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Over the past few years, deep neural networks (DNNs) have achieved tremendous success and have been
continuously applied in many application domains. However, during the practical deployment in industrial
tasks, DNNs are found to be erroneous-prone due to various reasons such as overfitting, and lacking of
robustness to real-world corruptions during practical usage. To address these challenges, many recent attempts
have been made to repair DNNs for version updates under practical operational contexts by updating weights
(i.e., network parameters) through retraining, fine-tuning, or direct weight fixing at a neural level. Nevertheless,
existing solutions often neglect the effects of neural network architecture and weight relationships across
neurons and layers. In this work, as the first attempt, we initiate to repair DNNs by jointly optimizing the
architecture and weights at a higher (i.e., block) level.

We first perform empirical studies to investigate the limitation of whole network-level and layer-level
repairing, which motivates us to explore a novel repairing direction for DNN repair at the block level. To this
end, we need to further consider techniques to address two key technical challenges, i.e., block localization,
where we should localize the targeted block that we need to fix; and how to perform joint architecture and weight
repairing. Specifically, we first propose adversarial-aware spectrum analysis for vulnerable block localization
that considers the neurons’ status and weights’ gradients in blocks during the forward and backward processes,
which enables more accurate candidate block localization for repairing even under a few examples. Then, we
further propose the architecture-oriented search-based repairing that relaxes the targeted block to a continuous
repairing search space at higher deep feature levels. By jointly optimizing the architecture and weights in that
space, we can identify a much better block architecture. We implement our proposed repairing techniques as a
tool, named ArchRepair, and conduct extensive experiments to validate the proposed method. The results show
that our method can not only repair but also enhance accuracy & robustness, outperforming the state-of-the-art
DNN repair techniques.
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1 INTRODUCTION

Modern high-capacity deep neural networks (DNNs) have achieved astounding performance in
many automated computer vision tasks ranging from complex scene understanding for autonomous
driving [5, 8, 35, 38, 48, 62], to accurate DeepFake media detection [11, 29]; from challenging medical
imagery grading and diagnosis [7, 14, 58, 67], to billion-scale consumer applications such as the
face authentication for mobile payment, etc. Many of the tasks are safety- and mission-critical
and the reliability of the deployed DNNs is of utmost importance. However, over the years, we
have come to realize that the existence of unintentional (natural degradation corruptions) and
intentional (adversarial perturbations) examples such as [6, 7, 15-17, 20-22, 27, 36, 58, 59, 63, 69] is
a stark reminder that DNNs are vulnerable.

To tackle the DNN’s vulnerability issues, many researchers have resorted to DNN repairing
that aims at fixing the faulty DNN weights with the guidance of some specific repairing optimiza-
tion criteria. An analogy to this is the traditional software repairing in the software engineering
literature [19]. However, general-purpose DNN repairing may not always be feasible in practice,
due to (1) the difficulty of generalizing DNNs to any arbitrary unseen scenarios, and (2) the diffi-
culty of generalizing DNNs to seen scenarios but with unpredictable, volatile, and ever-changing
deployed environment. For these reasons, a more practical DNN repairing strategy is to work
under some assumptions of practical contexts and to perform task-specific and environment-aware
DNN repairing where the model gap is closed up for a certain scenario/environment, or a set of
scenarios/environments.

Compared to existing DNN repair work (e.g., [18, 43, 50, 55, 68, 70]), this work takes the DNN
repairing to a whole new level, quite literally, where we are performing block-level architecture-
oriented repairing as opposed to network-level, layer-level, and neuron-level repairing. As we
will show in the following sections that block-level repairing, being a midpoint sweet spot in
terms of network module granularity, offers a good trade-off between network accuracy and time
consumption for that just repairing some specific weights in a layer neglects the relationship
between different layers while repairing the whole network weights leads to high cost. In addi-
tion, block-level repairing allows us to locally adjust not only the weights but also the network
architecture within the block very effectively and efficiently.

To this end, as the first attempt, we repair DNNs by jointly optimizing the architecture and weights
at the block level in this work. The modern block structure stems from the philosophy of VGG nets
[53] and is generalized to a common designing strategy in the state-of-the-art architectures [24]
(e.g., ResNet) and optimization method [37]. To validate its importance for block-level repairing, we
first study the drawbacks of network-level and layer-level repairing, which motivates us to explore
a novel research granularity and repairing direction. Eventually, we identified that block-level
architecture-oriented DNN repair is a promising direction. In order to achieve this, we need to
address two challenges, i.e., block localization and joint architecture and weight repairing. For the
first challenge, we propose the adversarial-aware spectrum analysis for vulnerable block localization
that considers the neuron suspiciousness and weights’ gradients in blocks during the forward
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and backward processes when evaluating a series of examples. This method enables more precise
block localization even under few-shot examples. In terms of the second challenge, we propose the
architecture-oriented search-based repairing that relaxes the targeted block to a continuous search
space. The space consists of several nodes and edges where the node represents deep features and
the edge is an operation to connect two nodes. By jointly optimizing the architecture and weights
in that space, our method is able to find a much better block architecture for a specific repairing
target. We conduct extensive experiments to validate the proposed repairing method and find that
our method can not only enhance the accuracy but also the robustness across various corruptions.
The different DNN models repaired with our technique perform better than the original one on
both clean and corrupted data, with an average 3.939% improvement on clean data and 7.79%
improvement on corrupted data, establishing vigorous general repairing capability on most of the
DNN architectures.
Overall, the key contribution of this paper is summarized as follows:

e We propose block-level architecture-oriented repairing for DNN repair. The intuition of
block structure design in modern DNNs provides a suitable granularity of DNN repair at the
block-level [24]. In addition, we also show that jointly optimizing architecture and weights
further brings the advantage of DNN repair over repairing DNN by only updating weights,
which is demonstrated by our comparative evaluation in the experimental section.

o In terms of the novelty and potential impacts, existing DNN repair methods [13, 18, 43, 50, 55,
70] mostly focus on only repairing DNN via updating its weights while ignoring inherent
DNN architecture design (e.g., block structure and relationships between different layers),
which could also impact the DNN behavior, whereas only repairing the weights could not
address such an issue. Therefore, compared with existing work, this paper initiates a new
and wide direction for DNN repair by taking relationships of DNN architecture design as
well as layers and weights into consideration.

e Technically, we originally propose the adversarial-aware spectrum analysis-based block
localization and architecture-oriented search-based repairing method, both of which are
novel for DNN repair. The first one enables us to localize a vulnerable block accurately
even with only a few examples. The latter formulates the repairing problem as the joint
optimization of both the architecture and weights at the block level.

e We implement our repairing techniques in the tool ArchRepair and perform extensive evalu-
ation against 6 state-of-the-art DNN repair techniques under 4 DNNs with different archi-
tectures on two different datasets. The results demonstrate the advantage of ArchRepair in
achieving SOTA repairing performance in terms of both accuracy and robustness.

To the best of our knowledge, this is the very first attempt to consider the DNN repairing problem
at the block level that repairs both network weights and architecture jointly. The results of this
paper demonstrate the limitation of repairing DNN by only updating the weights, and show that
other important DNN development elements such as architecture that encodes more advanced
relationships of neurons and layers should also be taken into consideration during the design of
DNN repair techniques.

2 DNN REPAIRING AND MOTIVATION

In this section, we review existing repairing methods in DNN and motivate our method. In Sec. 2.1,
we thoroughly analyze previous DNN repair techniques from the viewpoint of different repairing
targets, e.g., the parameters (i.e., weights) of the whole network, layers, or neurons. To this end, we
formulate the core mechanism and compare the strengths and weaknesses of existing repairing
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techniques, which inspires and motivates us to develop the block-level repairing method. To validate
our motivation, we perform a preliminary study in Sec. 2.2.

2.1 DNN Repairing Techniques

In the standard training process, given a training dataset, we can train a DNN denoted as ¢y )
where A represents the network architecture related parameters determining what operations (e.g.,
convolution layer, pooling layer, etc.) are used in the architecture, and ‘W is the respective weights
(i.e., parameters of different operations). Generally, the architecture A is pre-defined and fixed
during the training and testing processes. The variable ‘W consists of weights for different layers.

Although existing DNNs (e.g., ResNet [24]) have achieved significantly high accuracy on popular
datasets, incorrect behaviors are always found in these models when we deploy them in the real
world or test them on challenging datasets. There are a series of works that study how to repair
these DNNs to be generalizable to misclassified examples, challenging corruptions, or bias errors
[50, 55, 60, 68]. In general, we can formulate the existing repairing methods as

W* = Locator(¢(w, a), D"P*) 1)
W* = arg min J(¢(w-,z), D™P*) )
(W*

where W* is a subset of ‘W and “W* is the fixed counterpart of ‘W*. The dataset D™PA’ contains
the examples for repairing guidance. Different works may set different D™P3* according to the
repairing scenarios. For example, Yu et al. [68] sets D P a5 the combination of the augmented
training dataset. We will show that our method can address different repairing scenarios. Intuitively,
Eq. (1) is to find the weights we need to fix in the DNN, and Eq. (2) with a task-related objective
function J(-) is to fix the selected weights ‘W* and produce a new one W,

The above formulation can represent a series of existing repairing methods. For example, when
we try to fix all weights of a DNN (i.e., W* = ‘W) and set the objective function J(-) as the
task-related loss function (e.g., cross-entropy function for image classification) with different data
augmentation techniques on collected failure cases as D™P3 to retrain the weights, we actually get
the methods proposed by [50] and [68]. In addition, when we employ the gradient loss of weights
and forward impact to localize the targeted weights and use a fitness function to fix localized
weights, the formulation becomes the method [55].

Nevertheless, with the general formulation in Eq. (1) and Eq. (2), we can see that existing repairing
methods have the following limitations:

o Existing works only fix the targeted DNN either at the network-level (i.e., fixing all weights
of the DNN) or at the neuron-level (i.e., only fixing partial weights of the DNN), and ignore
the effects of the architecture A.

e Only repairing some specific weights in a layer could easily neglect the relationship between
different layers while repairing the whole network’s weights leads to high costs.

Note that, the state-of-the-art DNNs (e.g., ResNet [24]) are often made up of several blocks where
each block is built with stacked convolutional and activation layers. Such block-like architecture is
mainly inspired by the philosophy of VGG nets [53] and its effectiveness has been demonstrated
in wide applications. Therefore in this work, we focus on DNN repairing at the block level. In
particular, we consider both the architecture and weights repairing of a specific block.

2.2 Empirical Study and Motivation

First, we perform a preliminary experiment to discuss the effectiveness of the repairing methods at
different levels. In this experiment, we choose 3 variants of ResNet [24] (specifically, ResNet-18,
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Table 1. Accuracy (%) and execution time (s/100 epochs) of applying repairing method at different levels on 3
different DNNs trained and tested on CIFAR-10 and Tiny-ImageNet datasets.

Scale ResNet-18 ResNet-50 ResNet-101

Accuracy (%) Execution Time | Accuracy (%) Execution Time | Accuracy (%) Execution Time

- Original 85.00 - 85.17 - 85.31 -
7 | Neuron-level 85.18 650.49 85.23 4054.29 85.39 6853.47
E Layer-level 85.16 590.47 85.24 4159.93 85.41 4956.81
O | Block-level 85.19 760.94 85.24 3976.39 85.47 7118.03
Network-level 85.73 1456.92 84.80 5735.61 87.43 9889.35

% Original 45.15 - 46.26 - 46.14 -
¢, | Neuron-level 45.23 1847.59 46.17 13074.85 46.14 20395.79
g Layer-level 45.23 1854.37 46.24 12796.91 46.15 18497.53
1 Block-level 45.30 2011.84 46.27 13452.17 46.22 24774.15
E Network-level 45.52 2574.81 46.41 17495.88 46.55 32908.43

ResNet-50, and ResNet-101) as the targeted DNNs ¢, and we select CIFAR-10 and Tiny-ImageNet
dataset as the experimental environment. We repair the DNN at four levels, i.e., Neuron-level
(i.e., only fixing weights of one neuron ), Layer-level (i.e., only fixing the weights of one layer),
Block-level (i.e., fixing the weights of a block) and the Network-level (i.e., fixing all weights of
the DNN). Inspired by recent work [55], we choose the neuron (or layer/block) with the greatest
gradient (mean gradient for layer and block) as our target to fix. Note that as the previous works
have shown that repairing DNN with only a few failure cases is meaningful and important [50, 68],
we only randomly select 100 failure cases from the testing dataset to calculate the gradients and
choose such neuron (or layer/block). Then, we adjust the weights of the chosen neuron/layer/block
by gradient descent w.r.t. the loss function (e.g., cross-entropy loss for image classification). To
compare their effectiveness, we apply all methods on the same training dataset of CIFAR-10 and
Tiny-ImageNet, then measure the accuracy on the respective testing dataset. We also record the
execution time of the total repairing phase (100 epochs) as the indicator of time cost. We show the
repairing result in Table 1. Note that we repeat each experiment five times and take the average of
each result.

According to Table 1, the network-level repairing achieves the highest accuracy on ResNet-18
and ResNet-101 when repairing on CIFAR-10 dataset, and all 3 variants of ResNet when repairing
on Tiny-ImageNet dataset, but also leads to the highest time cost under every configuration.
Among 3 other levels of repairing methods, the block-level repairing achieves the highest accuracy
improvement without having drastic increment on time cost (i.e., the run-time increment comparing
with neuron-level and layer-level is less than 500 seconds on 100 epochs across all 3 ResNets) when
repairing on both CIFAR-10 and Tiny-ImageNet.

Overall, the network-level repairing is significantly effective in accuracy improvement but
leads to a high time cost. Nevertheless, the block-level repairing achieves impressive accuracy
enhancement with much less execution time compared to network-level method (e.g., about 2x less
on ResNet-18), making it a good trade-off between effectiveness and efficiency. This fact inspires
and motivates us to further investigate the block-level repairing method.

3 BLOCK-LEVEL ARCHITECTURE AND WEIGHTS REPAIRING

In this section, we first provide an overview of our method in the Sec. 3.1 by presenting our intuitive
idea and the main pipeline containing two key modules, i.e., Vulnerable Block Localization and
Architecture-oriented Search-based Repairing. After that, we detail the first module in Sec. 3.2 and
the second module in Sec. 3.3, respectively. The first module is to locate the vulnerable block in a
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deployed DNN, while the second module is to repair the architecture and weights of the localized
block by formulating it as an architecture searching problem.

3.1 Overview

Given a deployed DNN ¢4y 4y, the weights and architecture usually consist of several blocks, each
of which is built by stacking basic operations, e.g., convolutional layer. Then, we represent the
weights and architecture with B blocks, i.e., W = {"Wb’.}?:1 and A = {ﬂl’) }B |, where the weights
or architecture of each block are made up by one or multiple layers. For example, when we consider
the ResNet18 [24], we can say that it has six blocks (See Table 2). The first block contains only one
convolution layer with the kernel size of 7 X 7 X 64 and the stride of 2. The second to the fifth blocks
have two convolutional layers and the last block contains a fully connected layer and a softmax

layer. Then, we can reformulate Eq. (1) and Eq. (2) for the proposed block-level repairing by

((W*, ﬂ;) = LOCatOI'(S{)({(Wbi}?:I,{ﬂé }?:1), Drepair) (3)
(W), AL) = arg minJ (@ 7:), repair) @
(WAL

where Eq. (3) is to locate the block (i.e., (W, A;)) that should be fixed through the proposed
adversarial-aware block localization, and Eq. (4) is to repair the localized block by formulating it as
a network architecture searching problem. Clearly, compared with the general repairing method
(i.e, Eq. (1) and Eq. (2)), the proposed method focuses on fixing the weights and architecture at
the block level. We detail the vulnerable block localization in Sec. 3.2 and architecture search-based
repairing in Sec. 3.3.

There are two main solutions for vulnerable neuron localization [13, 55]. The first one employs
the neuron spectrum analysis during the forward process of DNN on a testing dataset. It calculates
the spectrum of all neurons (e.g., activated/non-activated times of neurons for correctly classified
examples and activated/non-activated times of neurons for misclassified examples). These attributes
are used to measure the suspiciousness of all neurons. The general principle is that a neuron is
more suspicious when the neuron is more often activated under the misclassified examples than
that under the correctly classified examples [13]. This solution is able to localize the vulnerable
neurons accurately but requires a large testing dataset, which is not suitable for the scenario
where a few examples are available for repairing. The second solution is to actively localize the
vulnerable neurons by performing backpropagation on the misclassified examples and calculating
the gradients of neurons w.r.t. the loss function. The neurons with large gradients are responsible
for the misclassification [55]. This solution is able to localize the vulnerable neuron with fewer
examples but ignores the effects of correctly classified examples. As shown in Fig. 1, with different
failure examples, the gradients of different convolutional blocks in ResNet18 may have similar
values, which demonstrates that the gradient-based localization is not sensitive to the variance of
the number of failure examples.

Overall, existing methods mainly focus on localizing vulnerable neurons while ignoring the
blocks in DNNS. In addition, they have their respective defects. In this work, we propose a novel
localization method that aims to find the most vulnerable block in the DNN, which can lead to the
buggy behavior of a deployed DNN. To take the respective advantages of existing works and avoid
their defects, we propose adversarial-aware spectrum analysis to localize the vulnerable block.

3.2 Adversarial-aware Specturm Analysis for Vulnerable Block Localization

3.2.1  Neuron spectrum analysis. Given a dataset D™P" for repairing and the targeted DNN @4y, 7).,
we calculate the spectrum attributes of the jth neuron in ‘W by counting the times of activation
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Table 2. Network architectures and their respective blocks.

VGGNet ResNet EfficientNet
Block 16-layer 18-layer 50-layer 101-layer BO
3% 3,64]
Blk1 || Conv: |3 X 3,64 convl: 7 X 7, 64, stride 2 Conv: 3 X 3, 32, stride 2
maxpool
3% 3,128 3 X 3 max pool, stride 2 ) .
Blk2 Conv: |3 % 3,128 R Tx 16 Tx16d MBConvl: 3 X 3, 16, stride 2
maxpoolA conv2: 3 3’ 64] 2 3X3,64 (%3 3%3,64 %3
’ 1X 1,256 1X 1,256
2 i i ;22 3%3,128 [11,128] [11,128]
Blk3 || Conv: ’ conv3: ’ X2 [3x3,128( x4 3%x3,128| x 4 MBConv6: 3 X 3, 24, stride 1
3 X% 3,256 3X%3,128
1x1,512 1xX1,512
maxpool L B L b
33,512 q
’ 1X 1,256 1% 1,256
3X%3,512 3 X% 3,256 ’ ’ 5x%5,40
Blk4 || Conv: 3% 3’ 512 conv4: 4% 3’ 956 | X 2 13%3,256 | X6 |3x3,256 | X 23| MBConvé: 5 5’ 40], stride 2
? ’ 1Xx1,1024 1x1,1024 ?
maxpool 4
ziz’gig 3%3.512 1x1,512 1xX1,512 3% 3,80
BIk5 || Conv: 3><3’512 convs: 3><3’512 X2 |3%3,512|%x3 |3x3,512| %3 | MBConvé: |3 X 3,80/, stride 2
? ’ 1X1,2048 1 X 1,2048 3x3,80
maxpool
4096 —d 5%5,112
Blké FC: {4096 — d average pool, 1,000-d fully-connection, softmax MBConv6: |5 X 5,112], stride 1
1000 — d 5X%5,112
5% 5,192
5% 5,192 .
Blk7 - - MBConv6: 55 192 stride 2
5% 5,192
Blk8 - - MBConvé6: 3 X 3, 320, stride 1
Blk9 - - 1 x 1 Conv, pool, 1000-d FC
Block 1
0.015 1 Block 2
Block 3
 0.010 Block 4
G]
0.005 A
0.000 : : : :

0.1

0.5 1

5

10

Number of Failure Examples (K)

Fig. 1. Average gradients of different blocks in ResNet-18 for different Dfr:iplair sizes.

and non-activation for the neuron under the correctly classified examples and denote them as N;{C

and N

(3]

same neuron under the misclassified examples and name them as N7,

respectively. Similarly, we can count the times of activation and non-activation for the

and N/,

nmo»

respectively. Then,
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we calculate a suspiciousness score for each neuron via the Tarantula measure [28],

~ N/ (N + Niim)
N J J J J J
Nam/(Nam + Nnm) + Nac/(Nac + Nnc)

Sj (5)
where s; determines the suspiciousness of the jth neuron and the higher s; means the jth neuron
is more vulnerable.

3.2.2 Adversarial-aware block spectrum analysis. With the above neuron spectrum analysis, we can
obtain the suspiciousness scores for all neurons and the suspiciousness set S = {s;}. Nevertheless,
these suspiciousness scores depend on the statistical analysis and are not related to the objective
directly, which leads to less effective localization. To alleviate the issue, we propose to refine the
suspiciousness scores with adversarial information under the guidance of the loss function (e.g.,
cross-entropy function for classification).

repair

) fail
For each example in Z)gilfau, we can calculate the gradient of all neurons w.r.t. the loss function.

Then, we average the gradients of a neuron on all examples and get a set G = {g;} where g; is
the averaging gradient of the jth neuron on all examples in Z)gi}l)alr. Intuitively, the larger gradient
means that the corresponding neuron may significantly contribute to misclassification and should
be tuned to minimize the loss. For the ith block, we denote its gradient as the average of the

gradients of all neurons in that block, i.e., G; = m Zw, ewi 9j- We also calculate the averaging
b

Specifically, we select the failure examples in D™P2r and construct a subset denoted as D

gradient across all neurons, ie, G = % 8 | Gi. Then, we use these gradients to reweight the
suspiciousness scores of all neurons.

. lg; — Gl
Sj = —_Sj.
max({|g; — G|})

The principle behind this strategy is that the suspiciousness score of the jth neuron decreases when

(6)

its relative gradient is small. As a result, we can update the suspiciousness set S and get S= {5;}.

A block in the DNN consists of a series of neurons and we collect the updated suspiciousness
scores of the neurons in the ith block to the set S; € S. There are B suspiciousness sets and
S = {Si}?zl. After that, we use a threshold (i.e., €) to select the vulnerable neurons, that is, the
neuron with §; > € is identified as the vulnerable neuron. Then, we can count the number of
vulnerable neurons in each Si and the block with the most vulnerable neurons are identified as the
targeted block we would repair.

We summarize the whole process of the block localization in Algorithm 1. We first calculate the
suspiciousness score of all neurons (Line 1), and calculate the average gradients on each neuron
(Line 2). Then, we update the suspiciousness score by calculating the average gradients on each
block (Line 3). Finally, we select a threshold to identify the vulnerable blocks (Line 4:5). To validate
its advantages, we conduct an experiment to compare the effectiveness and stability of the blocks
positioned from S and S, respectively. To compare the stability of the method, we changed the size
of the dataset Z);:fl’alr. We observe that as the size of the dataset changes, the suspicious neurons on
each block obtained by S vary significantly while those obtained by S are much more stable and
lead to unanimous conclusions. As shown in Fig. 2, according to the experiments on ResNet-18, by
the number of suspicious neurons contained in the block, S and S estimated that ‘block 1’ and
‘block 4’ are the most vulnerable, respectively. We observed similar results when the threshold € are
set to other values (e.g., €19, €20, €30, €40, €100)- We also conduct detailed quantitative analysis and
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discussion in Sec. 5.3, presenting that repairing the most vulnerable block, i.e., ‘block 4, achieves
much higher improvement.

451 451 = Block 1
- Block 2
w401 401 Block 3
g = Block 4
S 35 354 mm Block 5
[}
Z 304 30
w
3
Qo 25 25 1
[ 8 20 20 1
0>
o
5 c 151 15
5 5}
Q 10 104
£
> 51 5
0- 0
0.2 1 2 10 0.2 1 2 10
Number of Test Inputs (K) Number of Test Inputs (K)
(@) s (b) $
454 45 4 w Block 1
mm Block 2
o 401 401 Block 3
5 e Block 4
S 354 35 1
=1
[
Z 304 30 1
3
8 % 25 25
B
2y
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@2 20+ 20 1
a g
‘5 ﬂcf 154 15
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o 10 10
£
> 57 5
0- o
0.2 1 2 10 0.2 1 2 10
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1 2
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Fig. 2. Collected suspicious neurons in blocks of VGGNet-16, ResNet-18 and ResNet-50 when setting threshold
€ equal to the value that select top-50 neurons from suspicious ranking, with S(left) and S(right), respectively.
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Algorithm 1: Vulnerable block localization

Input: A DNN ¢4y #) and datasets D*P*" and Dggair
Output: W, A;
1 Calculate suspiciousness scores S of all neurons via Eq. (5);

repair .
fai and get G;

3 Update the suspiciousness scores S and get S;

2 Calculate the gradients of all neurons on D

4 Identify the vulnerable neurons via a threshold €;
5 Localize the vulnerable block with the maximum number of vulnerable neurons;

3.3 Architecture-oriented Search-based Repairing

After localizing the targeted block, how to break the old architecture’s bottleneck and fix it to
become competent in the tasks is another challenge. To this end, we formulate the very first
block-level architecture and weights repairing as the network architecture search task. Given a
deployed DNN with pre-trained weights and fixed architecture (i.e., ¢(w, 7)), we first relax the
targeted block (i.e., ¢(wr ax)) to a directed acyclic graph like the cell structure in the differentiable
architecture search (DARTS) [37], which is composed of an ordered sequence of nodes that are
connected by edges. Intuitively, the node corresponds to the deep feature while the edge denotes
the operation layer like convolutional layer. Our goal is to optimize the edges, i.e., to determine
which two nodes should be connected and which operation should be selected for that connection.
To this end, the key issues are to define the architecture search space and optimization strategy.

3.3.1 Architecture search space for the targeted block. To better illustrate the process of architecture
search, we take ResNet as an example. Given a block in ResNet containing K operation layers, we
reformulate it as a directed acyclic graph that has K + 1 nodes {Xk}lk(:1 and allow each node to
accept the outputs from all previous nodes instead of following the sequential order. As shown
in Fig. 3, we present an example of the graph representation of the targeted block via nodes and
edges. Specifically, we denote the edge for connecting the ith and jth nodes as e(; j) and the node
X/ can be calculated by

Xj = Z €(i,j) (Xi), (7)

i=[1,j-1]

where e(; j)(X') is an edge taking the node X' as the input. Then, we define an operation set O
containing six candidate operations as presented in Table 3, each of which can be set as the edge.
This set of operations is selected in coordination with our NAS method [66]. For example, when
we select ‘None’ for e(; ;), the two nodes X! and X’ should not be connected.

Note that, the raw sequentially ordered block of ResNet is a special case in the defined search
space and we can naturally inherent the raw weights and architecture setup as the initialization for
the following optimization.

3.3.2  Architecture and weights optimization. The optimization goal is to select a suitable operation
for each edge from the operation set. To this end, we relax the selection as a continuous process by
regarding the edge connecting the node i and j as a weighted combination of the outputs of all
candidate operations

. exp (a], )
e (X') = Z :

0cO ZO'GO exp (a(();’j))

o(X?) ®)
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Fig. 3. The overall workflow of ArchRepair. Given a deployed DNN model, we first apply the Vulnerable Block
Localization to identify the most vulnerable block. Then, we continue to formulate the block repairing as a
DNN architecture search problem, and the block’s architecture and parameters are optimized jointly through
Architecture-oriented Search-based Repairing.

Loss Function £

-] ->

ﬁ‘:

where the parameter a"l.,j determines the combination weight of using the operation o for connect-
ing the ith and jth nodes. As a result, we can define the architecture parameters for the edge e; ;) as
avector a(; j) = [a‘(’i’j) |o € O] assigning each operation in the O a combination weight. Moreover,
for the whole block, we denote its architecture as A; = {a(; ;) } and respective parameters for all
candidate operations as W}’ = {w(; ;) }. Then, we can specify the repairing process in Eq. (4) by
optimizing the weights (i.e., W}’) and architecture parameters (i.e., A;) on the training dataset and
validation dataset, alternatively, that is, we have

Wy = argminJ($(w:, ) Dy ), )
wy

f(; = arg minJ(qS((Wg,ﬂg)’D\r,Z}fair) (10)
A

b

where J(+) is specified as the cross-entropy loss function for the image classification task. During the
training process, we initialize the block architecture A} as the raw block architecture of the targeted
DNN, and update the architecture and weights, alternatively. We will illustrate the repairing process
in Sec. 3.4. After getting the optimized architecture (i.e., f{;) in the continuous search space, we set

the operation with maximum combination weight as the edge, i.e., e(; j) = argmax . a?l. s Then,

we retrain the weights Wg‘ with fixed block architecture.
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Table 3. All operators in the operation set O.

Operators ‘ Operations

None Add a Zero CNN layer whose weights are all zero.

Skip Add an Identity CNN layer whose weights are all one.

AvgPool | Add an Average Pooling layer and an Identity CNN layer.

MaxPool | Add a Max Pooling layer and an Identity CNN layer.

SepConv | Add separated CNN layers.

DilConv | Add a CNN layer with the dilation kernel and an Identity CNN layer.

3.4 Our Repairing Algorithm of ArchRepair

Fig. 3 summarizes the whole workflow of ArchRepair. Given a deployed DNN, we first employ the
proposed vulnerable block localization to determine the block we aim to repair. Specifically, we
use the repair dataset D™P and the neuron spectrum analysis to calculate the suspiciousness
of all neurons, i.e., S = {s;}. Meanwhile, we use the failure examples in grepair (ie., D;:ilfalr) to
obtain the gradients of all neurons w.r.t. the loss function (i.e., G = {g,}). Then, we use Eq. (6) and
the gradients G = {g;} to reweight S = {s;}, thus get the suspiciousness scores S= {3;}. After
that, we can calculate the number of vulnerable neurons through a threshold e, that is, when the
suspiciousness score of a neuron S={s i} is larger than e, the neuron is identified as a vulnerable
case. Finally, the block with the largest number of vulnerable cases is selected as the targeted block
we want to repair.

During the architecture search-based repairing, we reformulate the targeted block as a directed
acyclic graph, where the deep features are nodes and operations are edges. Then, we relax each
edge as a combination of six operations (i.e., Eq. (8)), where the combination weights correspond to
the architecture parameters A; = {a(; ;) }. We use the dataset DrePAT to conduct the architecture
and weights optimization via Eq. (9) and Eq. (10), where the original architecture and weights
are inherited and serve as the optimization initialization. Therefore, given the optimized block
architecture in the continuous space (i.e., f(ﬁ) we discretize it to the final architecture by preserving
the operation with the maximum combination weight and removing other operations. Finally, we
use the D™PAI to fine-tune the weights by fixing the optimized architecture for the repaired DNN.

4 EXPERIMENTAL DESIGN AND SETTINGS

In this section, we conduct extensive experiments to validate the proposed methods and compare
with the state-of-the-art DNN repair techniques, to investigate the following research questions:

e RQ1. Does ArchRepair outperform the state-of-the-art (SOTA) DNN repair techniques with
better repairing effects?

e RQ2. Could ArchRepair repair DNNs on certain failure patterns without sacrificing robustness
on clean data and other failure patterns?

e RQ3. Is our proposed localization method effective in identifying vulnerable neuron blocks?

¢ RQ4. How do different components of our proposed method impact the overall repairing
performance?

RQ1 intends to evaluate the overall repairing capability of ArchRepair and to compare it to SOTA
DNN repair techniques as baselines. RQ2 aims at exploring the potential of our method in repairing
DNN on corrupted data, which are common robustness issues during DNN practical usage in the
operational environments. RQ3 intends to examine whether the proposed localization method can
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precisely locate vulnerable blocks. RQ4 is to explore the contribution that each of ArchRepair’s
key components makes on the overall performance of DNN repair.

4.1 Experimental Setups

To answer the research questions above, we design our evaluation from multiple perspectives listed
in the following.

Subject Datasets and Repairing Scenarios. Given a deployed DNN trained on a training
dataset D', we can evaluate it on a testing dataset DV. In the real world, there are a lot of scenes
that cannot be covered by D" and the DNN’s performance may decrease significantly after the
DNN is deployed in its operational environment. For example, there are common corruptions (i.e.,
noise patterns) in the real world that can affect the DNN significantly [25]: Gaussian noise (GN),
shot noise (SN), impulse noise (IN), defocus blur (DB), Gaussian blur (GB), motion blur (MB), zoom
blur (ZB), snow (SNW), frost (FRO), fog (FOG), brightness (BR), contrast (CTR), elastic transform
(ET), pixelate (PIX), and JPEG compression (JPEG).

According to the aftermentioned situations, we consider two repairing scenarios that commonly
occur in practice:

¢ Repairing the accuracy drift on testing dataset. When we evaluate the DNN on the
testing dataset DV, we can collect a few failure examples (i.e., 1,000 examples) denoted as

Dp ;- Then, we set Prepair = Dpa Y D" and use the proposed or baseline repairing methods

to enhance the deployed DNNs. We evaluate the accuracy on the testing dataset where Dy

is excluded (i.e, DY \ D). Note that, the context of repairing DNN with only a few testing
data is meaningful and important, which is adopted by recent works [50, 68]. In addition,
there could be many practical scenarios, where collecting buggy examples is very difficult or
at very high costs, with only a few buggy examples collected entirely. Hence, we follow the
common choice in recent works [50, 68] to select only 1,000 failure examples from testing
data.

¢ Repairing the robustness on corrupted datasets. When we evaluate the DNN on a cor-
rupted testing dataset D€, we can also collect a few failure examples (i.e., 1,000 examples)
denoted as Df , and set Prepair = Dp Y D". The repairing goal is to enhance the accuracy on
D¢\ Dg, and other corrupted datasets while maintaining the accuracy on the clean testing
dataset (i.e., DV \ DY ).

We choose CIFAR-10 [31], CIFAR-100 [31], Tiny-ImageNet [34] and ImageNet [10] as the eval-
uation datasets. They are commonly used datasets in recent DNN repair studies, enabling us to
perform comparative studies in a relatively fair way. Each dataset contains its respective training
dataset D" and testing dataset DV. CIFAR-10 contains a total of 60,000 images in 10 categories,
in which 50,000 images are for Dt and the other 10,000 are for DV. CIFAR-100 has 100 classes
containing 600 images each. There are 500 images in the training dataset D" and 100 images in
the testing dataset DV for each class. Tiny-ImageNet has a training dataset D" with the size of
100,000 images, and a testing dataset D" with the size of 10,000 images. ImageNet contains over 14
million images. In our experiment, the training dataset D" uses 1.3 million images, and the testing
dataset D" uses over 50000 images. Therefore, we have corrupted testing datasets {Df} where
i=1,2,...,15 corresponding to the above fifteen corruptions [25].

DNN architectures. We select six different architectures of DNN, i.e., VGGNet-16 [54], ResNet-
18, ResNet-50, ResNet-101 [24], DenseNet-121 [26] and EfficientNet-B0 [57]. Given that ArchRepair
is a block-based repairing method, the block-like architecture, ResNet, turns out to be a perfect
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research subject. For a broad comparison, we also choose a non-block-like architecture, DenseNet-
121, to examine the repairing capability of ArchRepair !. For each architecture, we first pre-train them
with the original training dataset D" (from CIFAR-10, CIFAR-100, Tiny-ImageNet or ImageNet), the
model with the highest accuracy in testing dataset DV (from CIFAR-10, CIFAR-100, Tiny-ImageNet
or ImageNet) will be saved as pre-trained model ¢g. As the original ResNet and DenseNet are not
designed for CIFAR-10 and Tiny-ImageNet datasets, we use the unofficial architecture code offered
by a popular GitHub project?, which has more than 4.1K stars.

Block definition. We divide each of the six selected DNN architectures into several blocks. For
each of ResNet-18, ResNet-50, and ResNet-101, we follow its block structures and divide it into
four blocks, as shown in Table 2. For DenseNet-121, we divide it by every two convolutional layers
as one block. For VGGNet-16, we manually divide it into six blocks by maxpool layer as Table-2
shows and select five of them as repairing targets (i.e., Block 1 ~5, Block 6 is used for getting output,
so we left it out of repairing). For EfficientNet-B0, we follow its block structures and divide them
into seven blocks (see Table 2).

NAS method. We select PC-DARTS [66] as our NAS solution for ArchRepair. While all popular
NAS techniques should fit into ArchRepair(e.g., DARTS, SNAS, and BayesNAS), these techniques
use more time than PC-DARTS in searching for a better network architecture. Given that DNN
repair is a time-sensitive task, we choose PC-DARTS [66] as it is among the fastest NAS methods.
Though ArchRepairremains the interface for switching to other NAS techniques when the task
cares more about the performance of repaired models than the time cost of repairing.

Hyper-parameters. Regarding the training setup, we employ stochastic gradient descent (SGD)
as the optimizer, setting batch size as 128, the initial learning rate as 0.1, and the weight decay as
0.0005. We use cross-entropy loss as the loss function. The maximum number of epochs is 500,
and an early-stop function will terminate the training phase when the validation loss no longer
decreases in 10 epochs.

Baselines. To demonstrate the repairing capability of the proposed ArchRepair, we select six
SOTA DNN repair methods from two different categories as baselines: neuron-level repairing
methods and network-level repairing methods. The neuron-level repairing methods focus on fixing
certain neurons’ weights in order to repair the DNNs. Representative methods from this category
are MODE [43], Apricot [70], and Arachne [55]. While network-level repairing methods mainly
repair DNNs by using augmented datasets to fine-tune the whole network, where SENSEI [18],
Few-Shot [50], and DeepRepair [68] are the most popular ones. For a fair comparison, we employ
the same settings on all six repairing methods and ArchRepair. In order to fully evaluate the
effectiveness of the proposed method, we apply all methods (six baselines and ArchRepair) to
fix four different DNN architectures on large-scale datasets, including the clean version and 15
corrupted versions from CIFAR-10 and Tiny-ImageNet, to assess the repairing capability.

Other configurations. We implement ArchRepair in Python 3.9 based on PyTorch framework.
All the experiments were performed on a server with a 12-core 3.60GHz Xeon CPU E5-1650, 128GB
RAM and four NVIDIA GeForce RTX 3090 GPUs (each has 4GB memory), which runs Ubuntu 18.04.

In summary, for each baseline method and ArchRepair, our evaluation consists of 96 configurations
(6 DNN architectures x 16 versions of a dataset ) on four datasets (i.e., CIFAR-10, CIFAR-100,
Tiny-InageNet and ImageNet. For CIFAR-10 dataset, an execution of training and repairing a model
under one specific configuration costs about 12 hours on average (the maximum one is about 50
hours); while for Tiny-ImageNet dataset, an execution of training and repairing a model takes

1For DenseNet-121, we manually group two consecutive convolution blocks as one block when repairing.

2Train CIFAR10 with PyTorch: https://github.com/kuangliu/pytorch-cifar

3one clean dataset (repairing the accuracy drift on testing dataset) and fifteen corruption datasets (repairing the robustness
on corrupted datasets)
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about 18 hours on average (the maximum one is about 64 hours). We measured the execution time
of repairing six different DNN architectures (i.e., VGGNet-16, ResNet-18, ResNet-50, ResNet-101,
DenseNet-121, and EfficientNet-B0) repaired on CIFAR-10 within 100 epochs by different repairing
methods. The results are reported in Table 4. According to Table 4, the Neuron-lv’s methods use less
execution time than other repairing methods (The cell with green background), and the Network-
Iv’s methods use more execution time than others. Our method, ArchRepair, uses more execution
time than Neuron-1v’s methods but less than Network-1v’s methods. This is because ArchRepair
repairs DNN models on the block level, which works at a larger size than the neuron level but at
a smaller size than the network level. This is also consistent with our expectation in Sec. 2.2, i.e.,
block-level repairing makes a good trade-off between effectiveness and efficiency. Overall, the
total execution time of our experiments takes more than two months.

Table 4. Execution time of repairing 6 different DNNS (i.e., VGGNet-16, ResNet-18, ResNet-50, ResNet-101,
DenseNet-121, and EfficientNet-B0) repaired on CIFAR-10 within 100 epochs by different repairing methods.
The result describes ArchRepair uses less repairing time than Network-Iv’s methods and has excellent repairing
performance.

Execution time (100 epochs)

CIFAR-10 VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0
—‘Z MODE [43] 2h17m 2h41lm  3h37m 4h36m 6h58m 4h11m
g Apricot [70] 3h09m 3h31lm  4h15m 5h32m 8h06m 4h15m
Z | Arachne [56] 2h17m  2h31m 3h54m  4h58m 7h25m  3h09m
_—Z SENSEI [18] 46h18m 48h21m 54h25m =~ 68h32m  82h36m 57h03m
g Few-Shot [51] 27h18m 28h51m 32h1lm 40h25m  47h36m  30h39m
< | DeepRepair [68] | 49h21m 51h47m 56h23m 65h23m  72hl6m  61h32m

ArchRepair (ours) ‘lShlSm 18h37m 21h34m 29h17m  33h25m 23h17m

5 EXPERIMENTAL RESULTS

In this section, we summarize the high-level results and findings to answer our research questions.
We present more detailed evaluation results, configurations as well as a replication package on our
supplementary website [56] of this paper.

5.1 RQ1: Does ArchRepair outperform the state-of-the-arts (SOTA) DNN repair
techniques?

To answer RQ1, we train 6 DNNs (i.e., VGGNet-16, ResNet-18, ResNet-50, ResNet-101, DenseNet-
121 and EfficientNet-B0) on 4 datasets’ (i.e., CIFAR-10, CIFAR-100, Tiny-ImageNet and ImageNet)
training datasets (i.e., D") and evaluate them on testing datasets (i.e., DV) respectively. To evaluate
the performance of our method (i.e., ArchRepair), we apply six different SOTA methods as well
as ArchRepair to repair these 4 DNNs. The evaluation results of repairing are summarized in
Table 5. In general, ArchRepair exhibits significant advantages over all baseline methods on the
6 DNNs, demonstrating the effectiveness and generalization ability of the proposed method. In
particular, comparing with the state-of-the-art DNN repair methods (i.e., neuron-level repairing
method Arachne [55], and network-level repairing method DeepRepair [68]), ArchRepair achieves
much higher accuracy on 5 out of 6 DNNs on CIFAR-10 dataset. On the more challenging dataset,
Tiny-ImageNet, ArchRepair still achieves much higher accuracy on 3 out of 6 DNNs. Note that on
DenseNet-121, all the repairing methods failed to repair, i.e., failing to improve the performance
compared to the original network. One possible explanation is that the original DenseNet-121’s
performance has almost reached the upper bound of the classification accuracy on Tiny-ImageNet,
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Table 5. Average accuracy (%) of 6 different DNNs (i.e., VGGNet-16, ResNet-18. ResNet-50, ResNet-101,
DenseNet-121, and EfficientNet-B0) repaired on 4 dataset (i.e., CIFAR-10, Tiny-ImageNet, CIFAR-100, and
ImageNet) by different repairing methods. Note that each configuration of the experiment is repeated 5 times
and the average results are summarized.

Baseline CIFAR-10 Tiny-ImageNet

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0 | VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0
Original ‘ 83.72 85.00 85.17 85.72 87.97 88.93 ‘ 42.87 45.15 46.27 46.14 48.73 49.25
MODE [43] 84.22 85.48 85.08 85.78 88.64 88.89 43.37 45.47 45.90 46.40 47.86 51.61
Apricot [70] 84.33 86.78 88.95 89.25 90.23 86.97 43.04 46.08 46.79 45.35 45.14 50.48
Arachne [55] 84.23 85.09 87.45 89.35 91.20 88.99 44.17 46.93 47.14 46.43 46.93 51.60
SENSEI [18] 84.53 85.07 86.33 89.13 89.45 88.89 44.49 4591 47.10 46.12 45.70 52.40
Few-Shot [50] 84.67 86.21 86.49 88.06 88.44 88.14 44.01 46.32 46.62 45.90 45.31 52.42
DeepRepair [68] 85.00 86.68 87.08 88.98 90.78 92.12 45.84 46.92 47.69 46.58 46.68 52.45
ArchRepair (ours) ‘ 85.58 88.53 88.96 90.20 91.36 91.35 ‘ 45.69 46.96 47.51 46.75 46.37 52.62
Baseline CIFAR-100 ImageNet

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0 | VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0
Ol‘igina.l ‘ 60.27 62.58 63.74 63.97 65.89 67.42 ‘ 64.72 64.81 65.79 66.28 67.85 69.05
MODE [43] 61.08 63.76 63.87 65.04 65.10 67.93 64.29 64.95 65.59 67.32 68.29 69.54
Apricot [70] 62.89 63.48 65.19 64.03 66.75 68.21 65.39 65.53 65.64 67.38 67.58 69.85
Arachne [55] 62.91 63.63 65.21 64.60 66.28 67.46 65.10 66.07 66.53 67.06 67.76 70.61
SENSEI [18] 61.96 64.27 65.20 65.64 66.50 69.28 65.37 65.59 66.02 67.62 68.20 71.69
Few-Shot [50] 62.46 63.95 64.92 65.06 67.87 68.69 66.77 66.49 65.72 67.52 68.99 70.34
DeepRepair [68] 62.67 64.36 65.77 66.63 67.95 69.76 66.61 66.41 66.71 67.61 69.91 72.12

ArchRepair (ours) ‘ 66.24 65.41 65.67 66.93 67.02 68.21 66.96 67.10 67.93 67.88 70.09 70.79

hence there might not be much room for improvement in terms of accuracy. To better illustrate the
performance of ArchRepair compared with other baselines, we also conduct the statistical test (i.e.,
Wilcoxon Signed-rank Test) on the results obtained by our method, compared with each of the 6
corresponding repairing methods across all 6 different models (i.e., VGGNet-16, ResNet-18/50/101,
DenseNet-101 and EfficientNet-B0), all the 4 evaluated datasets (i.e., CIFAR-10/100, Tiny-ImageNet
and ImageNet). Table 6 summarizes the obtained statistical test results, which demonstrate the
advantage of our method to be statistically significant at the 0.01 confidence level (i.e., p < 0.01),
compared with the SOTA. We report the obtained significant test results in Table 6 and add a
paragraph of discussion in the original paper, the results confirm the advantage of our method to
be statistically significant at the 0.01 confidence level (i.e., p < 0.01).

Table 6. Wilcoxon signed-rank test

n=120 ArchRepair
- MODE [43] Apricot [70]  Arachne [55] SENSEI[18] Few-Shot [50] DeepRepair [68]
p ‘ 3.91E-19 < 0.01 5.09E-20 <0.01 1.51E-18 <0.01 3.37E-16 <0.01  5.96E-17 <0.01 1.55E-3 <0.01

Furthermore, to understand the influence of repairing on DNN’s robustness, we evaluate the
repaired DNNs’ performance on corruption datasets (i.e., CIFAR-10-C [25] and Tiny-ImageNet-
C [25]). The CIFAR-10-C and Tiny-ImageNet-C contain over 15 types of natural corruption datasets,
and we show the results on CIFAR-10-C in Fig. 4 and Tiny-ImageNet-C in Fig. 5. Obviously in
Fig. 4, ArchRepair achieves the highest accuracy on a majority of corruption datasets across three
variants of ResNet (8/15, 9/15, and 7/15 on ResNet-18, ResNet-50, and ResNet-101, respectively)
besides the best performance on the clean dataset. Even on DenseNet-121, which is not a block-like
DNN, ArchRepair also achieves promising performance compared with SOTA method Apricot [70].
The performance of ArchRepair is also significant on Tiny-ImageNet-C. As we've mentioned before,
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Fig. 4. Comparing the repairing methods on different DNNs (i.e., ResNet-18, ResNet-50, ResNet-101 and
DenseNet-121) by contrasting the accuracy of repaired DNNs on CIFAR-10’s testing dataset (i.e., D') and
corruption datasets (i.e., D).

Tiny-ImageNet is way more challenging. Nevertheless, ArchRepair still outperforms baselines in
terms of the robustness on a majority of corruption datasets across three variants of ResNet (9/15,
9/15, and 7/15 on ResNet-18, ResNet-50, and ResNet-101, respectively) as well as the non-block-like
DNN DenseNet-121 (8/15). The results confirm that ArchRepair doesn’t harm the DNN’s robustness,
and on the contrary, it can even sometimes improve DNN’s generalization ability towards classifying
corrupted data.

Answer to RQ1: According to the experimental results on clean dataset, ArchRepair outper-
forms the SOTA repairing method on all 6 DNNs with different architectures (i.e., VGGNet-16,
ResNet-18, ResNet-50, ResNet-101, DenseNet-121, and EfficientNet-B0). Moreover, the experi-
mental results on corruption datasets also support that ArchRepair can repair a DNN without
harming its robustness.
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Fig. 5. Comparing the repairing methods on different DNNs (i.e., ResNet-18, ResNet-50, ResNet-101 and
DenseNet-121) by contrasting the accuracy of repaired DNNs on Tiny-Imagenet’s testing dataset (i.e., DY)
and corruption datasets (i.e., D).

Table 7. Accuracy (%) of a deployed ResNet-18 repaired by different repairing methods on 15 different
corruption patterns.

ResNet-18 ‘ Clean GN SN IN DB GB MB 7B SNW FRO FOG BR CTR ET PIX JPEG
Original 85.000 61.452 67.392 61.944 74.762 54.782 66.348 69.476 71.408 70.114 73.532 82.736 58.716 74.822 72.364 78.752

Low) Apricot [70] 86.644 76.930 78.656 77.694 75.827 66.390 76.810 79.851 76.406 77.269 78.979 89.254 74.390 75.112 75.350 75.810
; Arachne [55] 88.451 77.144 77.715 78976 76.546 65815 75.963 77.712 77.862 77.224 79.200 86.913 75792 73.876 77.694 74.402
E SENSEI [18] 86.525 68.762 70.471 73.345 76.842 60.244 71.229 73.297 73.732 73.814 76.975 83.006 64.861 72.814 75.833 79.495
O | DeepRepair [68] 88.159 75.197 73.990 75.807 77.369 63.263 75.703 74.973 76.999 76.872 77.884 83.967 72.889 76.594 74.669 77.726
ArchRepair (ours) 90.177 77.546 77.689 73.237 80.679 67.523 75.998 77.697 77.867 80.677 79.854 85.146 79.026 78.053 77.448 77.967

Ef Original 45.150 15912 16.972 15.482 14.281 14.337 13.648 12.191 13.562 16.452 15.119 13.823 6.130 12.657 10.819 13.577
E Apricot [70] 46.732 16703 15.270 15.339 14.266 14.762 13.047 11.959 13.319 19.550 14.838 14.041 8.790 11.231 9.227 14.825
:‘P Arachne [55] 46.297 16302 15.932 15.932 14.938 15.152 14.119 11.695 13.805 18.986 15.106 14.123 8.253 11.831 10.145 13.918
£ | SENSEI [18] 45.824 15270 14.870 14.390 14.664 15.052 14.191 12.112 13917 17.250 14.943 13.602 9.117 12.902 11.277 14.772
T>, DeepRepair [68] 46.780 17.032 15.673 15.277 14.669 15324 13.570 12.478 13.624 18.950 15.152 14.145 9.385 13.496 11.926 14.597
E ArchRepair (ours) 47.350 17.820 15.779 16376 14.769 15224 15.967 12.670 12923 19.295 15915 15.112 10.337 13.765 12.553 14.624

, Vol. 1, No. 1, Article . Publication date: February 2023.



ArchRepair: Block-Level Architecture-Oriented Repairing for Deep Neural Networks 19

5.2 RQ2: Can ArchRepair fix DNN on a certain failure pattern without sacrificing
robustness on clean data and other failure patterns?

In Sec. 5.1, our investigation results demonstrated that ArchRepair will not affect DNN’s robustness
when repairing on the clean dataset. Hence in this section, we continue to validate whether our
method harms DNN’s robustness when repairing a specific failure pattern.

We first verify the repairing capability of ArchRepair. We repair a deployed DNN (i.e., ResNet-
18 ) on each of the corruption datasets from CIFAR-10-C and Tiny-ImageNet-C, and compare
the performance with the other repairing methods, where the results are summarized in Table 7.
Comparing the experimental results on the corruption dataset, we see that all repairing methods
have the capability to repair the failure patterns, except shot noise (SN) on Tiny-ImageNet-C (all
repairing methods fail to repair this corruption pattern). Among these repairing techniques, our
method ArchRepair has the highest accuracy on 8 out of 15 the corruption datasets on CIFAR-10-C
dataset, and 9 out of 15 the corruption datasets on Tiny-ImageNet-C, respectively, demonstrating
that ArchRepair exhibits the advantages in repairing failure patterns.

To validate whether our method has harmed DNN’s robustness, we also evaluate the performance
of repaired DNNs on the other corruption datasets. The evaluation results on CIFAR-10 and Tiny-
ImageNet are shown in Fig. 6 and Fig. 7, respectively. Besides, we calculate the robustness of
repaired models with the formula used in SENSEI The results of robustness are recorded in Table 8.
Comparing the accuracy difference on CIFAR-10-C (see Fig. 6), we observe that the DNNs repaired
by ArchRepair (i.e., the red bar) have higher accuracies on both clean and corruption datasets than
the original DNN (i.e., the gray bar, which is lower than others in most of the cases), indicating
that repairing method will not harm the DNN’s robustness when having fixed certain corruption
patterns. Also, this fact proves that the repairing procedure will not cause over-fit. This is also
verified by the results on Tiny-ImageNet-C (see Fig. 7), where repairing on a certain corruption
pattern does not affect the DNN’s robustness on clean dataset and other corruption patterns.
Instead, it can even enhance the robustness in some cases (e.g., when repairing on Fog corruption
is performed, the performance on other corruptions is also improved).

Answer to RQ2: ArchRepair can successfully fix a certain corruption pattern on a deployed
DNN (i.e., ResNet-18), outperforming the existing 4 DNN repair methods. In addition, ArchRe-
pair’s repairing doesn’t harm DNN’s robustness on clean dataset and other failure patterns.

5.3 RQ3:Is our proposed localization effective in identifying vulnerable block
candidates?

To verify the effectiveness of our localization method, we conduct an experiment by applying the
repairing method on all 4 blocks of ResNet-18 & ResNet-50, and comparing the accuracy on the
clean datasets DV of both CIFAR-10 and Tiny-ImageNet with their block suspiciousness Sg (i.e.,
the number of suspicious neurons in correspond block). We calculate the block suspiciousness
under 8 different thresholds €; ° (i € {10, 20, 30, 40, 50, 75, 100, 150}) to evaluate how the threshold
€; affects the block suspiciousness. The experimental results are summarized in Table 9.

As shown in Table 9, the block suspiciousness Sp of Block 4 in ResNet-18 and Block 3 in ResNet-
50 are always the highest on both CIFAR-10 and Tiny-ImageNet datasets, no matter what value the
threshold ¢; is. It matches the performance of repaired DNNs, where the DNN repaired on Block 4
in ResNet-18 and Block 3 in ResNet-50 has the highest accuracy, respectively. This demonstrates
that our localization method can correctly locate the most vulnerable block.

4More evaluation results on other DNNs are available on our project website [56]
S¢; indicates top-i neurons with highest suspiciousness.
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Fig. 6. Comparing the effectiveness and robustness of repairing methods on ResNet-18 by repairing the
DNNSs on one of the CIFAR-10’s corruption dataset D; (CIFAR-10-C) and evaluating on the other corruption
dataset {D|Dy € D k # i}.
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Fig. 7. Comparing the effectiveness and robustness of repairing methods on ResNet-18 by repairing the
DNNSs on one of the Tiny-Imagenet’s corruption dataset Df (Tiny-ImageNet-C) and evaluating on the other

corruption dataset {D|D € D,k # i}.
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Table 8. Average robust accuracy (%, repeated over 5 runs) of 6 different DNNs (i.e., VGGNet-16, ResNet-18.
ResNet-50, ResNet-101, DenseNet-121, and EfficientNet-B0) repaired on 4 corruption dataset (i.e., CIFAR-10-C,
Tiny-ImageNet-C, CIFAR-100-C, and ImageNet-C) by different repairing methods.

Baseline CIFAR-10 Tiny-ImageNet

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0 | VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0
Original ‘ 64.83 70.70 72.59 72.62 74.18 76.11 ‘ 16.85 17.59 18.77 18.97 19.76 20.37
MODE [43] 64.25 71.22 72.63 73.99 75.09 76.66 16.97 17.82 18.77 19.35 19.76 20.79
Apricot [70] 64.77 71.75 72.95 73.17 74.76 75.83 17.13 17.63 18.95 19.35 20.65 20.84
Arachne [55] 65.72 71.63 72.11 72.76 74.28 75.27 17.23 18.25 19.19 19.37 21.21 21.77
SENSEI [18] 66.75 72.82 73.73 73.97 75.91 76.95 17.62 18.27 19.43 20.86 21.85 22.85
Few-Shot [50] 65.57 72.54 73.15 74.25 75.22 76.83 16.93 17.99 19.53 20.53 21.67 21.97
DeepRepair [68] 67.97 73.36 74.19 75.15 76.56 77.33 18.25 19.26 20.75 21.62 22.35 23.46
ArchRepair (ours) ‘ 67.49 74.25 74.57 76.03 76.56 78.56 18.77 19.53 20.62 21.88 22.97 23.66
Baseline CIFAR-100 ImageNet

VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0O | VGG-16 Res-18 Res-50 Res-101 Den-121 Eff-B0
Original ‘ 32.59 33.72 34.59 35.66 36.75 37.82 ‘ 27.55 28.66 29.35 30.53 31.13 33.69
MODE [43] 33.13 33.98 35.27 36.28 37.28 38.13 28.16 29.14 29.64 30.99 31.85 34.17
Apricot [70] 33.43 33.64 35.15 35.97 37.28 38.28 27.93 29.07 29.67 30.74 31.74 34.63
Arachne [55] 32.88 34.11 35.63 35.83 37.96 38.76 28.42 28.96 30.12 30.68 31.37 33.79
SENSEI [18] 33.85 34.89 36.72 36.90 38.54 40.22 28.67 29.11 30.64 31.75 32.44 34.88
Few-Shot [50] 33.67 34.67 36.72 36.83 37.44 38.25 28.45 29.32 30.59 31.33 32.75 35.09
DeepRepair [68] 34.14 35.82 37.67 37.96 39.25 40.33 29.36 29.89 31.86 32.86 33.16 35.85
ArchRepair (ours) ‘ 34.57 35.77 38.59 39.13 39.64 40.65 29.55 29.77 31.97 32.87 34.22 36.24

Table 9. Block suspiciousness Sg under 8 different thresholds €; and the accuracy of 2 DNNs (i.e., ResNet-18
and ResNet-50) repaired on 4 different blocks. Obviously repairing on the block with the highest block
suspiciousness has the best performance.

CIFAR-10 Tiny-ImageNet
Ace. (%) on DY Block Suspiciousness Sp Acc. (%) on DY Block Suspiciousness Sp
10 €20 €30 €10 €50 €75 €100 €150 €10 €20 €30 €10 €50 €75 €100 €150
Block 1 85.374 0 3 6 8 8 18 22 40 46.11 1 1 4 4 4 12 23 41
Block 2 86.377 0 0 0 1 1 2 5 16 46.29 0 1 2 2 2 6 9 16
Block 3 85.090 0 1 3 9 17 19 26 47 47.13 0 0 0 1 4 5 9 16
Block 4 88.294 10 20 21 22 24 48 48 50 47.35 9 18 24 33 40 52 60 79
(a) Block suspiciousness and repairing accuracy on ResNet-18
CIFAR-10 Tiny-ImageNet
Acc. (%) on DY Block Suspiciousness Sp Acc. (%) on DY Block Suspiciousness Sp
10 €0 €30 €10 €50 €75 €100 €150 10 €20 €30 €10 €50 €75 €100 €150
Block 1 82.115 1 2 2 4 4 7 7 7 45.83 0 0 0 0 0 0 0 0
Block 2 84.313 1 1 6 8 8 10 10 15 46.55 0 0 0 0 0 0 0 3
Block 3 89.576 8 18 24 32 42 58 86 139 47.82 10 20 30 40 48 67 84 119
Block 4 87.254 ‘ 0 0 0 0 0 0 0 0 46.27 0 0 0 0 0 1 2 3

(b) Block suspiciousness and repairing accuracy on ResNet-50

It’s worth mentioning that for a simpler DNN architecture, i.e., ResNet-18, the vulnerable can-
didate block can be located more accurately when the threshold ¢; is small. As the threshold ¢;
increases, the block suspiciousness Sg on other blocks becomes larger, making the localization
method difficult to identify the vulnerable block. While for ResNet-50 (a relatively complex DNN),
no matter what value the threshold ¢; is, the localization result is always significantly accurate
(with a much higher suspiciousness Sg compared with other blocks).
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Table 10. Comparing the two variants of our methods on four DNNs by evaluating the accuracy of repaired
DNN under testing dataset Dt

CIFAR-10 Tiny-ImageNet
ResNet-18 ResNet-50 ResNet-101 DenseNet-121 | ResNet-18 ResNet-50 ResNet-101 DenseNet-121
Original 85.00 85.17 85.72 87.97 45.15 46.27 46.14 48.73
Layer-lv 85.02 85.26 85.29 89.86 45.35 45.11 45.84 46.17
Block-1v 88.29 89.58 90.38 91.37 47.35 47.82 46.73 46.84

Answer to RQ3: ArchRepair is able to locate the most vulnerable block regardless of the
settings of threshold ¢; on different DNNs’ architectures we evaluated (e.g., ResNet-18 and
ResNet-50).

5.4 RQ4: How different components of ArchRepair impact its overall performance?

To demonstrate the effectiveness of our ArchRepair and investigate how each component contributes
to its overall performance, we conduct an ablation study by repairing 4 pre-trained models (i.e.,
ResNet-18, ResNet-50, ResNet-101, and DenseNet-121) with two variants of our method on both
CIFAR-10 and Tiny-ImageNet datasets. Table 10 summarizes the evaluation results. The first one
performs ArchRepair on one single layer of the DNN, and we denote these variants as ‘Layer-1v’ in
Table 10. The second one is our full (complete) version that applies ArchRepair at the block level,
we denote this variant as ‘Block-1v’ in Table 10.

Compared with the original DNNs, the performance of ‘Layer-lv’ is acceptable on CIFAR-10
dataset, as it slightly improves the behaviors on three DNNs (i.e., ResNet-18, ResNet-50, and
DenseNet-121) and only decreases slightly on ResNet-101. The ‘Block-1v’ achieves better perfor-
mance on all of the four DNNs on CIFAR-10, and these results indicate that ArchRepair’s repairing
capability is effective at both levels. The performance on ‘Block-1v’ is better than the ‘Layer-lv’ on all
the four DNNs on two different datasets, especially on the more challenging dataset Tiny-ImageNet,
where ‘Layer-lv’ only shows small improvement on ResNet-18 while ‘Block-lv’ has significant
improvement on all three variants of ResNet. This demonstrates that repairing on one specific layer
cannot fully unleash ArchRepair’s potential while repairing on a block enables to take the advantage
of all components of ArchRepair. Note that even though both ‘Block-1v’ and ‘Layer-lv’ fail to repair
DenseNet-121 on Tiny-ImageNet (as well as all the SOTA baseline methods, see evaluation results
in Table 5), ‘Block-1v’ still performs better than ‘Layer-1v’.

Answer to RQ4: Block-level repairing is more effective than layer-level one towards fully
releasing ArchRepair’s repairing capability. In addition, adjusting the network’s architecture
and weights simultaneously is more effective than only adjusting the weights, especially for
block-level repairing, demonstrating that jointly repairing the block architecture and weights
is a promising research direction for DNN repair.

5.5 Threat to validity

The threats to the validity of this paper could come from the following aspects: 1) The selected
dataset and the used model architectures could be a threat. To mitigate this, we selected popular
datasets as well as diverse architectures to evaluate our method. 2) The selection of the corruption
dataset could be biased, i.e., our method and results may not generalize well on other corruptions.
To counteract this, we tried our best and selected as many as 15 diverse and commonly used
natural corruptions in the standard benchmarks of previous work [25]. 3) Another threat is from

, Vol. 1, No. 1, Article . Publication date: February 2023.



26 Hua QiT, Zhijie WangT, Qing Guo*, Jianlang Chen, FeIiXJuefei-Xui, Fuyuan Zhang, Lei Ma*, and Jianjun Zhao

the implementation of our method as well as the usage of the existing baselines. To mitigate the
threat, we carefully follow the configuration as stated in the original papers or implementation,
respectively. Moreover, our co-authors carefully test and review our code and the configuration of
other tools. Furthermore, to be comprehensive for better understanding the position of ArchRepair,
we perform a large-scale comparative study against 6 SOTA DNN repair techniques. The results
confirm DNN repair could be even more promising and there are still opportunities ahead when
going beyond focusing on repairing DNN weights only.

6 RELATED WORK
6.1 DNN Testing

DNN testing is an important and relevant technique to DNN repair, aiming to detect potential buggy
issues of a DNN. Some recent work focuses on testing criteria design. For example, DeepXplore [46]
proposes the neuron coverage based on the number of activated neurons on given testing data,
where the neuron coverage represents the adequacy of the testing data. Similarly, DeepGauge [41]
proposes multi-granularity testing criteria, which are based on the analysis of neural behaviors.
DeepCT [40] considers the interactions between the different neurons, and further Kim et al. [30]
propose the coverage criteria to measure the surprise of the inputs based on the neuron features at
the layer level. Some researchers [23, 52] recently also point out that the neuron coverage might
fail if most of the neurons are activated by a few test cases, and further in-depth research is still
needed along this line.

Overall, these testing criteria lay the early foundation for testing generation techniques to detect
defects in DNNs. DeepTest [61] generates test cases based on the guidance of neuron coverage.
TensorFuzz [45] proposes a distance-based coverage-guided fuzzing techniques to test DNNs.
Similarly, DeepHunter [65] proposes another coverage-guided testing technique by integrating the
coverage criteria from DeepGauge. Readers can also see [42]. DeepStellar [12] employs the coverage
criteria and fuzzing technique, to test and analyze the recurrent neural network. More discussions
on the progress of machine learning testing can be referred to the recent survey [39, 71]. Different
from these testing techniques, our work mainly focuses on repairing DNNs and enhancing their
robustness and generalization capability, which can be considered as the downstream tasks of DNN
testing.

6.2 Fault Localization on Deep Neuron Network

Fault localization aims to locate the root causes of software failures. Similar approaches have
been widely studied for traditional software, which focuses on developing faults identification
methods such as spectral-based [1, 28, 32, 33, 44, 47, 72], model-based [4, 51], slice-based [2], and
semantic fault localization [9]. Several works recently introduce fault localization on DNNs to find
vulnerable neurons and repair their weights. Representative techniques include sensitivity-based
fault localization [55] and spectrum-based fault localization [13]. Eniser et al. [13] try to identify
suspicious neurons responsible for unsatisfactory DNN performance, which is an early attempt to
introduce fault localization techniques on DNNs with promising results. However, these methods
only consider a fixed DNN architecture and neuron-aware buggy behaviors, which is less flexible
for real-world applications. Our work repairs DNN at a higher level (i.e., block level) by localizing
the vulnerable block and jointly repairing the block architecture and weights, which is novel and
has not been investigated in previous work.

, Vol. 1, No. 1, Article . Publication date: February 2023.



ArchRepair: Block-Level Architecture-Oriented Repairing for Deep Neural Networks 27

6.3 DNN Repair

So far, there are several attempts for repairing DNN models. Inspired by software debugging, Ma et
al. [43] propose a novel model debugging technique for neural network models, which is denoted
as MODE. MODE first performs state differential analysis on hidden layers to identify the faulty
neurons that are responsible for the misclassification. Then, an input selection algorithm is used to
select new input samples to retrain the faulty neurons.

Zhang et al. [70] propose a weight-adjustment approach named Apricot to fix the DNN. Apricot
first generates a set of reduced DNNs from the original model and trains them with a random
subset of the original training dataset, respectively. For each failure example, Apricot separates
reduced DNN models into two partitions, one successfully predicts the label and the other does
not, and takes the mean of the corresponding weight assignments of two partitions. After that,
Apricot automatically adjusts the weight with these mean values. Further, Sohn et al. [55] propose a
search-based repair technique for DNNSs, called Arachne. Unlike other techniques, Arachne directly
manipulates the neuron weights without retraining. Arachne first uses positive and negative
input data to retain correct behavior and generate a patch, respectively. Then uses Particle Swarm
Optimization (PSO) to search and locate faulty neurons, and uses the result of PSO candidate to
update neurons’ weights, and further calculates fitness value based on the outcomes.

Recently, Gao et al. [18] have proposed a new algorithm called SENSEL which uses guided
test generation techniques to address the data augmentation problem for robust generalization of
DNNs under natural environmental variations. Firstly, SENSEI uses a genetic search on a space
of the natural environmental variants of each training input data to identify the worst variant
for augmentation on each epoch. Besides, SENSEI uses a heuristic technique named selective
augmentation, which allows skipping augmentation in certain epochs based on an analysis of the
DNN’s current robustness. Another recent attempt for DNN repair is DeepRepair [68], a method that
repairs the DNN on the image classification task. DeepRepair uses a style-guided data augmentation
for DNN repairing to introduce the unknown failure patterns into the training data to retrain the
model and applies clustering-based failure data generation to improve the effectiveness of data
augmentation.

Our repairing method is orthogonal to existing data-augmentation based methods such as SEN-
SEI [18] and DeepRepair [68], where we focus on repairing DNN from the architecture and weight
perspective. Our method also goes one step further beyond the weight level (e.g., MODE [43],
Apricot [70], and Arachne [55]), and considers at a higher granularity by jointly repairing architec-
ture and weights at the block level, which is demonstrated to be a promising direction for DNN
repairing.

Note that, the field of DNN repairing has been progressing very fast, with some concurrent work
proposed during the enhancement of our work. We would continuously update our supplementary
website [56] to keep the relevant techniques of DNN repairing updated, and hopefully provide a
basis to ease further research in this direction.

6.4 Neural Architecture Search

Neural architecture search (NAS) could be another relevant line of our work, aiming to automatically
design an architecture instead of handcrafting one. Typical NAS includes evolution-based [49, 64],
and reinforcement-learning-based [3] methods. However, the resources RL or evolution-based
methods leveraged are often very expensive and still unaffordable in practice. More recently,
DARTS [37] relaxes the search space to make it continuous so that the search processes can
be performed based on the gradient. Differentiable NAS approaches can significantly reduce
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computational costs. Our search method is based on PC-DARTS [66], a stability-improved variant
of DARTS by introducing a partially connected mechanism.

The purpose of repairing and NAS is very different. The former intends to fix the buggy behaviors
that follow some patterns with generalization capability, while NAS is to design general architecture
automatically for better performance (e.g., energy efficiency). In this paper, we formulate the block-
level joint architecture and weight repairing as a NAS problem, which demonstrates the possibilities
and chances for DNN repair along this direction.

7 CONCLUSION

In this work, we have proposed ArchRepair, an architecture-oriented DNN repair at block level,
which offers a good trade-off between repaired network accuracy and time consumption, compared
to neuron-level, layer-level, and network-level (data augmentation) repairing. To achieve this, two
key problems are identified and solved sequentially, i.e., block localization, and joint architecture
and weights repairing. By jointly repairing both architecture and weights on the candidate block
for repairing, ArchRepair is able to achieve competitive performance compared with 6 SOTA
techniques. Our extensive evaluation has also demonstrated that ArchRepair could not only enhance
the accuracy but also the robustness across various corruption patterns while being cost-effective.
To the best of our knowledge, this work is among the very early attempt at DNN repair by
considering adjusting both the architecture and weights at the ‘block-level’. Our research also
initiates a promising direction for further DNN repair research, towards addressing the current
urgent industrial demands for reliable and trustworthy DNN deployment in diverse real-world
environments.
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