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ABSTRACT e Over time, people pay less attention to warnings if they

HTTPS error warnings are supposed to alert browser users to net-
work attacks. Unfortunately, a wide range of non-attack circum-
stances trigger hundreds of millions of spurious browser warnings
per month. Spurious warnings frustrate users, hinder the wide-
spread adoption of HTTPS, and undermine trust in browser warn-
ings. We investigate the root causes of HTTPS error warnings in
the field, with the goal of resolving benign errors.

We study a sample of over 300 million errors that Google Chrome
users encountered in the course of normal browsing. After manually
reviewing more than 2,000 error reports, we developed automated
rules to classify the top causes of HTTPS error warnings. We are
able to automatically diagnose the root causes of two-thirds of
error reports. To our surprise, we find that more than half of er-
rors are caused by client-side or network issues instead of server
misconfigurations. Based on these findings, we implemented more
actionable warnings and other browser changes to address client-
side error causes. We further propose solutions for other classes of
root causes.

1 INTRODUCTION

HTTPS certificate error warnings are supposed to protect users
by alerting them to network attacks. Instead, users see hundreds
of millions of warnings per month in the absence of real attacks.
A user might see warnings when she connects her phone to her
office’s network, or when a server administrator forgets to update
a certificate. Spurious HTTPS warnings are problematic because:

o Errors are a poor user experience. They frighten people and
prevent them from completing important tasks.

e Warnings hinder adoption of HTTPS. Developers are frus-
trated when they switch a website to HTTPS and then hear
complaints from customers about errors.
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believe them to be false alarms [28, 30]. We want people to
pay attention for the occasion when it really is an attack.

Despite these problems, we can’t simply get rid of HTTPS error
warnings altogether. HTTPS certificate warnings are foundational
to the security of the web. When an attacker intercepts a connec-
tion, the browser detects the attacker’s invalid certificate chain and
warns the user about it. If the user clicks through the warning, then
the attacker can read and tamper with data on the website.

Browser vendors have tried to improve HTTPS error warnings
with changes to UI and storage policies [15, 16, 29]. Although their
improvements have increased warning adherence, their work is
not done: HTTPS warnings still suffer from the core problem of
false alarms [27]. Yet, the warnings must remain to protect users
under attack. Our goal is to balance both needs: remove spurious
warnings without impinging on legitimate warnings.

To address spurious warnings, we must first understand their
root causes. We investigate the most common causes of certificate
errors in a large-scale dataset of HTTPS error warnings encoun-
tered in the field. Chrome users volunteered to share HTTPS error
reports with us, averaging one million reports per day over one
year. We developed an analysis pipeline that automatically classi-
fies errors by their root cause when possible. Two-thirds of reports
can be automatically classified in this way, and we characterize the
remainder by manually reviewing a sample.

We find that more than half of certificate errors are due to non-
attack network interception or problems with the client. Previous
work focused only on the role of server misconfigurations [9, 12,
14, 18], but we show that client and network health are equally as
important. Further, two types of errors — insufficient intermedi-
ates and incorrect client clocks — are the biggest individual error
causes for Android and Windows clients. These two error classes
are good targets for mitigations that prevent unnecessary warn-
ings. We also find that government websites are disproportionately
responsible for server errors: 65% of the most-visited websites with
warnings are run by governments. The prevalence of errors on
government websites is alarming because it trains users to click
through warnings on important sites such as tax payment portals.

Many of these problems can be mitigated by building more ac-
tionable warnings in the browser or investing in other client-side
engineering solutions. We propose several mitigations and imple-
ment four of them for Google Chrome, an open source browser
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with over two billion active users. Altogether, we expect these four
mitigations to replace about 25% of error warnings.

Contributions. Our primary contributions are:

e We collect and analyze a large-scale, longitudinal dataset of
certificate warnings encountered in the wild. We perform
an in-depth study of each class of error.

e To our knowledge, we are the first to identify and quantify
the significant role that client and network misconfigurations
play in HTTPS error warnings.

e Among misconfigured sites, we characterize the “worst of-
fenders”: the sites that cause the most certificate warnings in
Chrome. This group is dominated by government websites.

o To our knowledge, we are the first to deploy technical mea-
sures to reduce the frequency of spurious HTTPS error warn-
ings. Additionally, we propose and discuss further mitiga-
tions for future work.

2 BACKGROUND

HTTPS protects the integrity and confidentiality of web traffic in
transit, even in the presence of an active network attacker. Historical
network attackers include governments, ISPs, roommates, criminals
on public networks, and others.

When a browser sets up an HTTPS connection with a server, the
browser must check that it’s communicating with the actual server
and not a network attacker. (Without this identity check, a network
attacker could pretend to be the server to capture the decryption
key.) At a high level, this process has three parts:

(1) At some point in the past, the server administrator obtained
a certificate signed by a Certificate Authority (CA).

(2) After setting up a TCP connection, the server provides the
signed certificate to the browser.

(3) The browser attempts to build a chain of trust from the
certificate to a root certificate on the client. The root trust
store on the client contains a set of root certificates from
trusted CAs. The browser also performs other checks, e.g. to
make sure that the certificate has the appropriate hostname
in it and that the certificate is not yet expired. Any failure
means that the browser is unsure of the identity of the server.
This step is called certificate validation.

If everything goes well, the HTTPS page loads. If a certificate
validation check fails, the browser shows an HTTPS error warning
(Figure 1) without loading any of the page content.

TLS proxies slightly complicate this story. A wide range of mid-
dleboxes (e.g., corporate network firewalls and school content fil-
ters) and software (e.g., anti-virus software and debugging tools)
want to intercept HTTPS traffic for various legitimate purposes.
This is accomplished by installing a root certificate from the TLS
proxy vendor into the client’s trust store. The proxy will then issue
new certificates for all of the client’s incoming web traffic, signed
by the proxy’s root certificate. This is a widespread but contentious
practice because TLS proxies can introduce vulnerabilities [10].

A

Your connection is not private

Attackers might be trying to steal your information from expired.badssl.com (for
example, passwords, messages, or credit cards). NET:ERR_CERT_DATE_INVALID

D Automatically report details of possible security incidents to Google. Privacy policy
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Figure 1: An HTTPS warning in Chrome 58. The checkbox
controls whether a certificate error report is uploaded when
the user encounters such a warning,.

3 DATASET

Millions of Google Chrome users volunteer to upload error reports
when they encounter HTTPS or Safe Browsing warnings. Our study
is based on a large-scale sample of these reports.

3.1 Our volunteers

Users volunteer to share certificate error reports by checking a
checkbox on the HTTPS warning page (Figure 1). Once checked,
the setting is remembered in a preference associated with the user’s
Chrome profile. The user can stop participating in the program
from Chrome settings, or by un-checking the checkbox on any
subsequent warning page. The same setting can be toggled by a
similar checkbox on Safe Browsing warnings in Chrome [8].

The size of our dataset (a million reports a day) suggests that
it represents a large swath of browser users. For privacy reasons,
however, we intentionally do not analyze or retain identifying
information to try to characterize our volunteers (discussed further
in Section 3.4).

3.2 Sample dates and size

We enabled the reporting service in Google Chrome 44, which was
released to Chrome’s stable channel in July 2015. We focus most
closely on the data from April 2016 through March 2017, which
we refer to as the Annual Reports sample, containing 361,198,513
reports.1

All Google Chrome release channels (canary, dev, beta, and sta-
ble) [2] upload reports. Most users are on the stable channel, which
enjoys wide deployment. To avoid overwhelming our report pro-
cessing pipeline, stable Chrome sends a given certificate report to
the server with only 20% probability. For analysis purposes, we
restrict our discussion to reports from Chrome’s stable channel,
which we believe to be the most representative.

!Unfortunately, we cannot release the percentage of total Chrome browsing activity
that certificate warnings represent. In prior work, Akwahe et al. found a false warning
rate of 1.54% [9].



3.3 Report contents

Each Chrome certificate error report contains:

e The hostname that the user was trying to access

o The certificate chain that Chrome received from the server

o The certificate chain that the client built while attempting
to validate the certificate

o The user’s local system time at the time the error occurred

e The certificate validation error(s) that Chrome encountered
(for example, the certificate was expired or did not match
the requested hostname)

o Whether Chrome customized the warning page for the par-
ticular type of error or showed a generic HTTPS warning

o Whether the user clicked through the warning to continue
to the site

e The browser’s User-Agent string

e Relevant Chrome field trials, which are Chrome features
enabled on an experimental basis [22]

Notably, each report contains two certificate chains: the chain
presented by the server, and the chain built by the client. They can
differ for a variety of reasons. One common example is that a server
presented a chain to a root certificate that a client doesn’t trust, and
the client tried to build an alternate path to a root that it does trust.

3.4 Privacy

Certificate error reports may contain private information. For ex-
ample, a certificate from an intranet might include the name of the
company’s system administrator or a testing computer’s hostname.
We take several steps to protect and respect our volunteers’ privacy.

3.4.1 No identifiers. The reports are not associated or stored
with any user or client identifiers. If someone uploads multiple
reports, we do not associate the reports with the same user.

3.4.2  Anonymous data retention. We strip all potentially private
data from the reports after they are two weeks old. We remove
all certificate chains that have not been seen publicly by Google-
bot, retaining only a SHA256 hash of the chain. We retain publicly
resolvable hostnames and generic identifiers like “localhost”; other-
wise, we replace hostnames with coarse alternatives like “Intranet
host” and “Intranet IP” We tokenize User-Agent strings and retain
only the major version number (e.g., “58” rather than “58.0.3029.96”),
the locale, the operating system, and the platform.

3.4.3  Protection in transit. The reports are protected in transit
on the network. Because these reports are sent to help investigate
conditions that prevent the user from sending HTTPS requests,
the reports themselves cannot be reliably sent over HTTPS. For
example, if the user’s local system clock is set incorrectly, it may
prevent a report about the condition from being sent to Google over
HTTPS because the connection to Google may appear to be using
an expired certificate. Therefore, Chrome sends reports to an HTTP
URL. The report payload is encrypted with a public key that ships
with Chrome, to prevent a network attacker from eavesdropping
on private information that may appear in the reports.

3.5 Limitations

Field data has inherent limitations, some of which we are able to
mitigate (and some which we cannot). Still, we feel that the large
scale of our dataset and its in situ collection method yield results
with strong ecological and external validity.

3.5.1 Active attacks. An active network attacker could block
reports from being uploaded. The absence of active attacks in our
dataset does not mean that active attacks do not occur. For this
reason, we investigate unintentional misconfigurations, rather than
attempting to uncover active attacks.

3.5.2  Upload failures. In addition to active attacks, various net-
work conditions can prevent reports from being uploaded. If the
upload fails, Chrome does not persist or retry reports.?

3.5.3 Channel identification. We want to restrict our analysis
to the stable channel, which has the most representative user pop-
ulation. Unfortunately, we stripped the full version strings from
historical data (Section 3.4). We therefore use a heuristic to identify
reports from the stable channel: for a given date, we only consider
reports from that date’s stable release or older. (For example, the
stable release on October 1, 2016 was Chrome 53, so for that date
we analyze reports from Chrome 53 or older.) We believe that this
will filter out nearly all reports from non-stable channels, but a few
non-stable reports might remain.

3.5.4 Chromium forks. Our dataset also contains a small num-
ber of reports from other browsers based on the Chromium source
code®. Because we removed User-Agent strings, it is not possible
to remove these from the historical dataset. We throttled Chrome
stable reports to 20%, but other Chromium browsers did not. As a
result, they are over-represented in the dataset relative to reports
from official stable Chrome. By inspecting User-Agent strings from
May 2017 reports that have not yet been anonymized, we believe
that less than 2% of reports come from other Chromium browsers.

3.5.5 Volunteer bias. We receive reports only from people who
choose to participate in the program. It is possible that they are not
representative of all Chrome users. However, the considerable size
of our dataset suggests that it represents a large swath of browser
users.

3.6 Telemetry data

We supplement certificate error reports with a separate dataset of
Chrome telemetry data. Telemetry data includes pseudonymous
counts of browser events. We rely on telemetry data to corroborate
patterns in our main dataset and analyze data that is not included
in the certificate reports.

The telemetry and certificate upload services differ in two im-
portant ways. First, telemetry reports are queued and retried every
five to thirty minutes (depending on the operating system and net-
work type) if an attempt to send them fails. This means that we
will reliably receive telemetry data — but not error reports — from
clients with flaky network connections. Second, telemetry reports

2We recently implemented a retry feature. Since this feature was not present for most
of the data analyzed in this work, we exclude reports sent via retry from the analysis.
3Examples include Iridum Browser (https://iridiumbrowser.de) and Amigo
(https://amigo.mail.ru)



are sent over HTTPS, so we do not receive telemetry data from
clients that are persistently unable to send HTTPS requests.

We occasionally refer to Chrome telemetry data to study events
that are not captured by our main dataset of certificate reports. For
example, certificate reports are not sent in cases where users do
not encounter certificate warnings, so we use telemetry data to
investigate HTTPS-related events that do not trigger certificate
warnings.

4 ERROR DEFINITIONS AND
CLASSIFICATION METHODS

In this section, we define the different types of errors, give back-
ground on their causes, and describe our classification rules.

To initiate the project, a group of browser security experts man-
ually investigated and labeled more than 2,000 reports over several
months. In some cases, the error causes were obvious; in others, it
required research into network appliances and consumer software.
Based on our review experiences, we wrote rules to automatically
classify reports. A daily analysis pipeline parses incoming certifi-
cate error reports and applies our rules. Our goal is to assign blame
(server, network, or client misconfiguration) and a specific root
cause. Each report can contain multiple certificate validation errors,
and we attempt to assign blame and cause for all errors.

4.1 Classifying server errors

A server error occurs when a server presents an invalid or incom-
plete certificate chain. A properly configured client on a properly
configured network should be able to validate a server’s certifi-
cate chain. If it cannot, then we blame the server for the error. An
example is a server that presents a self-signed certificate.

When processing a report, we check to see whether the Google-
bot (Google’s web crawler) has encountered any certificate errors
for that website within the past thirty days. The Googlebot serves
as ground truth: it is a properly configured client on a properly
configured network, and it should be able to validate a server’s
certificate chain. If the Googlebot has seen a matching error for a
website, then we blame the server. Googlebot does not necessarily
crawl every site every day, so we use a thirty day window rather
than a same-day window to increase the chance that the Googlebot
has crawled a particular site within the window.

Note that error reports include the server-supplied chain. Why
don’t we use that instead of the Googlebot? Theoretically, we could
simply check whether the server-supplied chain validates. In prac-
tice, server-supplied chains are unreliable due to TLS proxies. Re-
ports often contain certificates generated and signed by proxies,
and proxies often introduce certificate errors [10]. To avoid mixing
server errors and network errors, we use the Googlebot to tell us
what certificate chain the server was sending around that date. One
potential concern is that the Googlebot might validate certificate
chains differently from clients. To verify our methodological choice,
we sampled 2,296,747 certificate chains from the Googlebot and
re-validated them in Ubuntu and Windows. The three platforms
agreed whether a chain should validate 99.87% of the time.

Beyond placing blame on the server, we further categorize server
errors by the specific type of misconfiguration:

4.1.1  Server date errors. Certificates are only valid within a cer-
tain date range. A server date error occurs when a server uses a
certificate prematurely or past its expiration date. If a client re-
ports that a certificate was not yet valid or expired, then we check
whether the Googlebot encountered the same problem on the re-
ported website in the previous thirty days. If so, we classify the
error as caused by a server date error.

4.1.2  Server name-mismatch errors. Certificates are only valid
for the hostnames listed in the certificate. The hostnames must be
listed precisely or with a wildcard (e.g., *.example.com). A server
name-mismatch error occurs when a server deploys a certificate
without including the website’s hostname or matching wildcard. If
a client reports that a certificate is missing a hostname, we check
whether the Googlebot encountered the same problem on the web-
site in the previous thirty days. If so, we classify the error as caused
by a server name mismatch.

To understand why the error occurred, we further look for
two developer mistakes that can lead to name mismatch errors,
as previously identified by Akhawe et al [9]. We look for two
types of subdomain mismanagement: www mismatch error and
out-of-wildcard-scope subdomain error. A www mismatch error oc-
curs when a client tries to visit example.com but gets a certifi-
cate for www.example.com (or the other way around). An out-of-
wildcard-scope subdomain error occurs when a client tries to visit
a.b.example.com but gets a certificate for *.example.com; this
fails because wildcards only match a single DNS label level.

4.1.3  Server authority-invalid errors. Certificates are only valid
if they chain to a trusted root. A server authority-invalid error occurs
when a server deploys a certificate that does not chain to a trusted
root (for example, a self-signed certificate). If a client reports that a
certificate doesn’t chain to a trusted root, then we check whether the
Googlebot encountered the same problem on the reported website
in the prior thirty days. If so, we classify the error as caused by
a server authority-invalid error. We further identify self-signed
certificates as a sub-category of server authority-invalid errors.

One notable decision relates to how we classify errors caused by
untrusted government-operated roots. Some government websites
use government-operated roots that are not included in standard
root trust stores. Citizens of these countries are expected to install
these roots on their devices, but in practice many people do not.
Should we blame the server for using a non-standard root, or should
we blame clients for not installing the root? We choose to designate
such errors as server errors.

Our classification misses one category of server authority-invalid
errors: errors on intranet websites. The Googlebot cannot reach
intranet websites for classification. Since we cannot differentiate
between server, client, and network errors for intranet websites,
we leave them as unclassified.

4.1.4  Server insufficient-intermediates errors. Servers are sup-
posed to provide enough information for a client to build a full
chain from the leaf certificate to the trusted root certificate. Typi-
cally, servers must provide intermediate certificates between the
leaf and root. A server insufficient-intermediates error occurs when
a client can’t build a valid chain because the server didn’t include
all of the necessary intermediate certificates.



Insufficient intermediate errors are tricky for two reasons. First,
they are context-dependent. If a client happens to have a missing in-
termediate cached (from a previous website), or if the client actively
fetches the missing intermediate, then the chain will appear valid.
Second, they look similar to server authority-invalid errors: in both
cases, the client can’t build a chain to a trusted root. The distinction
is that chains with insufficient intermediates would validate on
most clients if the server provided more information.

If a client reports that a certificate doesn’t chain to a trusted
root, we perform two steps. First, we check whether the Google-
bot encountered the same problem on the reported website in the
prior thirty days. The Googlebot caches intermediates, so websites
with insufficient intermediate errors usually look error-free to the
Googlebot. This first check filters out server authority-invalid er-
rors. If the certificate chain looks valid to the Googlebot, we then
attempt to build a chain using only the certificates that the server
supplied to the Googlebot. If the resulting chain doesn’t validate,
then we classify the error as caused by an insufficient intermediate
error.

This heuristic can have false positives or false negatives:

o A false positive happens if the client has a missing inter-
mediate cached (which would allow the chain to validate),
but something else coincidentally went wrong. The server
really is missing an intermediate but it was not the cause of
the error. In July 2016, we manually reviewed 100 reports
classified as insufficient intermediates and found one false
positive report.

A false negative happens if the server-supplied certificates
chain to a root that the Googlebot trusts but the client does
not. For example, a client might have an older trust store
that does not include a newer root that Googlebot trusts. The
server might send a chain that is recognized by the newer
trust store, but if the server neglects to send a cross-sign
certificate linking the newer root to an older root in the
client’s trust store, then the client will be unable to validate
the chain unless it happens to have the cross-sign certificate
cached. In this case, we will leave the report as unclassified.
We observed 5 false negatives when manually reviewing 100
unclassified reports (Section 9).

We classify insufficient intermediates as a server problem be-
cause servers are supposed to supply intermediates (as per RFC
5246 [11]). However, one could argue that they are a client prob-
lem because clients can dynamically fetch intermediate certificates.
Some web browsers already do this as needed. Was the server mis-
configured because it didn’t send the intermediates, or was the
client misconfigured because it didn’t fetch them? We label insuffi-
cient intermediates as server errors because they violate the HTTPS
specification, but the alternate perspective is also reasonable.

4.1.5 Server SHA-1 errors. Certificates signed with the outdated
SHA-1 hash algorithm are no longer considered secure, and Chrome
has gradually phased out support for SHA-1 over the past few
years [17]. As of Chrome 57, users see certificate errors for any site
with a SHA-1 signature in its certificate chain. We do not include
SHA-1 errors in our automated analysis pipeline or in the bulk
of our analysis because Chrome’s SHA-1 support changed over
the course of our dataset, and the algorithm was not fully blocked

until nearly the end of the period that we studied. However, we
include an analysis of SHA-1 errors on a recent subset of the data
in Section 6.2.5.

4.2 Classifying client errors

A client error occurs when a client cannot validate a certificate chain
from a properly configured server. A properly configured client
would be able to validate the same certificate chain. We identify
the following types of client errors:

4.2.1 Incorrect client clocks. Certificates are only valid within
a certain date range. A client clock error occurs when a client’s
clock is set too far in the future or past, causing certificates to look
as if they are outside of their validity periods. If a certificate date
error was not caused by a server misconfiguration, we next check
whether the reported certificate chain’s dates are valid relative to
our own server’s clock. If it is, then we classify the error as caused
by a client clock error.

4.2.2  Anti-virus errors. Anti-virus (AV) software commonly acts
as a TLS proxy in order to inspect HTTPS browser traffic. An anti-
virus error occurs when a bug in an AV proxy prevents clients
from establishing valid HTTPS connections. During the course of
manual review, we observed several instances of AV errors. When
a certificate report contains the name of a popular AV product
(Avast, Kaspersky, Bitdefender, or Sophos) in the certificate chain,
the pipeline flags the report as an anti-virus report.

We do not use the AV label to automatically assign a root cause.
AV product names appear in many reports that have other error
causes. Each AV bug has had its own distinct signature, which has
prevented us from writing a single rule that captures this error class.
Instead, we monitor the number of AV-related reports. If there is an
upswing, we manually investigate the situation. Several times, these
upswings have turned out to be bugs in AV products (Section 7.2).

4.3 Classifying network errors

A network error occurs when a network appliance intercepts an
HTTPS connection and replaces the certificate chain with one that
the client cannot validate. Our pipeline classifies the following types
of network errors:

4.3.1 Captive portal errors. Airport, hotel, and enterprise net-
works often block access to the Internet until the user has authen-
ticated. Network access points that enforce this requirement are
known as captive portals. A captive portal error occurs when a cap-
tive portal intercepts TCP packets or DNS queries to redirect HTTPS
traffic to the captive portal’s login page. This behavior causes a
name mismatch error because the hostname that the browser re-
quested does not match the certificate presented by the login page.

When a Chrome user encounters a name mismatch error, Chrome
sends a probe request to an endpoint with a known response. If the
response is unexpected (as it would be when redirected to a captive
portal login page), then Chrome prompts the user to log in to the
captive portal. Certificate reports contain a flag to indicate whether
such a prompt was shown.

The pipeline does not classify an error as a captive portal error
solely because the report says that Chrome detected a captive portal.



Reports with at least one non-server error
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Figure 2: Percentage of reports with at least one error caused
by the client or network, broken down by platform.*

We found that the captive portal probe has a high false positive
rate, which we discuss further in Section 8.1.

Instead, the pipeline produces a weekly list of the most common
certificate chains in captive portal error reports. We manually curate
them to maintain an ongoing list of the common captive portal
vendors. Whenever a name mismatch error appears for one of these
known captive portal certificates, the pipeline marks the error as
caused by a captive portal. Unfortunately, the ongoing expansion of
the captive portal list makes it difficult to compare the frequency of
captive portal errors across time because we do not re-label reports
retroactively after new captive portals have been identified.

4.3.2 Missing TLS proxy roots. Enterprises, schools, and other
entities commonly install network middleboxes that intercept TLS
connections. Devices on these networks are expected to have the
middlebox’s root certificate installed, but in practice, this is not
always the case. A missing TLS proxy root error occurs when a
user skips installing the root and tries to visit a website that is
intercepted by the proxy.

When an authority invalid error does not appear to be a server
error, we compare the reported certificate chain against a list of
TLS proxy products. We compiled this list by manually inspecting
a sample of certificate reports. The list includes: Fortigate/Fortinet,
Cyberoam, Cisco Umbrella, Bluecoat, and McAfee Web Gateway. If
the name of any of these vendors appears in the certificate chain,
we classify the error as caused by a missing TLS proxy root.

5 OVERVIEW OF RESULTS

This section provides an overview of our dataset and main findings.
In Sections 6-9, we discuss the most common server, client, and
network errors in more detail.

‘We can automatically classify two-thirds of reports. Our anal-
ysis pipeline assigned at least one root cause to 62.8% of the Annual
Reports sample. The impact of each root cause is shown in Table 1.

Client and network errors play a large role in HTTPS error
warnings. Prior work emphasized the role of developers in HTTPS

errors [9, 12, 14, 18]. However, we find that client and network
problems are at least as influential as server misconfigurations. Of
the reports that we can automatically classify, half are server errors
(31.2% of all reports) and half are client or network errors (31.6%
of all reports). Per a manual review, the unclassified reports are
even more weighted towards non-server errors (Section 9). Figure 2
shows the percentage of all reports with at least one labeled client
or network error, as per the analysis pipeline. Client and network
misconfigurations are more problematic for Chrome users on Win-
dows than on other platforms, primarily due to the prevalence of
misconfigured client clocks on Windows (Section 7.1).

A small number of root causes account for a large amount
of spurious warnings. If the most common root causes could be
addressed, a large chunk of spurious warnings would disappear. For
Windows, client clock errors account for more than 30% of all cer-
tificate warnings. Similarly, on Android, insufficient intermediates
cause more than 35% of certificate warnings. We therefore target
these influential errors when building mitigations (Section 10).

We also find that government websites are disproportionately
responsible for server errors. Fixing this is beyond the scope of our
work, but we urge citizens to voice concerns.

6 SERVER ERRORS

We want to answer two research questions: (1) Are some types
of sites more prone to server errors? (2) Are some types of server
errors more common than others?

To answer these questions, we take a closer look at the reports
that our pipeline labeled as server errors.

6.1 Types of sites with server errors

Government-run websites with server errors are responsible for
a disproportionate number of HTTPS errors. We selected the 100
sites with the most server error reports in the Annual Reports
sample and manually assigned category labels to them. To obtain
this list of sites, we grouped reports by their hostname, and then
took the 100 hostnames with the most reports classified by our
analysis pipeline as caused by a server error. Table 2 shows this top
100 by category. 65% of the “worst offenders” are government-run
websites. They exhibit a range of misconfigurations, ranging from
hostname mismatches to revoked certificates.

During this time period, we reached out to three national gov-
ernments to notify them of the problem. The U.S. government was
responsive and fixed misconfigurations on several dozen sites.

6.2 Types of common server errors

Table 1 shows the frequency of different types of server errors.
Insufficient intermediates are the leading cause of server errors,
and they are primarily seen on Android.

6.2.1 Insufficient intermediates. Insufficient intermediates are a
large problem on Android, where they are responsible for 36% of
HTTPS error reports. This class of error is much less common on
other operating systems. Chrome relies on the operating system for

4The February 2017 dip in non-server errors on Windows is due to a Chrome bug that
was pulled into a Chromium fork at that time. The bug triggered warnings on many
popular websites that were not classified by our pipeline.



Table 1: Percentage of reports with each root cause in the Annual Reports sample. A report can have multiple errors and root
causes. Each cell is the percentage of the total Annual Reports sample that was labeled with the row’s root cause.

Windows Mac OS ChromeOS Android

Server errors

Insufficient intermediates 1.26% 4.80% 0.783% 35.8%
Authority invalid 6.11% 5.54% 3.49% 6.01%
Name mismatch 11.7% 11.6% 7.59 % 9.77%
Date error 4.23% 4.39% 2.80% 2.73%
Client errors

Incorrect system clock 33.5% 8.71% 1.72% 8.46%
Network errors

Captive portal 0.925% 5.46% 4.57% 2.11%
Missing TLS proxy root 6.57% 3.34% 9.13% 1.16%

Table 2: Breakdown of the 100 “worst offenders”: the sites

with server errors that generated the most reports.
Category Number of sites

Government

Education

Email

Malware-associated advertising

Finance

E-commerce

File-sharing

Telecommunications

Other

[o))
o

AW W W U

certificate validation, and Android doesn’t use authorityInfoAccess
(AIA) fetching to dynamically fetch intermediates while verifying
the certificate. Windows, Mac, and Chrome OS do implement AIA
fetching. Sites whose certificates validate in Chrome on other op-
erating systems will fail to validate on Android unless the device
already has the intermediates cached from prior connections to
other websites. This is likely also a problem in Mozilla Firefox,
which doesn’t perform AIA fetching on any operating system.

These misconfigurations fall into two categories:

(1) The server sends only a single leaf certificate.

(2) The server sends some intermediates, but they are the wrong
intermediates or not the full set. For example, the server
might send intermediates that chain to a root that is not
widely trusted, but neglect to send a cross-sign certificate
that chains that root to a more widely trusted root [4].

The first category — a single leaf certificate — dominates. The
server sent only a single certificate in 87.3% of the insufficient
intermediate errors from the Annual Reports sample. This suggests
that the problem is largely caused by server operators that are not
aware that they should serve intermediates along with the leaf, or
don’t know how.

6.2.2 Name mismatch errors. Akhawe et al. previously found
that name mismatches are commonly due to subdomain misman-
agement [9]. We consider two cases that are of interest: www
mismatches and out-of-wildcard-scope subdomains, both of which
are defined in Section 4.1.2. In the Annual Reports sample, 3.7% of

Server date errors (sample of reports from Apr 2016 - Mar 2017)
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Figure 3: CDF of the amount of time by which certificates
are expired. X-axis is log scale.

server name-mismatch errors were www mismatches, and 13.2%
were out-of-wildcard-scope subdomains.

6.2.3 Authority invalid errors. In the Annual Reports sample,
18.3% of server authority-invalid errors (excluding those caused by
insufficient intermediates) were for self-signed certificates.

We also consider the proportion of errors that occur on intranet
hosts. We generally do not classify errors for intranet hosts as
server errors because the Googlebot cannot contact these hosts
to determine whether the server is properly configured. However,
5.3% of all authority invalid errors during this time period were
for intranet hostnames or non-routable IP addresses. We therefore
suspect that intranet hosts with invalid certificates are a common
source of certificate errors, but it is difficult to say for sure because
some of this 5.3% could have been caused by client or network
misconfigurations (e.g., misconfigured corporate middleboxes).

6.2.4  Server date errors. Virtually all server date errors are
caused by expired certificates, rather than certificates that are not
yet valid. Figure 3 shows the distribution of these expired certifi-
cates relative to the time at which a report was received. Notably,
57% of certificate reports were expired by less than 30 days, and
75% by less than 120 days.



Client clock skew (sample of reports from Apr 2016 - Mar 2017)
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Figure 4: CDF of client clock skews for client clocks that are
in the past, from a sample of 100,000 certificate reports. We
only include reports where the client clock was at least 24
hours behind and no more than 3 months behind. X-axis is
log scale.

6.2.5 Server SHA-1 errors. As discussed in Section 4.1.5, our
analysis pipeline does not automatically classify SHA-1 errors be-
cause Chrome did not fully block SHA-1 certificates until near the
end of the Annual Reports time period. We retroactively identified
server SHA-1 errors from the February - March, 2017 subset of the
Annual Reports sample, covering Chrome 56 and 57. Chrome 56
removed SHA-1 support for publicly trusted roots and was released
to the stable channel in late January, 2017. Chrome 57 was released
in mid-March and removed SHA-1 support for all certificate chains,
including locally installed roots. During this time period, server
SHA-1 errors accounted for 9.4% of all certificate reports. By June
2017 (Chrome 59), server SHA-1 errors declined to 2.7% of all re-
ports.

7 CLIENT ERRORS

Various conditions on end-user machines can cause spurious HTTPS
warnings. These misconfigurations can result from seemingly in-
nocuous changes to system settings, or from users installing mal-
ware, debugging tools, and even security products. In this section
we discuss the most problematic client misconfigurations.

7.1 Client clocks

Client clock problems are widespread, particularly on Windows.
Table 1 shows the relative frequency of clock errors.

How far off are client clocks? Nearly all incorrect client clocks
in our dataset are in the near past. In the Annual Reports sample,
the client clock was more than 24 hours behind in 6.7% of reports
and more than 24 hours ahead in 0.05% of reports. Of reports where
the client clock was off by more than 24 hours in either direction,
99.8% were within 3 months of true time. Figure 4 shows the CDF
of the client clock skew from a random sample of 100,000 reports.

Why are clocks so frequently misconfigured? We are unsure.
Users might manually set their clocks incorrectly to get around

software licensing restrictions or to cheat in games. Incorrect sys-
tem clocks are a common complaint associated with malware on
online help forums [5, 25], but the phenomenon of malware inter-
fering with system clocks is not, to our knowledge, well-studied. We
also suspect that some incorrect client clocks are due to hardware
issues like dying CMOS batteries.

Site owners need to manage certificates carefully to avoid break-
age due to client clocks. Figure 2 shows a spike in client-caused
errors on Windows in September 2016. This spike corresponded to a
short-notice rollout of newly issued Google certificates. Certificates
that are used close to their issuance date fall afoul of misconfigured
client clocks more often because the clock is more likely to fall
before the certificate’s validity period begins.

7.2 Anti-virus

Consumer anti-virus products commonly install root certificates
and intercept TLS connections to look for suspicious traffic [6, 26].
Bugs in their TLS interception may cause HTTPS error warnings.
We have observed high-impact instances of these bugs.

Though touted as a security feature, the practice of TLS inter-
ception has numerous downsides from a security perspective:

o TLS interception opens the door for misconfigurations that
cause spurious certificate warnings. Even small logic bugs
can cause HTTPS errors. These bugs and misconfigurations
often have the unfortunate property that they affect every
single HTTPS site that a user visits, even stymying a user’s
ability to search for help.

e When a locally installed root of trust is in use, Chrome dis-
ables various certificate validation and TLS security checks
that cannot reasonably be enforced for local roots, such as
HTTP Public Key Pinning [7]. Most proxies do not imple-
ment these checks themselves, and in many cases do not
perform even basic certificate validation, leaving the user
vulnerable to attack [13, 24].

As one example of a high-impact anti-virus issue, we discovered
a bug in Avast that temporarily caused widespread HTTPS error
warnings. In September 2015, we noticed a large number of reports
for certificate date errors on properly configured sites. The certifi-
cates in the reports chained to expired Avast roots. We estimated
an impact of about 1.5 million certificate warnings per week. The
cause was that Avast’s software was generating a root certificate on
installation using the system clock’s time. If the clock was wrong at
installation time and then later corrected, Avast would continue to
intercept TLS connections with an expired root certificate. This led
Avast users to see HTTPS error warnings on every site they visited.
We reported the bug to Avast and they quickly pushed an update
that fixed the bug by querying a server for an accurate timestamp
to use when generating a root certificate.

Another example is that anti-virus products might generate cer-
tificates that were once valid but are no longer accepted by Chrome,
either because the anti-virus product is out-of-date or because its
maintainers are not keeping up with best practices. For example,
in a manual inspection of unclassified reports (Section 9), we en-
countered anti-virus products that use SHA-1 signatures. SHA-1
signatures are no longer considered valid in Chrome.



8 NETWORK ERRORS

Network errors are an especially interesting and challenging class
of error. HTTPS is designed to prevent network actors from in-
tercepting HTTPS, yet there are several common use cases where
network appliances attempt to do this. Whether this interception
is benign or malicious depends on how much the user trusts the
network appliance owner and his/her intentions.

8.1 Captive portals

Captive portals cause name mismatch errors when users first con-
nect to a network that requires authentication. We find that captive
portals are one of the smaller error causes, but we are likely under-
counting them because they are difficult to automatically identify.

On some operating systems, Chrome uses a standard captive
portal detection technique of sending network probes. These op-
erating systems are Windows 7 and below, Mac OS, Chrome OS,
and Linux. On other OSes, Chrome relies on the system’s captive
portal detection to detect the portal and prompt the user to log in.
We find that Chrome’s technique suffers from both false positives
and false negatives:

o A false positive occurs when Chrome’s probe request de-
tects a captive portal but there was no captive portal. We
manually reviewed 100 reports from May 2017 and found 34
false positives. We attribute most of them to home routers
and enterprise middleboxes, which interfere with the probe
request despite not being traditional captive portals.

o A false negative occurs when Chrome’s probe request fails to
detect a captive portal. Of the captive portal errors caught by
our human-curated rules (described in Section 4.3.1), 30.1%
were not identified by Chrome. We attribute the high false
negative rate to slow captive portals. According to Chrome
telemetry, only 54% of captive portal probe requests respond
within 3 seconds, which is the maximum amount of time
that Chrome will wait for a probe to respond before drawing
error UL Moreover, a preliminary survey of captive portals in
Japan suggest that some portals intentionally evade detection
for unknown reasons [20].

Our findings show that using network probes to detect captive
portals is difficult and unreliable. In addition, we believe that we are
missing error reports from many captive portals. A captive portal
typically blocks reports from being sent until the user has logged
in to the portal. Since Chrome did not retry failed report uploads
until very recently, we do not expect to receive reports that were
blocked by captive portals. We only receive such reports when the
portal does not block the upload for some reason, or when the
user authenticates with the portal before the certificate warning
is dismissed. Therefore, we suspect that the fraction of certificate
errors caused by captive portals, as shown in Table 1, significantly
undercounts the problems that they cause.

Of the captive portal reports that we do receive, interestingly, a
large number of them share the same few certificate chains from a
handful of captive portal vendors, as shown in Table 3. This gives
some hope that if a small number of vendors adopted better cap-
tive portal implementations that did not cause spurious certificate
warnings, the problem could be significantly alleviated.

Table 3: The top five most common captive portal vendors
in certificate reports from Sept 13 - Oct 10 2016.

Captive portal vendor Percent of all reports

Aruba Networks 0.95%
Orange France 0.14%
AlwaysOn 0.12%
GlobalSuite 0.09%
AccessNetwork.ru 0.09%

8.2 TLS proxying

Enterprises, schools, and even home networks often have middle-
boxes that intercept TLS connections using their own root certifi-
cates, which are intended to be installed on devices on the network.
These middleboxes introduce many of the same security problems
that consumer anti-virus introduces. As discussed in Section 7.2,
TLS proxies on both the client and the network override Chrome’s
security checks and can introduce bugs that cause error warnings.

We find that missing roots for network middleboxes are a wide-
spread problem. Our pipeline classifies such errors by looking for
several popular middlebox product names in the certificate chain
(as described in Section 4.3.2). Table 1 shows the relative frequency
of this error class. Our classification is conservative; when we re-
viewed unclassified reports (Section 9), we found that many are
due to other TLS proxy products not covered by our rules.

Missing root certificates cause the vast majority of certificate
errors that users of these products encounter. For each of these
products, more than 80% of certificate errors chaining to the prod-
uct’s certificate were caused by a missing root. When a user of one
of these products sees a certificate error, it is very likely to be due
to a missing root rather than any other cause.

In addition to missing roots, we observe by manual review that
TLS proxies introduce spurious certificate warnings by means of
other misconfigurations as well. For example, some middleboxes
use SHA-1 signatures, which Chrome no longer accepts as valid.

9 UNCLASSIFIED ERRORS

Our analysis pipeline does not automatically assign a root cause for
37% of reports. To characterize the unclassified reports, we manually
reviewed a random sample of 100 unclassified reports from May
2017. (We reviewed recent reports that had not yet been stripped of
details, since otherwise it would be difficult to investigate the cause
of a report.) Table 4 shows the results. When the pipeline does not
automatically assign a root cause, it is often because the report is
for a site about which Googlebot has no data (e.g. an intranet site)
or because the error was caused by a TLS proxy or captive portal
that our pipeline does not look for. As described in Section 4.1.5,
our pipeline does not yet attempt to assign root cause for certificate
warnings that are due to SHA-1 signatures, because Chrome had
not yet fully removed SHA-1 support during most of our dataset.

Our manual analysis revealed more client and network mis-
configurations than server misconfigurations. We anticipated this
finding because our automatic analysis shows an even breakdown
between client/network and server misconfigurations, but with a
known under-count of captive portal errors.



Table 4: Manually assigned root causes from a random sam-

ple of 100 reports in May 2017 for which our analysis

pipeline did not automatically assign a root cause.
Error cause from manual inspection Count

Server errors

Server certificate uses weak signature algorithm 10

Server certificate has a name mismatch 9
Insufficient intermediates 5
Government root certificate that isn’t widely trusted 5
Intranet IP without valid cert 4
Server certificate chains to distrusted root 2
Server certificate has multiple errors 2
Total 37
Network errors

Captive portal 22
Corporate middlebox 8
School middlebox 7
Misconfigured home router 4
Other middlebox 3
Total 44
Client errors

Old or corrupted root store 2
Ad blocker or anti-virus using weak signatures 2
Expired anti-virus root 1
Local server 1
Incorrect clock 1
Total 7
Unknown 12

10 MITIGATIONS

Our ultimate goal is to stop showing unnecessary HTTPS error
warnings. In this section, we propose, discuss, and evaluate mitiga-
tions for many of the misconfigurations that cause Chrome users
to see unnecessary warnings. We expect that these mitigations will
or have already replaced about 25% of certificate errors in Chrome.

When possible, we would like to avoid showing any error Ul at
all. Ideally, browsers would be able to automatically correct or work
around the misconfiguration in a way that is invisible to the end user.
When that isn’t possible, we aim to replace certificate warnings with
actionable, non-scary explanations of the error. These explanations
should pinpoint the cause of the error and prompt the user to fix it.
Both approaches require caution because attackers can make their
attacks look like misconfigurations. We therefore must ensure that
our mitigations are not advantageous to attackers.

10.1 Stopping client clock errors

We tackled client clock errors by implementing a special warning to
show when the user’s clock is wrong (Figure 5). To prevent attackers
from leveraging this less-scary UI, users cannot click through -
they have to fix their clocks to get to the site. We built this warning
by using a heuristic based on the build time to guess when the
clock is wrong. We then used our dataset of certificate reports to
investigate the effectiveness of the heuristic. Since its performance

Your clock is ahead

A private connection to example.com can't be established because your computer's
date and time (Sunday, May 14, 2017 at 9:20:56 PM) are incorrect.
NET:ERR_CERT_DATE_INVALID

Automatically report details of possible security incidents to Google. Privacy policy

Update date and time

ADVANCED

Figure 5: The UI that Chrome shows when it detects that a
certificate error is caused by a client clock error.

was not satisfactory, we built and evaluated a replacement secure
time service.

10.1.1  Build time heuristic. Chrome’s build time heuristic com-
pares the current system time to the binary build time. If the system
time is either one year behind the build timestamp or more than
two days ahead of it, then Chrome will show the clock warning
when it encounters a certificate date error.

We find that the build time heuristic has many false negatives.
We are able to evaluate it post hoc by looking at the client time in
the reports. From April 30 to May 13, 2017, the heuristic only de-
tected 68% of certificate errors that were caused by incorrect client
clocks. For the remainder, Chrome showed the generic certificate
warning. This suggested to us that we needed to improve client
clock detection beyond the build time heuristic.

When the heuristic is able to identify a client clock error, the
UI (Figure 5) proves helpful. In 53% of reports associated with this
UL the user changed their clock (by at least 6 hours) before the
warning was dismissed. This compares to 3.9% of the time when
Chrome showed a generic certificate warning for client clock errors.
We interpret this to mean that actionable errors are, in fact, more
helpful than generic security warnings.

10.1.2  Secure time. To improve client clock error detection, we
implemented a secure time service that Chrome queries when it
encounters a certificate date error. Upon encountering a certificate
with invalid dates, Chrome queries an update server for the current
time (an HTTP URL, with the response signed by the private key
corresponding to a public key baked into Chrome), and delays
showing a warning for up to three seconds. If the query returns
within three seconds and indicates a timestamp that is significantly
skewed from the local system clock, then Chrome shows the clock
warning from Figure 5.

An analysis of certificate reports from an experimental launch
shows that the secure time service improves detection of client clock
errors to 96%, with 93% of queries to the time service completing in
under three seconds. (Even if a query does not complete within three
seconds, the result — once eventually received — will be cached
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Figure 6: The warning that Chrome shows when it detects
that a certificate error is caused by a captive portal.

for use if subsequent certificate date errors are encountered.) The
secure time feature launched to Chrome stable in May 2017.

10.1.3  Future work. We would ultimately like to invisibly cor-
rect client clock errors. To do this, Chrome would need to use the
timestamp fetched from the secure time service for all certificate
validations. This would stop the errors without needing any error
UL However, the challenges in doing so are twofold:

(1) Chrome relies on the platform’s certificate validation library.
On some platforms, it is not possible to provide a time other
than the system time as input to certificate validation. Using
a timestamp from the secure time service would require
Chrome to implement its own certificate validation.

(2) Even though Chrome could invisibly correct the misconfigu-
ration by using the timestamp fetched from the secure time
service for certificate validation, it might still be desirable
to alert the user to the problem so that they can fix the sys-
tem clock. Other applications on the user’s device might
be functioning incorrectly because of the incorrect system
time. We might want to devise some way to prompt the user
to fix their system clock without interrupting their normal
browsing as the clock error UI currently does.

Another area of future work is to reduce trust in Chrome’s update
server. Instead of using an update server as the secure time service,
Chrome could implement a protocol such as Roughtime [3] for
secure decentralized time synchronization.

10.2 Captive portal detection

Chrome sends network probes to attempt to detect captive portals.
If a captive portal is detected, Chrome displays a special captive
portal error UI (as shown in Figure 6) instead of a security warning.
We consider this actionable message to be a significantly better user
experience than showing the generic certificate warning. However,
we found that the probe request has high false positive and false
negative rates (Section 8.1).

Industry standards groups are working on improved solutions
for captive portal discovery [1], but these solutions will take time
to develop and roll out. In the meantime, we implemented two
improvements to Chrome’s captive portal logic:

10.2.1 Shipping known captive portals. Our analysis pipeline
produces a list of candidate captive portal certificates, which we
manually curate each week to produce a list of known captive
portals (Section 8.1). By shipping this list in Chrome and using it to
supplement captive portal detection, we would nearly double the
detection rate of certificate errors caused by captive portals. We
implemented this by putting the captive portal list in a dynamically
updateable Chrome component, so that additions to the list can
be shipped to clients on an ongoing basis (without being tied to
the release cycle). We launched this feature as an experiment on
Chrome’s canary and dev channels. Telemetry from this experiment
shows that 3.8% of name mismatch errors match a captive portal
certificate on the list, and we plan to expand the experiment.

10.2.2  Certificate report retry. We would like to retry report up-
loads, similar to Chrome’s telemetry system, to get better visibility
into captive portals. Retrying would allow us to receive reports
caused by captive portals even if the captive portal prevents them
from being sent until after the user authenticates with the portal.

We implemented report retries using the same logic that Chrome’s
telemetry system uses, though we maintain reports in memory
only and do not persist them to disk. The implementation is not yet
widely deployed enough to report results, but we hope to gain a
more accurate picture of certificate errors caused by captive portals.
It should also help us expand our list of known captive portals.

10.3 AIA fetching on Android

Insufficient intermediates are a large problem on Chrome for An-
droid, accounting for 36% of all certificate warnings on Android.
This happens because the platform does not fetch intermediates as
other platforms do during certificate validation.

To work around this, we implemented AIA fetching in Chrome
for Android. When the platform certificate verifier returns an au-
thority invalid error, Chrome looks at the last certificate for which
there is no issuer in the server-sent chain. If this certificate has
an AIA URL, Chrome fetches it and again attempts a platform cer-
tificate verification. If it again fails, Chrome repeats the process,
until a valid certificate chain has been found or until exhausting a
maximum number of fetches.

AJA fetching is implemented in Chrome 58. Since this feature
launched, the percentage of certificate errors caused by missing
intermediates on Android has steadily declined to 3.0% as of August
2017. The remaining errors are likely due to network flakiness,
which could potentially be improved by retrying failed AIA fetches.

10.3.1  Future work. If the Android certificate verifier directly
supported AIA fetching, then it would likely be more performant
than implementing it in Chrome. Android support for AIA fetching
would also benefit other Android applications besides Chrome.
However, Android update cycles are much slower than Chrome’s,
so Chrome on Android is likely to need to support AIA fetching
for the foreseeable future.

10.4 Redirecting for related name mismatches

Name mismatch errors account for a notable fraction of errors. We
would like for the browser to handle this class of error automatically.
The core idea is to redirect the user to the domain with a valid



certificate, if (a) the redirection is safe and (b) we think that is likely
where the user wants to go. We must be cautious with redirections
because different subdomains can be controlled by different people.

We decided to start with “www mismatch” errors, which are
responsible for a small percentage of certificate name mismatches
(Section 6.2.2). We felt that the risk was low given some browser
display logic already assumes that the www subdomain and TLD
are operated by the same party. When Chrome encounters a name
mismatch error for www. example. com, it issues a background re-
quest to example. com (or the other way around). If the background
request responds within three seconds with an HTTP 200 status
code, then Chrome redirects the user there. We also place a message
in the developer console to alert the site owner to the misconfigu-
ration.

Chrome telemetry data shows that this redirection occurs for
1.8% of all name mismatch errors. A www mismatch is found but
the redirect URL is not available for 0.28% of name mismatch errors.
Although 1.8% is small, we consider this a success. We are consider-
ing expanding the redirection to include other sets of subdomains,
such as redirecting m. example. com to example. com.

10.5 Future mitigations

To continue tackling causes of spurious certificate warnings, we
are planning to explore several mitigations and research directions.

10.5.1  Government roots. Our manual classification (Section 9)
finds that servers commonly use government root certificates that
are not widely trusted by clients. When Chrome encounters an
authority invalid error for a certificate that chains to a known
government root, the warning UI could direct the user to a webpage
that explains what the government root is and how to install it.

The primary challenge in implementing this mitigation is the
messaging and UX. Installing a government root certificate can be
risky for some users — for example, if they don’t trust the govern-
ment in question, or if the government does not operate its root
in accordance with industry standards. Chrome should provide
information about how to fix the error without encouraging users
to install a root that they might not fully trust.

10.5.2 TLS proxy roots. In Section 8.2, we noted that a signifi-
cant fraction of errors are caused by a small number of TLS proxy
products. Chrome could look for these product names in the issuer
strings of certificates that generate errors. However, it is unclear
what Chrome should do if it detects that an error is possibly due to
a missing TLS proxy root. One option would be to prompt the user
to contact a network administrator.

10.5.3  Outreach for misconfigured servers. Prior work has inves-
tigated the effectiveness of notifying site owners about web server
hijacking [21]. Similar studies could be undertaken for HTTPS
misconfigurations. For example:

o Are site owners more likely to correct misconfigurations if
they receive email messages about them, rather than just
browser warnings?

o Are email messages more effective if they contain an estimate
of the number of warnings Chrome has shown for the site?

o Are email messages more effective if they include instruc-
tions about how to fix the misconfiguration?

11 RELATED WORK

In this section, we survey other studies of HTTPS errors and mis-
configurations and compare them to our work.

11.1 Studies of HTTPS errors

Our dataset differs from prior work because it includes non-server
errors and a global perspective; further, we deploy solutions.

11.1.1  Warnings in the field. Akhawe et al. were the first to
study the causes of HTTPS warnings in the field [9]. They moni-
tored network traffic from the egress points of ten U.S. research,
government, and university networks. Their study had a popula-
tion of 300,000 users over a nine-month period. They identified
self-signed certificates, expired certificates, name mismatches re-
lated to subdomains, and incomplete chains as causes of TLS errors.

These prior findings did not encompass our experience working
in support forums, where people commonly report issues due to
client misconfigurations and network interference. We were there-
fore concerned that the study’s results were only part of the picture,
due to several limitations:

e They had to emulate browser behavior, which does not nec-
essarily represent the user experience. Client-side problems
are not captured using their method. Further, they couldn’t
handle connections with the SNI extension, which eliminated
38% of the HTTPS connections that they saw.

o Their observed population isn’t representative. All of the
monitored users were highly educated and in the U.S., likely
using high-end devices. Other populations visit different web
pages on different devices.

o Their observed networks aren’t representative. They studied
well-behaved, well-managed networks with relationships to
their research institution. These networks lack the content
filters, broken firewalls, and other types of proxies that one
might expect to see on messier networks.

Inspired by this research, we performed a similar study from a
more advantageous vantage point: a popular web browser. Our
data comes from a global population, connecting over many types
of networks. The reports include browser data, so that we know
exactly what the end user saw in the warning. Some of our find-
ings coincided (e.g., the importance of incomplete chains) but, as
expected, we found substantially more problems due to client and
network misconfigurations. Additionally, we implemented mitiga-
tions for several of the problems that we identified.

11.1.2  Network scans. One way to learn about HTTPS errors
is to scan large sets of servers, looking for misconfigurations that
cause errors. Holz et al. repeatedly scanned the Alexa Top Million
in 2011, finding that 18% of server certificates are expired and about
a third are self-signed [18]. In 2013, Durumeric et al. performed
110 Internet-wide scans over fourteen months, reporting that 6%
of certificate chains are expired, and 6.4% have missing or wrong
intermediates [12].

We find a different ratio of error causes, likely due to our differ-
ent perspectives. Server scans weigh all servers equally, which is
appropriate if one is trying to understand the types of errors that
developers make (as these previous studies were). However, we are
concerned with the user experience, in which some sites are viewed



much more often than others. Further, server scans naturally do
not include network and client problems.

11.1.3  Developer motivations. Why do server misconfigurations
happen? Given browser warnings, it is surprising that web devel-
opers allow server misconfigurations to occur and linger. Fahl et al.
surveyed 755 web developers about why they have certificate errors
on their websites [14]. A third of developers said they had made a
mistake, but two-thirds intentionally deployed non-validating cer-
tificates. Their reasons included: testing and development servers
don’t need HTTPS, the cost of certificates, lack of trust in Certificate
Authorities, the URL wasn’t meant to be accessed by end users, and
the site was no longer operational.

11.2 Studies of TLS proxies

According to two studies, TLS proxies are widespread. Approx-
imately 0.2% of TLS connections to Facebook are transparently
proxied [19], and a broader study found that 0.41% of TLS con-
nections in general were proxied [23]. They identified anti-virus
software, firewalls, malware, parental controls, and enterprise filters
as common types of proxies. We looked for these types of proxies
and find that they are also major sources of errors.

Our research question is essentially the complement of these
studies. They investigated how often TLS connections are silently
intercepted, whereas we aim to identify the causes of user-visible
warnings. Their methodologies excluded most TLS connections
with warnings because users had to visit the target websites for their
analysis code to run. Modern browsers disallow clicking through
warnings on facebook.com due to HSTS, thereby excluding those
connections from the Facebook dataset. The broader study likely
included some connections with warnings, but high warning ad-
herence rates (e.g., 70% for Chrome [29]) mean that most would be
filtered from their dataset. Further, neither study included websites
with server misconfigurations. In contrast, our dataset represents
the full spectrum of failed TLS connections.

12 CONCLUSION

In an attack scenario, it is critical that users heed HTTPS certificate
error warnings. Large numbers of false alarms make it less likely
that they will do so [28, 30]. Spurious warnings also create a poor
user experience and hinder HTTPS adoption.

In this paper we have shown that client and network misconfigu-
rations are prominent culprits for spurious certificate warnings. We
assigned root causes to certificate reports collected from volunteer
Chrome users, and we investigated the small number of root causes
- such as incorrect client clocks and insufficient intermediates -
which account for vast numbers of warnings. Finally, we proposed,
implemented, and evaluated mitigations for the common causes
of spurious certificate warnings, replacing about 25% of them in
total. Our findings and mitigations are applicable to other browser
vendors as well as other types of TLS clients, all of which may be
susceptible to client and network misconfigurations that interfere
with certificate validations.
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