fit the dataset on a
single commodity hard drive, and train a baseline model to convergence in less
than a day on 1 GPU. Also, by standardizing the frame-level vision features, we
focus the challenge on video-level temporal modeling and representation learning
approaches. The annotations on the training videos are machine-generated from
different sources of information and are somewhat noisy and incomplete. A key
research angle of the challenge is to design systems that are resilient in presence
of noise.

2 Challenge Task

Continuation from the First Google Cloud & YouTube-8M Video Classification
Challenge on Kaggle 2 and CVPR’17 Workshop 3, we hosted the challenge on
Kaggle 4 with the revised video classification task, described in this section.

Participants are asked to produce up to 20 video-level predictions over the
3,862 classes on the YouTube-8M (blind) test set. The training and validation
sets are publicly available, along with 1024-D frame-level and video-level visual
features, 128-D audio features, and (on average) 3.0 video-level labels per video.
The challenge requires classifying the blind test set of ∼700K videos, labels for
which ground truth labels have been withheld. This blind test set is divided
into two same-sized partitions, called public and private. For each submission,
we evaluate performance on the public portion of the test set and release this
score to all participants. Another half is used for final evaluation. Award and
final ranking is determined based on this private test set, and this score is visible
upon completion of the competition. Participants do not know which examples
belong to which set, so they are asked to submit answers to the entire test set.

2 https://www.kaggle.com/c/youtube8m
3 https://research.google.com/youtube8m/workshop2017/index.html
4 https://www.kaggle.com/c/youtube8m-2018
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Formally, for each video v, we have a set of ground-truth labels Gv. Par-
ticipants produce up to 20 pairs (ev,k, fv,k) for each video v, where ev,k ∈ E
is the class label, and fv,k ∈ [0, 1] is its confidence score. We bucket fv,k with
τj = j/10000, where j ∈ {0, 1, ...10000}, and compute the Global Average Pre-
cision (GAP) across all classes as follows:

P (τ) =

∑
v∈V

∑20
k=1 I(fv,k ≥ τ)I(ev,k ∈ Gv)∑
v∈V

∑20
k=1 I(fv,k ≥ τ)

(1)

R(τ) =

∑
v∈V

∑20
k=1 I(fv,k ≥ τ)I(ev,k ∈ Gv)∑

v∈V |Gv|
(2)

GAP =

10000∑
j=1

P (τj) [R(τj−1)−R(τj)] (3)

Performance is measured using this GAP score of all the predictions and the
winner and runners-up of the challenge are selected based on this score. Note
that this metric is optimized for systems with proper score calibration across
videos and across entities.

Rank Team Name Best Performance (GAP) # Models in
Single Model Ensembled Ensemble

1 WILLOW [18] 0.8300 0.8496 25
2 monkeytyping [24] 0.8179 0.8458 74
3 offline [15] 0.8275 0.8454 57
4 FDT [6] 0.8178 0.8419 38
5 You8M [22] 0.8225 0.8418 33
6 Rankyou [25] 0.8246 0.8408 22
7 Yeti [5] 0.8254 0.8396 21
8 SNUVL X SKT [19] 0.8200 0.8389 22
9 Lanzan Ramen – 0.8372 –
10 Samartian [26] 0.8139 0.8366 36

Table 1. Best performance achieved by top 10 teams from 2017 YouTube-8M Chal-
lenge, with number of ensembled models.

In addition, we restrict the model size up to 1 GB without compression. This
is to discourage participants to try extremely heavy ensemble models, which we
observed at the last year’s competition (and other Kaggle challenges as well).
Table 1 shows the best GAP scores achieved by the top 10 performers, with and
without ensembles. We clearly see that most top performers ensembled tens of
models and get consistent improvement about 2 ∼ 3% on GAP. In large-scale
applications, it is practical to limit the size of vectors representing videos due to
CPU, memory, or storage considerations. We focus our challenge on developing
models under a fixed feature size budget, encouraging participants to focus on
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developing novel single-model architectures, or multi-modal ensembles trained
jointly end-to-end, as opposed to training many (in some cases, thousands of)
models independently and doing a late-stage model ensemble to squeeze the
last 1% of performance. The latter makes the approach infeasible for any real
applications, and makes it difficult to compare single-model architectures fairly,
as top performance is typically achieved by brute force approaches. This also
gives an unfair edge to competitors with large compute resources, as they can
afford to train and ensemble the most number of models.

3 Challenge Result

In this section, we review some stats regarding participants, and present the
final leaderboard with GAP as well as some other useful metrics to compare
performance.

3.1 Participants Overview

This year, total 394 teams participated in the competition, composed of 531
total competitors. For 106 participants among these, the 2nd YouTube-8M com-
petition was their first competition at Kaggle. 61 participants have participated
in the First YouTube-8M competition and returned to 2018 competition. Partic-
ipants come from 40 and more countries, summarized in Table 2. This is based
on the IP address where each participant created the account, so this is just an
approximate statistics.

Fig. 1. The number of submissions (top) and best private leaderboard scores on each
day and cumulatively (bottom).
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Country # Competitors Award Winners

United States 136 1st∗, 3rd
P. R. China 69 4th
India 56
Russia 30 2nd
Korea 25 5th
Japan 19
France 15
Canada 15
United Kingdom 14
Taiwan 10
Singapore 9
Hong Kong 9
Belarus 8
Ukraine 8
Germany 7
Poland 6
Australia 5
Greece 4

Table 2. Number of participants by country. (∗This team is multinational, with a
Spanish and an American participant.)

In this year’s competition, we received total 3,805 submissions. This is about
10 submissions per team on average, which is relatively lower than usual. Me-
dian number of competition is 15. Figure 1 shows overall trend of competition
progress. We launched the competition on May 22, 2018. Early on in the compe-
tition (A in Figure 1), we observe a rapid increase in the best score (green). We
also see lots of variability in the best daily scores (blue). This suggests partici-
pants were trying a wide variety of different ideas. About mid-way through the
competition, around point B, the best score starts to plateau, but we still see lots
of day-to-day variability, indicating continued exploration of techniques. During
the last third of the competition (C), the day-to-day variability decreases signif-
icantly, suggesting competitors were trying to fine-tune submissions. We observe
a sharp increase in model submissions towards the end of the competition (D),
where participants were trying to get final incremental improvements in their
submissions.

Another interesting analysis is about how returning participants performed.
Figure 2 shows relative rank change (in percentile) of all returning teams. Red
arrows mean moved down, while green ones mean moved up. Group A, the teams
from lowest ranks last year, showed modest progress up to the 50–70 percentile.
Group B from the middle last year showed significant improvement to within top
20%. Group C slipped a bit from top 10% to 20%. Among the top performers
in Group D, we observe two patterns. Some of them dropped a lot, probably
putting little effort on this year’s competition. On the other hand, some teams
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Fig. 2. The number of submissions (top) and best private leaderboard scores on each
day and cumulatively (bottom).

achieved the top ranks again, including Team Next top GB model from 5th to
1st and Team YT8M-T staying at 4th again.

3.2 Final Leaderboard

Table 3 shows the final leaderboard, sorted by our official evaluation metric,
GAP score. We also evaluate submitted final models in terms of the following
additional metrics:

– Mean Average Precision (MAP): In practice, examples are not uni-
formly distributed over labels. For some labels, we have a plethora of training
examples, while for some other labels, we have just a few of them. This is the
case for YouTube-8M as well. Thus, we are also interested in a metric that
deals with each label equally. Instead of computing AUC of overall precision-
recall curve, MAP computes mean per-class AUC of precision-recall curves.
Formally,

Pe(τ) =

∑
v∈V

∑20
k=1 I(fv,k ≥ τ)I(ev,k ∈ Gv)I(ev,k = e)∑
v∈V

∑20
k=1 I(fv,k ≥ τ)I(ev,k = e)

(4)

R(τ) =

∑
v∈V

∑20
k=1 I(fv,k ≥ τ)I(ev,k ∈ Gv)I(ev,k = e)

|v : e ∈ Gv|
(5)

APe =

10000∑
j=1

Pe(τj) [Re(τj−1)−Re(τj)] (6)
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MAP =
1

|E|
∑
e∈E

APe (7)

– Hit@k is the fraction of test samples that contain at least one of the ground
truth labels in the top k predictions. We measure and report Hit@1 of the
top performers.

– Precision at Equal Recall Rate (PERR) is similar to MAP, but instead
of using a fixed k = 20, we compute the mean precision up to the number of
ground truth labels in each class. Formally,

PERR =
1

|V |
∑
v∈V

[
1

|Gv|
∑
k∈Gv

I(rankv,k ≤ |Gv|)

]
, (8)

where Gv is the set of ground truth labels for video v and I(rankv,k < |Gv|)
counts the number of correct predictions made within the top |Gv|.

For all metrics, higher values indicate better performance. We measure these
metrics based on the final submission, although other intermediate models might
have achieved higher scores in other metrics.

Rank Team Name GAP MAP Hit@1 PERR Model Size

1 Next top GB model [21] 0.88987 0.59637 0.9074 0.8311 1,010MB
2 Samsung AI Center Moscow [2] 0.88729 0.58436 0.9075 0.8297 943MB
3 PhoenixLin [16] 0.88722 0.59682 0.9074 0.8310 901MB
4 YT8M-T [23] 0.88704 0.58794 0.9059 0.8283 923MB
5 KANU [12] 0.88527 0.58300 0.9039 0.8260 964MB
6 [ods.ai] Evgeny Semyonov 0.88506 0.58476 0.9057 0.8274 982MB
7 Liu [17] 0.88324 0.58194 0.9030 0.8242 1,020MB
8 Sergey Zhitansky 0.88113 0.50362 0.8861 0.7977 844MB
9 404 not found 0.88067 0.49868 0.8842 0.7947 682MB
10 Licio.JL 0.88027 – – – 817MB
11 Weimin Wang 0.88012 0.56076 0.9006 0.8197 1,021MB
12 IIAI 0.87912 – – – –
13 NPhard 0.87796 0.55979 0.8992 0.8178 753MB
14 CV Group 0.87662 0.53946 0.8925 0.8067 964MB
15 NII 0.87465 0.54857 0.8968 0.8143 938MB
16 DeepCats 0.87342 0.55275 0.8955 0.8122 970MB
17 Axon AI [7] 0.87287 0.46735 0.8614 0.7608 971MB
18 Steeve Huang 0.87216 0.55425 0.8962 0.8133 880MB
19 running out of time 0.87190 – – – 992MB
20 Newers 0.87186 – – – –

Table 3. Final leaderboard with 20 top performers in GAP, listed with other metrics
(MAP, Hit@1, and PERR). The top performers in each metric are marked bold.

Table 3 indicates that Next top GB model team [21] achieved the best GAP
as well as PERR scores. Samsung AI Center Moscow team [2] achieved the best
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Hit@1 score, and PhoenixLin [16] did for MAP score. The smallest model we see
from the top 20 is achieved by the team 404 not found, which is 682MB. Note
that the GAP metrics in Table 3 are not compatible to those in Table 1 from
2017 leaderboard, as the a different version of YouTube-8M dataset was used
each year.

4 Approaches

In this section, we briefly review commonly used techniques for this year’s com-
petition, as well as some interesting ideas proposed by participants.

4.1 Architecture

Many participants [16, 13, 17, 4, 20] built their models based on the WILLOW
architecture illustrated in Figure 3, designed by the WILLOW team, the 2017
competition winner [18]. In this work, team WILLOW explored combinations of
learnable pooling techniques such as Soft Bag-of-words, Fisher Vectors, NetVLAD,
GRU, and LSTM to aggregate video features over time. Also, they introduced
a learnable non-linear network unit, called Context Gating, aiming at model-
ing inter-dependencies between features. For other architectures, Samsung AI
Team [2] uses ResNet-based model.

2

Descriptors (VLAD) [15] or Fisher Vectors [22]. It has been
recently shown that integrating VLAD as a differentiable module
in a neural network can significantly improve the aggregated rep-
resentation for the task of place retrieval [23]. This has motivated
us to integrate and enhance such clustering-based aggregation
techniques for the task of video representation and classification.

Contributions. In this work we make the following contributions:
(i) we introduce a new state-of-the-art architecture aggregating
video and audio features for video classification, (ii) we introduce
the Context Gating layer, an efficient non-linear unit for modeling
interdependencies among network activations, and (iii) we ex-
perimentally demonstrate benifits of clustering-based aggregation
techniques over LSTM and GRU approaches for the task of video
classification.

Results. We evaluate our method on the large-scale multi-modal
Youtube-8M V2 dataset containing about 8M videos and 4716
unique tags. We use pre-extracted visual and audio features
provided with the dataset [19] and demonstrate improvements
obtained with the Context Gating as well as by the combination
of learnable poolings. Our method obtains top performance, out
of more than 650 teams, in the Youtube-8M Large-Scale Video
Understanding challenge1. Compared to the common recurrent
models, our models are faster to train and require less training
data. Figure 1 illustrates some qualitative results of our method.

2 RELATED WORK

This work is related to previous methods for video feature extrac-
tion, aggregation and gating reviewed below.

2.1 Feature extraction

Successful hand-crafted representations [7], [8], [9] are based
on local histograms of image and motion gradient orientations
extracted along dense trajectories [9], [24]. More recent methods
extract deep convolutional neural network activations computed
from individual frames or blocks of frames using spatial [6],
[25], [26], [27] or spatio-temporal [5], [10], [11], [12], [13], [14]
convolutions. Convolutional neural networks can be also applied
separately on the appearance channel and the pre-computed mo-
tion field channel resulting in the, so called, two-stream represen-
tations [6], [11], [14], [26], [28]. As our work is motivated by
the Youtube-8M large-scale video understanding challenge [19],
we will assume for the rest of the paper that features are provided
(more details are provided in Section 5). This work mainly focuses
on the temporal aggregation of given features.

2.2 Feature aggregation

Video features are typically extracted from individual frames or
short video clips. The remaining question is: how to aggregate
video features over the entire and potentially long video? One
way to achieve this is to employ recurrent neural networks, such
as long short-term memory (LSTM) [16] or gated recurrent unit
(GRU) [17]), on top of the extracted frame-level features to capture
the temporal structure of video into a single representation [18],
[29], [30], [31], [32]. Hierarchical spatio-temporal convolution
architectures [5], [10], [11], [12], [13], [14] can also be viewed

1. https://www.kaggle.com/c/youtube8m
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Fig. 2: Overview of our network architecture for video classifica-
tion (the “Late Concat” variant). FC denotes a Fully-Connected
layer. MoE denotes the Mixture-of-Experts classifier [19].

as a way to both extract and aggregate temporal features at the
same time. Other methods capture only the distribution of features
in the video, not explicitly modeling their temporal ordering. The
simplest form of this approach is the average or maximum pooling
of video features [33] over time. Other commonly used methods
include bag-of-visual-words [20], [21], Vector of Locally aggre-
gated Descriptors (VLAD) [15] or Fisher Vector [22] encoding.
Application of these techniques to video include [7], [8], [9], [34],
[35]. Typically, these methods [31], [36] rely on an unsupervised
learning of the codebook. However, the codebook can also be
learned in a discriminative manner [34], [37], [38] or the entire
encoding module can be included within the convolutional neural
network architecture and trained in the end-to-end manner [23].
This type of end-to-end trainable orderless aggregation has been
recently applied to video frames in [26]. Here we extend this
work by aggregating visual and audio inputs, and also investigate
multiple orderless aggregations.

2.3 Gating

Gating mechanisms allow multiplicative interaction between a
given input feature X and a gate vector with values in between
0 and 1. They are commonly used in recurrent neural network
models such as LSTM [16] and GRU [17] but have so far not
been exploited in conjunction with other non-temporal aggrega-
tion strategies such as Fisher Vectors (FV), Vector of Locally
Aggregated Descriptors (VLAD) or bag-of-visual-words (BoW).
Our work aims to fill this gap and designs a video classifica-
tion architecture combining non-temporal aggregation with gating
mechanisms. One of the motivations for this choice is the recent
Gated Linear Unit (GLU) [39], which has demonstrated significant
improvements in natural language processing tasks.

Our gating mechanism initially reported in [40] is also related
to the parallel work on Squeeze-and-Excitation architectures [41],
that has suggested gated blocks for image classification tasks and
have demonstrated excellent performance on the ILSVRC 2017
image classification challenge.

3 NETWORK ARCHITECTURE

Our architecture for video classification is illustrated in Fig-
ure 2 and contains three main modules. First, the input features
are extracted from video and audio signals. Next, the pooling
module aggregates the extracted features into a single compact
(e.g. 1024-dimensional) representation for the entire video. This

Fig. 3. The WILLOW architecture [18]

4.2 Temporal Aggregation

As the dataset provides frame-level features while the task requires video-level
label estimation, a lot of participants propose novel ideas of how to aggregate
frame-level features into video-level.

The most widely-used approach within this year’s competition is NetVLAD [3]
and its variants. Team PhoenixLin [16] substitutes the NetVLAD part with its
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variant NeXtVLAD. Team Deep Topology [13] applies modified NetVLAD to
consider cluster similarity as well. They also try attention-enhanced NetVLAD,
with transformer block inserted before and after NetVLAD module. Team YT8M-
T [23] proposes non-local NetVLAD, modeling the relations between different
local cluster centers. They try variants with early and late fusions of NetVLAD
and its variants.

Another popular approach is recurrent neural networks, LSTM and GRU.
Samsung AI Moscow Team [2] and Shivam Garg [9] apply uni-directional and
bi-directional LSTM to aggregate frame-level features. Team Axon AI [7] uses
both LSTM and GRU.

Convolution on temporal axis is another popular way to substitute recurrent
neural nets. Shivam Garg [9] proposes ResidualCNN-X, where X is the output
size, composed of a fully connected layer and a deep CNN network with several
residual modules. Samsung AI team [2] tries time-distributed convolutional lay-
ers, containing several layers of convolutions followed by max-pooling for video
and audio separately, then concatenating the resulting features.

Team KANU [12] selects informative frames using spatio-temporal attention
model; temporal attention on audio guided by image, and temporal attention on
image guided by audio.

Lastly, Deep Topology [13] proposes Multi-modal Factorized Bi-linear (MFB)
pooling approach. For a video feature v and an audio feature a, the MFB vector
fi is defined as weighted sum of elements in outer products vWia

>, where
the weight matrix Wi is a low-rank bi-linear model. They combine MFB with
different video-level features and explore its effectiveness in video classification.

4.3 Ensembles

Top performers are still taking advantage of ensembling, as listed in Table 4.
However, the number of combined models has dropped from previous year,
with an exception of Samsung team who ensembled 115 (95 video-level and
20 frame-level) models. Most other teams (among those who submitted a paper)
ensembled less than 10 models. On average, top performers take advantage of
ensembels to improve their final performance by ∼ 2.5%. Most teams ensem-
bled different models or same models with different hyper-parameters. Liu et
al. [17] proposed ensembling different checkpoints from the same model with
same hyper-parameters.

4.4 Techniques for a Compact Model

Due to the model size limit, many teams propose ideas to make the model
compact. The most popular approach among participants is knowledge distilla-
tion [10], transferring the generalization ability of a huge teacher model (usually
ensembles of multiple models in this competition) to a relatively simpler stu-
dent network by using prediction from the teacher model as an additional soft
target during training. Team PhoenixLin [16] distills from 3 NeXtVLAD mod-
els. Samsung AI team [2] distills from ensembles of 95 video-level models and 20
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Rank Team Name Best Performance (GAP) # Models in
Single Model Ensembled Ensemble

1 Next top GB model [21] 0.87237 0.88987 15
2 Samsung AI Center Moscow [2] 0.87417 0.88729 115
3 PhoenixLin [16] 0.87846 0.88722 3
4 YT8M-T [23] 0.87030 0.88704 6
5 KANU [12] 0.86078 0.88527 6
7 Liu [17] 0.87440 0.88324 4
17 Axon AI [7] 0.85750 0.87287 7

Table 4. The number of ensembled models by top performers.

frame-level models. The winner, Next top GB model team, designs two-level dis-
tillation on combination of ground truth and predicted labels by teacher models.
Axon AI team [7] also applies similar idea to use convex combination of distilling
ground truth and teacher model.

Another approach that most teams use is quantization. It is known that
full float precision may not be necessary to represent a video [14]. Thus, we
can almost preserve the end-to-end accuracy with using less number of bytes
to represent values. In other words, increasing the number of dimensions with
fewer bytes is more efficient use of space. Most teams use float16 instead of full
precision.

4.5 Other Interesting Ideas

We briefly introduce other interesting approaches proposed by participants.
Some of these approaches have not been proved to be superior than the top
performing models within the competition, but many of these are indeed novel
and worth to explore further.

– Label Correlation: Team KANU [12] proposes conditional inference us-
ing label dependency for multi-label classification. Assuming p(y|x) can be
factorized as

∏q
i=1 fi(x, y<φi), they proposed a stage-wise algorithm to find

positive labels in a greedy manner. Axon AI [7] proposes an additional reg-
ularized term tr(WL−1Ω

−1W>
L−1) to guide related labels to have similar

estimation, where WL−1 is the last layer’s weights. The Ω encodes label
relationship, which is driven from the data as well. Team sogang-mm [20]
studies imbalance of label distribution, splitting the dataset into two, a fine-
grained subset with rare labels and the rest with common labels. They com-
pare training on one and re-training on the other, but conclude that there
is no significant difference.

– Data Augmentation: Dataset augmentation is an effective way to increase
data samples for training, usually by adding noise into existing examples.
Team Axon AI [7] proposes generating virtual training data points by inter-
polating or extrapolating video features from K-nearest neighbors. Training
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with oversampled dataset in this way shows consistent improvement on per-
formance. Samsung AI [2] also uses similar idea, creating virtual training
examples by convex combination of existing ones.

– Reverse Whitening: Team PhoenixLin [16] reports that reversing the
whitening process, which is applied after dimension reduction by PCA of
frame-level features, is beneficial for NeXtVLAD model to generalize better.
They argue that whitening after PCA might distort the feature space by
eliminating different contributions between feature dimensions with regard
to distance measurements, which could be critical for the encoder to find
better anchor points and soft assignments for each input feature.

– Hierarchical Relationship between Frames: Deep Topology [13] rep-
resents a video as a graph with frames as nodes and relationship between
frames as edges, and applies Graph Convolutional Networks on it. Their
graph is constructed in a hierarchical manner, starting from frame-level,
simplified into shot-level, event-level, and final video-level embedding in a
row.

– Circlant Matrix: Given success of model distillation and compression ap-
proaches (Section 4.4), Team Alexandre Araujo [4] poses a question if it is
possible to devise models that are compact by nature while exhibiting the
same generalization properties as large ones. They propose replacing un-
structured weight matrices with structured circulant matrices C ∈ Rn×n,
which can be defined with a single vector of size n, and demonstrate to build
a compact video classification model based on them.

5 Summary

We hosted the First (2017) and Second (2018) YouTube-8M Large-Scale Video
Understanding Kaggle Challenge and Workshop at CVPR’17 and ECCV’18,
respectively. With two runs of this competition, researchers indeed proposed in-
teresting working ideas on architecture, temporal aggregation, ensembling, label
correlation, data augmentation, and more. Most top performers heavily ensem-
bled tens of models to maximize the Global Average Precision, and distilled
it into a smaller model that fits into the size limit (1GB). Some participants
proposed interesting novel ideas to tackle this problem, although they did not
outperform the ensembled models. We will continue to host this challenge and
workshop to advance research in video understanding, possibly with updated
dataset, new features, on diverse metrics or tasks.
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