

RESTful Web Services
by Leonard Richardson and Sam Ruby

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Copy Editor: Peggy Wallace
Production Editor: Laurel R.T. Ruma
Proofreader: Laurel R.T. Ruma

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:
May 2007: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The vulpine phalanger and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52926-0
ISBN-13: 978-0-596-52926-0

[M]

http://safari.oreilly.com

This excerpt is protected by copyright law. It is your
responsibility to obtain permissions necessary for any

proposed use of this material. Please direct your
inquiries to permissions@oreilly.com.

mailto:permissions@oreilly.com

CHAPTER 4

The Resource-Oriented Architecture

I’ve shown you the power of REST, but I haven’t shown you in any systematic way how
that power is structured or how to expose it. In this chapter I outline a concrete RESTful
architecture: the Resource-Oriented Architecture (ROA). The ROA is a way of turning
a problem into a RESTful web service: an arrangement of URIs, HTTP, and XML that
works like the rest of the Web, and that programmers will enjoy using.

In Chapter 1 I classified RESTful web services by their answers to two questions. These
answers correspond to two of the four defining features of REST:

• The scoping information (“why should the server send this data instead of that
data?”) is kept in the URI. This is the principle of addressability.

• The method information (“why should the server send this data instead of deleting
it?”) is kept in the HTTP method. There are only a few HTTP methods, and ev-
eryone knows ahead of time what they do. This is the principle of the uniform
interface.

In this chapter I introduce the moving parts of the Resource-Oriented Architecture:
resources (of course), their names, their representations, and the links between them.
I explain and promote the properties of the ROA: addressability, statelessness, con-
nectedness, and the uniform interface. I show how the web technologies (HTTP, URIs,
and XML) implement the moving parts to make the properties possible.

In the previous chapters I illustrated concepts by pointing to existing web services, like
S3. I continue that tradition in this chapter, but I’ll also illustrate concepts by pointing
to existing web sites. Hopefully I’ve convinced you by now that web sites are web
services, and that many web applications (such as search engines) are RESTful web
services. When I talk about abstract concepts like addressability, it’s useful to show
you real URIs, which you can type into your web browser to see the concepts in action.

Resource-Oriented What Now?
Why come up with a new term, Resource-Oriented Architecture? Why not just say
REST? Well, I do say REST, on the cover of this book, and I hold that everything in the

79

Resource-Oriented Architecture is also RESTful. But REST is not an architecture: it’s
a set of design criteria. You can say that one architecture meets those criteria better
than another, but there is no one “REST architecture.”

Up to now, people have tended to mint one-off architectures as they design their serv-
ices, according to their own understandings of REST. The most obvious outcome of
this is the wide variety of REST-RPC hybrid web services that their creators claim are
RESTful. I’m trying to put a stop to that by presenting a set of concrete rules for building
web services that really will be RESTful. In the next two chapters I’ll even show simple
procedures you can follow to turn requirements into resources. If you don’t like my
rules, you’ll at least have an idea of what you can change and stay RESTful.

As a set of design criteria, REST is very general. In particular, it’s not tied to the Web.
Nothing about REST depends on the mechanics of HTTP or the structure of URIs. But
I’m talking about web services, so I explicitly tie the Resource-Oriented Architecture
to the technologies of the Web. I want to talk about how to do REST with HTTP and
URIs, in specific programming languages. If the future produces RESTful architectures
that don’t run on top of the Web, their best practices will probably look similar to the
ROA, but the details will be different. We’ll cross that bridge when we come to it.

The traditional definition of REST leaves a lot of open space, which practitioners have
seeded with folklore. I deliberately go further than Roy Fielding in his dissertation, or
the W3C in their standards: I want to clear some of that open space so that the folklore
has room to grow into a well-defined set of best practices. Even if REST were an ar-
chitecture, it wouldn’t be fair to call my architecture by the same name. I’d be tying my
empirical observations and suggestions to the more general thoughts of those who built
the Web.

My final reason for coming up with a new term is that “REST” is a term used in religious
nerd wars. When it’s used, the implication is usually that there is one true RESTful
architecture and it’s the one the speaker prefers. People who prefer another RESTful
architecture disagree. The REST community fragments, despite a general agreement
on basic things like the value of URIs and HTTP.

Ideally there would be no religious wars, but I’ve seen enough to know that wishing
won’t end them. So I’m giving a distinctive name to my philosophy of how RESTful
applications should be designed. When these ideas are, inevitably, used as fodder in
wars, people who disagree with me can address aspects of the Resource-Oriented Ar-
chitecture separate from other RESTful architectures, and from REST in general. Clarity
is the first step toward understanding.

The phrases “resource-oriented” and “resource-oriented architecture” have been used
to describe RESTful architectures in general.* I don’t claim that “Resource-Oriented
Architecture” is a completely original term, but I think that my usage meshes well with
preexisting uses, and that it’s better to use this term than claim to speak for REST as a
whole.

80 | Chapter 4: The Resource-Oriented Architecture

What’s a Resource?
A resource is anything that’s important enough to be referenced as a thing in itself. If
your users might “want to create a hypertext link to it, make or refute assertions about
it, retrieve or cache a representation of it, include all or part of it by reference into
another representation, annotate it, or perform other operations on it”, then you should
make it a resource.†

Usually, a resource is something that can be stored on a computer and represented as
a stream of bits: a document, a row in a database, or the result of running an algorithm.
A resource may be a physical object like an apple, or an abstract concept like courage,
but (as we’ll see later) the representations of such resources are bound to be
disappointing.

Here are some possible resources:

• Version 1.0.3 of the software release

• The latest version of the software release

• The first weblog entry for October 24, 2006

• A road map of Little Rock, Arkansas

• Some information about jellyfish

• A directory of resources pertaining to jellyfish

• The next prime number after 1024

• The next five prime numbers after 1024

• The sales numbers for Q42004

• The relationship between two acquaintances, Alice and Bob

• A list of the open bugs in the bug database

URIs
What makes a resource a resource? It has to have at least one URI. The URI is the name
and address of a resource. If a piece of information doesn’t have a URI, it’s not a resource
and it’s not really on the Web, except as a bit of data describing some other resource.

* The earliest instance of “resource-oriented” I’ve found is a 2004 IBM developerWorks article by James Snell:
“Resource-oriented vs. activity-oriented Web services” (http://www-128.ibm.com/developerworks/xml/
library/ws-restvsoap/). Alex Bunardzic used “Resource-Oriented Architecture” in August 2006, before this
book was announced: http://jooto.com/blog/index.php/2006/08/08/replacing-service-oriented-architecture-
with-resource-oriented-architecture/. I don’t agree with everything in those articles, but I do acknowledge
their priority in terminology.

† “The Architecture of the World Wide Web” (http://www.w3.org/TR/2004/REC-webarch-20041215/#p39),
which is full of good quotes, incidentally: “Software developers should expect that sharing URIs across
applications will be useful, even if that utility is not initially evident.” This could be the battle cry of the ROA.

What’s a Resource? | 81

http://www-128.ibm.com/developerworks/xml/library/ws-restvsoap/
http://www-128.ibm.com/developerworks/xml/library/ws-restvsoap/
http://www-128.ibm.com/developerworks/xml/library/ws-restvsoap/
http://jooto.com/blog/index.php/2006/08/08/replacing-service-oriented-architecture-with-resource-oriented-architecture/
http://jooto.com/blog/index.php/2006/08/08/replacing-service-oriented-architecture-with-resource-oriented-architecture/
http://www.w3.org/TR/2004/REC-webarch-20041215/#p39
http://www.w3.org/TR/2004/REC-webarch-20041215/#p39

Remember the sample session in Preface, when I was making fun of HTTP 0.9? Let’s
say this is a HTTP 0.9 request for http://www.example.com/hello.txt:

Client request Server response

GET /hello.txt Hello, world!

An HTTP client manipulates a resource by connecting to the server that hosts it (in this
case, www.example.com), and sending the server a method (“GET”) and a path to the
resource (“/hello.txt”). Today’s HTTP 1.1 is a little more complex than 0.9, but it works
the same way. Both the server and the path come from the resource’s URI.

Client request Server response

GET /hello.txt HTTP/1.1
Host: www.example.com

200 OK
Content-Type: text/plain

Hello, world!

The principles behind URIs are well described by Tim Berners-Lee in Universal Re-
source Identifiers—Axioms of Web Architecture (http://www.w3.org/DesignIssues/Ax
ioms). In this section I expound the principles behind constructing URIs and assigning
them to resources.

The URI is the fundamental technology of the Web. There were hyper-
text systems before HTML, and Internet protocols before HTTP, but
they didn’t talk to each other. The URI interconnected all these Internet
protocols into a Web, the way TCP/IP interconnected networks like
Usenet, Bitnet, and CompuServe into a single Internet. Then the Web
co-opted those other protocols and killed them off, just like the Internet
did with private networks.

Today we surf the Web (not Gopher), download files from the Web (not
FTP sites), search publications from the Web (not WAIS), and have
conversations on the Web (not Usenet newsgroups). Version control
systems like Subversion and arch work over the Web, as opposed to the
custom CVS protocol. Even email is slowly moving onto the Web.

The web kills off other protocols because it has something most proto-
cols lack: a simple way of labeling every available item. Every resource
on the Web has at least one URI. You can stick a URI on a billboard.
People can see that billboard, type that URI into their web browsers,
and go right to the resource you wanted to show them. It may seem
strange, but this everyday interaction was impossible before URIs were
invented.

82 | Chapter 4: The Resource-Oriented Architecture

http://www.w3.org/DesignIssues/Axioms
http://www.w3.org/DesignIssues/Axioms
http://www.w3.org/DesignIssues/Axioms
http://www.w3.org/DesignIssues/Axioms

URIs Should Be Descriptive
Here’s the first point where the ROA builds upon the sparse recommendations of the
REST thesis and the W3C recommendations. I propose that a resource and its URI
ought to have an intuitive correspondence. Here are some good URIs for the resources
I listed above:

• http://www.example.com/software/releases/1.0.3.tar.gz

• http://www.example.com/software/releases/latest.tar.gz

• http://www.example.com/weblog/2006/10/24/0

• http://www.example.com/map/roads/USA/AR/Little_Rock

• http://www.example.com/wiki/Jellyfish

• http://www.example.com/search/Jellyfish

• http://www.example.com/nextprime/1024

• http://www.example.com/next-5-primes/1024

• http://www.example.com/sales/2004/Q4

• http://www.example.com/relationships/Alice;Bob

• http://www.example.com/bugs/by-state/open

URIs should have a structure. They should vary in predictable ways: you should not
go to /search/Jellyfish for jellyfish and /i-want-to-know-about/Mice for mice. If a
client knows the structure of the service’s URIs, it can create its own entry points into
the service. This makes it easy for clients to use your service in ways you didn’t think
of.

This is not an absolute rule of REST, as we’ll see in the “Name the Resources” section.
URIs do not technically have to have any structure or predictability, but I think they
should. This is one of the rules of good web design, and it shows up in RESTful and
REST-RPC hybrid services alike.

The Relationship Between URIs and Resources
Let’s consider some edge cases. Can two resources be the same? Can two URIs designate
the same resource? Can a single URI designate two resources?

By definition, no two resources can be the same. If they were the same, you’d only have
one resource. However, at some moment in time two different resources may point to
the same data. If the current software release is 1.0.3, then http://www.example.com/
software/releases/1.0.3.tar.gz and http://www.example.com/software/releases/
latest.tar.gz will refer to the same file for a while. But the ideas behind those two URIs
are different: one of them always points to a particular version, and the other points to
whatever version is newest at the time the client accesses it. That’s two concepts and
two resources. You wouldn’t link to latest when reporting a bug in version 1.0.3.

URIs | 83

A resource may have one URI or many. The sales numbers available at http://
www.example.com/sales/2004/Q4 might also be available at http://www.example.com/
sales/Q42004. If a resource has multiple URIs, it’s easier for clients to refer to the re-
source. The downside is that each additional URI dilutes the value of all the others.
Some clients use one URI, some use another, and there’s no automatic way to verify
that all the URIs refer to the same resource.

One way to get around this is to expose multiple URIs for the same
resource, but have one of them be the “canonical” URI for that resource.
When a client requests the canonical URI, the server sends the appro-
priate data along with response code of 200 (“OK”). When a client
requests one of the other URIs, the server sends a response code 303
(“See Also”) along with the canonical URI. The client can’t see whether
two URIs point to the same resource, but it can make two HEAD re-
quests and see if one URI redirects to the other or if they both redirect
to a third URI.

Another way is to serve all the URIs as though they were the same, but
give the “canonical” URI in the Content-Location response header
whenever someone requests a non-canonical URI.

Fetching sales/2004/Q4 might get you the same bytestream as fetching sales/Q42004,
because they’re different URIs for the same resource: “sales for the last quarter of 2004.”
Fetching releases/1.0.3.tar.gz might give you the exact same bytestream as fetching
releases/latest.tar.gz, but they’re different resources because they represent differ-
ent things: “version 1.0.3” and “the latest version.”

Every URI designates exactly one resource. If it designated more than one, it wouldn’t
be a Universal Resource Identifier. However, when you fetch a URI the server may send
you information about multiple resources: the one you requested and other, related
ones. When you fetch a web page, it usually conveys some information of its own, but
it also has links to other web pages. When you retrieve an S3 bucket with an Amazon
S3 client, you get a document that contains information about the bucket, and infor-
mation about related resources: the objects in the bucket.

Addressability
Now that I’ve introduced resources and their URIs, I can go in depth into two of the
features of the ROA: addressability and statelessness.

An application is addressable if it exposes the interesting aspects of its data set as re-
sources. Since resources are exposed through URIs, an addressable application exposes
a URI for every piece of information it might conceivably serve. This is usually an infinite
number of URIs.

84 | Chapter 4: The Resource-Oriented Architecture

From the end-user perspective, addressability is the most important aspect of any web
site or application. Users are clever, and they’ll overlook or work around almost any
deficiency if the data is interesting enough, but it’s very difficult to work around a lack
of addressability.

Consider a real URI that names a resource in the genre “directory of resources about
jellyfish”: http://www.google.com/search?q=jellyfish. That jellyfish search is just as
much a real URI as http://www.google.com. If HTTP wasn’t addressable, or if the Google
search engine wasn’t an addressable web application, I wouldn’t be able to publish that
URI in a book. I’d have to tell you: “Open a web connection to google.com, type ‘jel-
lyfish’ in the search box, and click the ‘Google Search’ button.”

This isn’t an academic worry. Until the mid-1990s, when ftp:// URIs
became popular for describing files on FTP sites, people had to write
things like: “Start an anonymous FTP session on ftp.example.com. Then
change to directory pub/files/ and download file file.txt.” URIs made
FTP as addressable as HTTP. Now people just write: “Download ftp://
ftp.example.com/pub/files/file.txt.” The steps are the same, but now they
can be carried out by machine.

But HTTP and Google are both addressable, so I can print that URI in a book. You can
read it and type it in. When you do, you end up where I was when I went through the
Google web application.

You can then bookmark that page and come back to it later. You can link to it on a
web page of your own. You can email the URI to someone else. If HTTP wasn’t ad-
dressable, you’d have to download the whole page and send the HTML file as an
attachment.

To save bandwidth, you can set up an HTTP proxy cache on your local network. The
first time someone requests http://www.google.com/search?q=jellyfish, the cache will
save a local copy of the document. The next time someone hits that URI, the cache
might serve the saved copy instead of downloading it again. These things are possible
only if every page has a unique identifying string: an address.

It’s even possible to chain URIs: to use one URI as input to another one. You can use
an external web service to validate a page’s HTML, or to translate its text into another
language. These web services expect a URI as input. If HTTP wasn’t addressable, you’d
have no way of telling them which resource you wanted them to operate on.

Amazon’s S3 service is addressable because every bucket and every object has its own
URI, as does the bucket list. Buckets and objects that don’t exist yet aren’t yet resources,
but they too have their own URIs: you can create a resource by sending a PUT request
to its URI.

The filesystem on your home computer is another addressable system. Command-line
applications can take a path to a file and do strange things to it. The cells in a spreadsheet

Addressability | 85

http://www.google.com/search?q=jellyfish
http://www.google.com
http://www.google.com/search?q=jellyfish

are also addressable; you can plug the name of a cell into a formula, and the formula
will use whatever value is currently in that cell. URIs are the file paths and cell addresses
of the Web.

Addressability is one of the best things about web applications. It makes it easy for
clients to use web sites in ways the original designers never imagined. Following this
one rule gives you and your users many of the benefits of REST. This is why REST-RPC
services are so common: they combine addressability with the procedure-call program-
ming model. It’s why I gave resources top billing in the name of the Resource-Oriented
Architecture: because resources are the kind of thing that’s addressable.

This seems natural, the way the Web should work. Unfortunately, many web applica-
tions don’t work this way. This is especially true of Ajax applications. As I show in
Chapter 11, most Ajax applications are just clients for RESTful or hybrid web services.
But when you use these clients as though they are web sites, you notice that they don’t
feel like web sites.

No need to pick on the little guys; let’s continue our tour of the Google properties by
considering the Gmail online email service. From the end-user perspective, there is only
one Gmail URI: https://mail.google.com/. Whatever you do, whatever pieces of infor-
mation you retrieve from or upload to Gmail, you’ll never see a different URI. The
resource “email messages about jellyfish” isn’t addressable, the way Google’s “web
pages about jellyfish” is.‡ Yet behind the scenes, as I show in Chapter 11, is a web site
that is addressable. The list of email messages about jellyfish does have a URI: it’s https://
mail.google.com/mail/?q=jellyfish&search=query&view=tl. The problem is, you’re not
the consumer of that web site. The web site is really a web service, and the real consumer
is a JavaScript program running inside your web browser.§ The Gmail web service is
addressable, but the Gmail web application that uses it is not.

Statelessness
Addressability is one of the four main features of the ROA. The second is statelessness.
I’ll give you two definitions of statelessness: a somewhat general definition and a more
practical definition geared toward the ROA.

Statelessness means that every HTTP request happens in complete isolation. When the
client makes an HTTP request, it includes all information neccessary for the server to
fulfill that request. The server never relies on information from previous requests. If
that information was important, the client would have sent it again in this request.

‡ Compare the Ajax interface against the more addressable version of Gmail you get by starting off at the URI
https://mail.google.com/mail/?ui=html. If you use this plain HTML interface, the resource “email messages
about jellyfish” is addressable.

§ Other consumers of this web service include the libgmail library for Python (http://
libgmail.sourceforge.net/).

86 | Chapter 4: The Resource-Oriented Architecture

https://mail.google.com/
https://mail.google.com/mail/?q=jellyfish&search=query&view=tl
https://mail.google.com/mail/?q=jellyfish&search=query&view=tl
https://mail.google.com/mail/?ui=html
http://libgmail.sourceforge.net/
http://libgmail.sourceforge.net/
http://libgmail.sourceforge.net/

More practically, consider statelessness in terms of addressability. Addressability says
that every interesting piece of information the server can provide should be exposed as
a resource, and given its own URI. Statelessness says that the possible states of the server
are also resources, and should be given their own URIs. The client should not have to
coax the server into a certain state to make it receptive to a certain request.

On the human web, you often run into situations where your browser’s back button
doesn’t work correctly, and you can’t go back and forth in your browser history. Some-
times this is because you performed an irrevocable action, like posting a weblog entry
or buying a book, but often it’s because you’re at a web site that violates the principle
of statelessness. Such a site expects you to make requests in a certain order: A, B, then
C. It gets confused when you make request B a second time instead of moving on to
request C.

Let’s take the search example again. A search engine is a web service with an infinite
number of possible states: at least one for every string you might search for. Each state
has its own URI. You can ask the service for a directory of resources about mice: http://
www.google.com/search?q=mice. You can ask for a directory of resources about jelly-
fish: http://www.google.com/search?q=jellyfish. If you’re not comfortable creating a URI
from scratch, you can ask the service for a form to fill out: http://www.google.com/.

When you ask for a directory of resources about mice or jellyfish, you don’t get the
whole directory. You get a single page of the directory: a list of the 10 or so items the
search engine considers the best matches for your query. To get more of the directory
you must make more HTTP requests. The second and subsequent pages are distinct
states of the application, and they need to have their own URIs: something like http://
www.google.com/search?q=jellyfish&start=10. As with any addressable resource, you
can transmit that state of the application to someone else, cache it, or bookmark it and
come back to it later.

Figure 4-1 is a simple state diagram showing how an HTTP client might interact with
four states of a search engine.

This is a stateless application because every time the client makes a request, it ends up
back where it started. Each request is totally disconnected from the others. The client
can make requests for these resources any number of times, in any order. It can request
page 2 of “mice” before requesting page 1 (or not request page 1 at all), and the server
won’t care.

By way of contrast, Figure 4-2 shows the same states arranged statefully, with states
leading sensibly into each other. Most desktop applications are designed this way.

That’s a lot better organized, and if HTTP were designed to allow stateful interaction,
HTTP requests could be a lot simpler. When the client started a session with the search
engine it could be automatically fed the search form. It wouldn’t have to send any
request data at all, because the first response would be predetermined. If the client was
looking at the first 10 entries in the mice directory and wanted to see entries 11–20, it

Statelessness | 87

http://www.google.com/search?q=mice
http://www.google.com/search?q=mice
http://www.google.com/search?q=jellyfish
http://www.google.com/
http://www.google.com/search?q=jellyfish&start=10
http://www.google.com/search?q=jellyfish&start=10

could just send a request that said “start=10”. It wouldn’t have to send /search?
q=mice&start=10, repeating the intitial assertions: “I’m searching, and searching for
mice in particular.”

FTP works this way: it has a notion of a “working directory” that stays constant over
the course of a session unless you change it. You might log in to an FTP server, cd to a
certain directory, and get a file from that directory. You can get another file from the
same directory, without having to issue a second cd command. Why doesn’t HTTP
support this?

State would make individual HTTP requests simpler, but it would make the HTTP
protocol much more complicated. An FTP client is much more complicated than an
HTTP client, precisely because the session state must be kept in sync between client
and server. This is a complex task even over a reliable network, which the Internet is
not.

To eliminate state from a protocol is to eliminate a lot of failure conditions. The server
never has to worry about the client timing out, because no interaction lasts longer than

Search form

Request

Response

Initial state

Request

Response

“mice”,
page 2

“jellyfish”

“mice”

Response

Response

Request

Request

Figure 4-1. A stateless search engine

Initial state

“jellyfish”

Search form

“mice”,
page 2

“mice”

Figure 4-2. A stateful search engine

88 | Chapter 4: The Resource-Oriented Architecture

a single request. The server never loses track of “where” each client is in the application,
because the client sends all neccessary information with each request. The client never
ends up performing an action in the wrong “working directory” due to the server keep-
ing some state around without telling the client.

Statelessness also brings new features. It’s easier to distribute a stateless application
across load-balanced servers. Since no two requests depend on each other, they can be
handled by two different servers that never coordinate with each other. Scaling up is
as simple as plugging more servers into the load balancer. A stateless application is also
easy to cache: a piece of software can decide whether or not to cache the result of an
HTTP request just by looking at that one request. There’s no nagging uncertainty that
state from a previous request might affect the cacheability of this one.

The client benefits from statelessness as well. A client can process the “mice” directory
up to page 50, bookmark /search?q=mice&start=50, and come back a week later with-
out having to grind through dozens of predecessor states. A URI that works when you’re
hours deep into an HTTP session will work the same way as the first URI sent in a new
session.

To make your service addressabile you have to put in some work, dissect your
application’s data into sets of resources. HTTP is an intrinsically stateless protocol, so
when you write web services, you get statelessness by default. You have to do something
to break it.

The most common way to break statelessness is to use your framework’s version of
HTTP sessions. The first time a user visits your site, he gets a unique string that identifies
his session with the site. The string may be kept in a cookie, or the site may propagate
a unique string through all the URIs it serves a particular client. Here’s an session cookie
being set by a Rails application:

Set-Cookie: _session_id=c1c934bbe6168dcb904d21a7f5644a2d; path=/

This URI propagates the session ID in a PHP application: http://www.example.com/
forums?PHPSESSID=27314962133.

The important thing is, that nonsensical hex or decimal number is not the state. It’s a
key into a data structure on the server, and the data structure contains the state. There’s
nothing unRESTful about stateful URIs: that’s how the server communicates possible
next states to the client. However, there is something unRESTful about cookies, as I
discuss in “The Trouble with Cookies.” To use a web browser analogy, cookies break
a web service client’s back button.

Think of the query variable start=10 in a URI, embedded in an HTML page served by
the Google search engine. That’s the server sending a possible next state to the client.

But those URIs need to contain the state, not just provide a key to state stored on the
server. start=10 means something on its own, and PHPSESSID=27314962133 doesn’t.
RESTfulness requires that the state stay on the client side, and be transmitted to the

Statelessness | 89

server for every request that needs it. The server can nudge the client toward new states,
by sending stateful links for the client to follow, but it can’t keep any state of its own.

Application State Versus Resource State
When we talk about “statelessness,” what counts as “state”? What’s the difference
between persistent data, the useful server-side data that makes us want to use web
services in the first place, and this state we’re trying to keep off the server? The Flickr
web service lets you upload pictures to your account, and those pictures are stored on
the server. It would be crazy to make the client send every one of its pictures along with
every request to flickr.com, just to keep the server from having to store any state. That
would defeat the whole point of the service. But what’s the difference between this
scenario, and state about the client’s session, which I claim should be kept off the server?

The problem is one of terminology. Statelessness implies there’s only one kind of state
and that the server should go without it. Actually, there are two kinds of state. From
this point on in the book I’m going to distinguish between application state, which
ought to live on the client, and resource state, which ought to live on the server.

When you use a search engine, your current query and your current page are bits of
client state. This state is different for every client. You might be on page 3 of the search
results for “jellyfish,” and I might be on page 1 of the search results for “mice.” The
page number and the query are different because we took different paths through the
application. Our respective clients store different bits of application state.

A web service only needs to care about your application state when you’re actually
making a request. The rest of the time, it doesn’t even know you exist. This means that
whenever a client makes a request, it must include all the application states the server
will need to process it. The server might send back a page with links, telling the client
about other requests it might want to make in the future, but then it can forget all about
the client until the next request. That’s what I mean when I say a web service should
be “stateless.” The client should be in charge of managing its own path through the
application.

Resource state is the same for every client, and its proper place is on the server. When
you upload a picture to Flickr, you create a new resource: the new picture has its own
URI and can be the target of future requests. You can fetch, modify, and delete the
“picture” resource through HTTP. It’s there for everybody: I can fetch it too. The pic-
ture is a bit of resource state, and it stays on the server until a client deletes it.

Client state can show up when you don’t expect it. Lots of web services make you sign
up for a unique string they call an API key or application key. You send in this key with
every request, and the server restricts uses it to restrict you to a certain number of
requests a day. For instance, an API key for Google’s deprecated SOAP search API is
good for 1,000 requests a day. That’s client state: it’s different for every client. Once
you exceed the limit, the behavior of the service changes dramatically: on request 1,000

90 | Chapter 4: The Resource-Oriented Architecture

you get your data, and on request 1,001 you get an error. Meanwhile, I’m on request
402 and the service still works fine for me.

Of course, clients can’t be trusted to self-report this bit of application state: the temp-
tation to cheat is too great. So servers keep this kind of application state on the server,
violating statelessness. The API key is like the Rails _session_id cookie, a key into a
server-side client session that lasts one day. This is fine as far as it goes, but there’s a
scalability price to be paid. If the service is to be distributed across multiple machines,
every machine in the cluster needs to know that you’re on request 1,001 and I’m on
request 402 (technical term: session replication), so that every machine knows to deny
you access and let me through. Alternatively, the load balancer needs to make sure that
every one of your requests goes to the same machine in the cluster (technical term:
session affinity). Statelessness removes this requirement. As a service designer, you only
need to start thinking about data replication when your resource state needs to be split
across multiple machines.

Representations
When you split your application into resources, you increase its surface area. Your users
can construct an appropriate URI and enter your application right where they need to
be. But the resources aren’t the data; they’re just the service designer’s idea of how to
split up the data into “a list of open bugs” or “information about jellyfish.” A web server
can’t send an idea; it has to send a series of bytes, in a specific file format, in a specific
language. This is a representation of the resource.

A resource is a source of representations, and a representation is just some data about
the current state of a resource. Most resources are themselves items of data (like a list
of bugs), so an obvious representation of a resource is the data itself. The server might
present a list of open bugs as an XML document, a web page, or as comma-separated
text. The sales numbers for the last quarter of 2004 might be represented numerically
or as a graphical chart. Lots of news sites make their articles available in an ad-laden
format, and in a stripped-down “printer-friendly” format. These are all different rep-
resentations of the same resources.

But some resources represent physical objects, or other things that can’t be reduced to
information. What’s a good representation for such things? You don’t need to worry
about perfect fidelity: a representation is any useful information about the state of a
resource.

Consider a physical object, a soda machine, hooked up to a web service.‖ The goal is
to let the machine’s customers avoid unneccessary trips to the machine. With the serv-
ice, customers know when the soda is cold, and when their favorite brand is sold out.

‖ This idea is based on the CMU Coke machine (http://www.cs.cmu.edu/%7Ecoke/), which for many years was
observed by instruments and whose current state was accessible through the Finger protocol. The machine
is still around, though at the time of writing its state was not accessible online.

Representations | 91

http://www.cs.cmu.edu/%257Ecoke/
http://www.cs.cmu.edu/%257Ecoke/

Nobody expects the physical cans of soda to be made available through the web service,
because physical objects aren’t data. But they do have data about them: metadata. Each
slot in the soda machine can be instrumented with a device that knows about the flavor,
price, and temperature of the next available can of soda. Each slot can be exposed as a
resource, and so can the soda machine as a whole. The metadata from the instruments
can be used in representations of the resources.

Even when one of an object’s representations contains the actual data, it may also have
representations that contain metadata. An online bookstore may serve two represen-
tations of a book:

1. One containing only metadata, like a cover image and reviews, used to advertise
the book.

2. An electronic copy of the data in the book, sent to you via HTTP when you pay
for it.

Representations can flow the other way, too. You can send a representation of a new
resource to the server and have the server create the resource. This is what happens
when you upload a picture to Flickr. Or you can give the server a new representation
of an existing resource, and have the server modify the resource to bring it in line with
the new representation.

Deciding Between Representations
If a server provides multiple representations of a resource, how does it figure out which
one the client is asking for? For instance, a press release might be put out in both English
and Spanish. Which one does a given client want?

There are a number of ways to figure this out within the constraints of REST. The
simplest, and the one I recommend for the Resource-Oriented Architecture, is to give
a distinct URI to each representation of a resource. http://www.example.com/releases/
104.en could designate the English representation of the press release, and http://
www.example.com/releases/104.es could designate the Spanish representation.

I recommend this technique for ROA applications because it means the URI contains
all information neccessary for the server to fulfill the request. The disadvantage, as
whenever you expose multiple URIs for the same resource, is dilution: people who talk
about the press release in different languages appear to be talking about different things.
You can mitigate this problem somewhat by exposing the URI http://
www.example.com/releases/104 to mean the release as a Platonic form, independent of
any language.

The alternative way is called content negotiation. In this scenario the only exposed URI
is the Platonic form URI, http://www.example.com/releases/104. When a client makes
a request for that URI, it provides special HTTP request headers that signal what kind
of representations the client is willing to accept.

92 | Chapter 4: The Resource-Oriented Architecture

Your web browser has a setting for language preferences: which languages you’d prefer
to get web pages in. The browser submits this information with every HTTP request,
in the Accept-Language header. The server usually ignores this information because
most web pages are available in only one language. But it fits with what we’re trying to
do here: expose different-language representations of the same resource. When a client
requests http://www.example.com/releases/104, the server can decide whether to serve
the English or the Spanish representation based on the client’s Accept-Language header.

The Google search engine is a good place to try this out. You can get
your search results in almost any language by changing your browser
language settings, or by manipulating the hl query variable in the URI
(for instance, hl=tr for Turkish). The search engine supports both con-
tent negotiation and different URIs for different representations.

A client can also set the Accept header to specify which file format it prefers for repre-
sentations. A client can say it prefers XHTML to HTML, or SVG to any other graphics
format.

The server is allowed to use any of this request metadata when deciding which repre-
sentation to send. Other types of request metadata include payment information,
authentication credentials, the time of the request, caching directives, and even the IP
address of the client. All of these might make a difference in the server’s decision of
what data to include in the representation, which language and which format to use,
and even whether to send a representation at all or to deny access.

It’s RESTful to keep this information in the HTTP headers, and it’s RESTful to put it
in the URI. I recommend keeping as much of this information as possible in the URI,
and as little as possible in request metadata. I think URIs are more useful than metadata.
URIs get passed around from person to person, and from program to program. The
request metadata almost always gets lost in transition.

Here’s a simple example of this dilemma: the W3C HTML validator, a web service
available at http://validator.w3.org/. Here’s a URI to a resource on the W3C’s site, a
validation report on the English version of my hypothetical press release: http://
validator.w3.org/check?uri=http%3A%2F%2Fwww.example.com%2Freleases%2F104.en.

Here’s another resource: a validation report on the Spanish version of the press release:
http://validator.w3.org/check?uri=http%3A%2F%2Fwww.example.com%2Freleases%
2F104.es.

Every URI in your web space becomes a resource in the W3C’s web application,
whether or not it designates a distinct resource on your site. If your press release has a
separate URI for each representation, you can get two resources from the W3C: vali-
dation reports for the English and the Spanish versions of the press release.

But if you only expose the Platonic form URI, and serve both representations from that
URI, you can only get one resource from the W3C. That would be a validation report

Representations | 93

http://validator.w3.org/

for the default version of the press release (probably the English one). You’ve got no
way of knowing whether or not the Spanish representation contains HTML formatting
errors. If the server doesn’t expose the Spanish press release as its own URI, there’s no
corresponding resource available on the W3C site. This doesn’t mean you can’t expose
that Platonic form URI: just that it shouldn’t be the only URI you use.

Unlike humans, computer programs are very bad at dealing with representations they
didn’t expect. I think an automated web client should be as explicit as possible about
the representation it wants. This almost always means specifying a representation in
the URL.

Links and Connectedness
Sometimes representations are little more than serialized data structures. They’re in-
tended to be sucked of their data and discarded. But in the most RESTful services,
representations are hypermedia: documents that contain not just data, but links to
other resources.

Let’s take the search example again. If you go to Google’s directory of documents about
jellyfish (http://www.google.com/search?q=jellyfish), you see some search results, and a
set of internal links to other pages of the directory. Figure 4-3 shows a representative
sample of the page.

There’s data here, and links. The data says that somewhere on the Web, someone said
such-and-such about jellyfish, with emphasis on two species of Hawaiian jellyfish. The
links give you access to other resources: some within the Google search “web service,”
and some elsewhere on the Web:

• The external web page that talks about jellyfish: http://www.aloha.com/~life
guards/jelyfish.html. The main point of this web service, of course, is to present
links of this sort.

Internal directory links

Part of the directory

Figure 4-3. Closeup on a page of Google search results

94 | Chapter 4: The Resource-Oriented Architecture

http://www.google.com/search?q=jellyfish
http://www.google.com/search?q=jellyfish
http://www.google.com/search?q=jellyfish

• A link to a Google-provided cache of the extrenal page (the “Cached” link). These
links always have long URIs that point to Google-owned IP addresses, like http://
209.85.165.104/search?q=cache:FQrLzPU0tKQJ...

• A link to a directory of pages Google thinks are related to the external page (http://
www.google.com/search?q=related:www.aloha.com/~lifeguards/jelyfish.html,
linked as “Similar pages”). This is another case of a web service taking a URI as
input.

• A set of navigation links that take you to different pages of the “jellyfish” directory:
http://www.google.com/search?q=jellyfish&start=10, http://www.google.com/
search?q=jellyfish&start=20, and so on.

Earlier in this chapter, I showed what might happen if HTTP was a stateful protocol
like FTP. Figure 4-2 shows the paths a stateful HTTP client might take during a “ses-
sion” with www.google.com. HTTP doesn’t really work that way, but that figure does a
good job of showing how we use the human web. To use a search engine we start at
the home page, fill out a form to do a search, and then click links to go to subsequent
pages of results. We don’t usually type in one URI after another: we follow links and
fill out forms.

If you’ve read about REST before, you might have encountered an axiom from the
Fielding dissertation: “Hypermedia as the engine of application state.” This is what
that axiom means: the current state of an HTTP “session” is not stored on the server
as a resource state, but tracked by the client as an application state, and created by the
path the client takes through the Web. The server guides the client’s path by serving
“hypermedia”: links and forms inside hypertext representations.

The server sends the client guidelines about which states are near the current one. The
“next” link on http://www.google.com/search?q=jellyfish is a lever of state: it shows you
how to get from the current state to a related one. This is very powerful. A document
that contains a URI points to another possible state of the application: “page two,” or
“related to this URI,” or “a cached version of this URI.” Or it may be pointing to a
possible state of a totally different application.

I’m calling the quality of having links connectedness. A web service is connected to the
extent that you can put the service in different states just by following links and filling
out forms. I’m calling this “connectedness” because “hypermedia as the engine of ap-
plication state” makes the concept sound more difficult than it is. All I’m saying is that
resources should link to each other in their representations.

The human web is easy to use because it’s well connected. Any experienced user knows
how to type URIs into the browser’s address bar, and how to jump around a site by
modifying the URI, but many users do all their web surfing from a single starting point:
the browser home page set by their ISP. This is possible because the Web is well con-
nected. Pages link to each other, even across sites.

Links and Connectedness | 95

http://www.google.com/search?q=related:www.aloha.com/~lifeguards/jelyfish.html
http://www.google.com/search?q=related:www.aloha.com/~lifeguards/jelyfish.html
http://www.google.com/search?q=jellyfish&start=10
http://www.google.com/search?q=jellyfish&start=20
http://www.google.com/search?q=jellyfish&start=20
http://www.google.com/search?q=jellyfish

But most web services are not internally connected, let alone connected to each other.
Amazon S3 is a RESTful web service that’s addressible and stateless, but not connected.
S3 representations never include URIs. To GET an S3 bucket, you have to know the
rules for constructing the bucket’s URI. You can’t just GET the bucket list and follow
a link to the bucket you want.

Example 4-1 shows an S3 bucket list that I’ve changed (I added a URI tag) so that it’s
connected. Compare to Example 3-5, which has no URI tag. This is just one way of
introducing URIs into an XML representation. As resources become better-connected,
the relationships between them becomes more obvious (see Figure 4-4).

Example 4-1. A connected “list of your buckets”

<?xml version='1.0' encoding='UTF-8'?>
<ListAllMyBucketsResult xmlns='http://s3.amazonaws.com/doc/2006-03-01/'>
 <Owner>
 <ID>c0363f7260f2f5fcf38d48039f4fb5cab21b060577817310be5170e7774aad70</ID>
 <DisplayName>leonardr28</DisplayName>
 </Owner>
 <Buckets>
 <Bucket>
 <Name>crummy.com</Name>
 <URI>https://s3.amazonaws.com/crummy.com</URI>
 <CreationDate>2006-10-26T18:46:45.000Z</CreationDate>
 </Bucket>
 </Buckets>
</ListAllMyBucketsResult>

All three services expose the same functionality, but their usability increases toward the right.

•Service A is a typical RPC-style service, exposing everything through a single URI. It’s neither addressable
nor connected.

•Service B is addressable but not connected: there are no indications of the relationships
between resources. This might be a REST-RPC hybrid service, or a RESTful service like Amazon S3.

•Service C is addressable and well-connected: resources are linked to each other in ways that (presumably)
make sense. This could be a fully RESTful service.

a b c

Figure 4-4. One service three ways

96 | Chapter 4: The Resource-Oriented Architecture

The Uniform Interface
All across the Web, there are only a few basic things you can do to a resource. HTTP
provides four basic methods for the four most common operations:

• Retrieve a representation of a resource: HTTP GET

• Create a new resource: HTTP PUT to a new URI, or HTTP POST to an existing
URI (see the “POST” section below)

• Modify an existing resource: HTTP PUT to an existing URI

• Delete an existing resource: HTTP DELETE

I’ll explain how these four are used to represent just about any operation you can think
of. I’ll also cover two HTTP methods for two less common operations: HEAD and
OPTIONS.

GET, PUT, and DELETE
These three should be familiar to you from the S3 example in Chapter 3. To fetch or
delete a resource, the client just sends a GET or DELETE request to its URI. In the case
of a GET request, the server sends back a representation in the response entity-body.
For a DELETE request, the response entity-body may contain a status message, or
nothing at all.

To create or modify a resource, the client sends a PUT request that usually includes an
entity-body. The entity-body contains the client’s proposed new representation of the
resource. What data this is, and what format it’s in, depends on the service. Whatever
it looks like, this is the point at which application state moves onto the server and
becomes resource state.

Again, think of the S3 service, where there are two kinds of resources you can create:
buckets and objects. To create an object, you send a PUT request to its URI and include
the object’s content in the entity-body of your request. You do the same thing to modify
an object: the new content overwrites any old content.

Creating a bucket is a little different because you don’t have to specify an entity-body
in the PUT request. A bucket has no resource state except for its name, and the name
is part of the URI. (This is not quite true. The objects in a bucket are also elements of
that bucket’s resource state: after all, they’re listed when you GET a bucket’s repre-
sentation. But every S3 object is a resource of its own, so there’s no need to manipu-
late an object through its bucket. Every object exposes the uniform interface and you
can manipulate it separately.) Specify the bucket’s URI and you’ve specified its repre-
sentation. PUT requests for most resources do include an entity-body containing a
representation, but as you can see it’s not a requirement.

The Uniform Interface | 97

HEAD and OPTIONS
There are three other HTTP methods I consider part of the uniform interface. Two of
them are simple utility methods, so I’ll cover them first.

• Retrieve a metadata-only representation: HTTP HEAD

• Check which HTTP methods a particular resource supports: HTTP OPTIONS

saw the HEAD method exposed by the S3 services’s resources in Chapter 3. An S3 client
uses HEAD to fetch metadata about a resource without downloading the possibly
enormous entity-body. That’s what HEAD is for. A client can use HEAD to check
whether a resource exists, or find out other information about the resource, without
fetching its entire representation. HEAD gives you exactly what a GET request would
give you, but without the entity-body.

There are two standard HTTP methods I don’t cover in this book:
TRACE and CONNECT. TRACE is used to debug proxies, and CON-
NECT is used to forward some other protocol through an HTTP proxy.

The OPTIONS method lets the client discover what it’s allowed to do to a resource.
The response to an OPTIONS request contains the HTTP Allow header, which lays out
the subset of the uniform interface this resource supports. Here’s a sample Allow header:

Allow: GET, HEAD

That particular header means the client can expect the server to act reasonably to a
GET or HEAD request for this resource, but that the resource doesn’t support any other
HTTP methods. Effectively, this resource is read-only.

The headers the client sends in the request may affect the Allow header the server sends
in response. For instance, if you send a proper Authorization header along with an
OPTIONS request, you may find that you’re allowed to make GET, HEAD, PUT, and
DELETE requests against a particular URI. If you send the same OPTIONS request but
omit the Authorization header, you may find that you’re only allowed to make GET
and HEAD requests. The OPTIONS method lets the client do simple access control
checks.

In theory, the server can send additional information in response to an OPTIONS re-
quest, and the client can send OPTIONS requests that ask very specific questions about
the server’s capabilities. Very nice, except there are no accepted standards for what a
client might ask in an OPTIONS request. Apart from the Allow header there are no
accepted standards for what a server might send in response. Most web servers and
frameworks feature very poor support for OPTIONS. So far, OPTIONS is a promising
idea that nobody uses.

98 | Chapter 4: The Resource-Oriented Architecture

POST
Now we come to that most misunderstood of HTTP methods: POST. This method
essentially has two purposes: one that fits in with the constraints of REST, and one that
goes outside REST and introduces an element of the RPC style. In complex cases like
this it’s best to go back to the original text. Here’s what RFC 2616, the HTTP standard,
says about POST (this is from section 9.5):

POST is designed to allow a uniform method to cover the following functions:

• Annotation of existing resources;

• Posting a message to a bulletin board, newsgroup, mailing list, or similar group of
articles;

• Providing a block of data, such as the result of submitting a form, to a data-handling
process;

• Extending a database through an append operation.

The actual function performed by the POST method is determined by the server and is
usually dependent on the Request-URI. The posted entity is subordinate to that URI in
the same way that a file is subordinate to a directory containing it, a news article is
subordinate to a newsgroup to which it is posted, or a record is subordinate to a database.

What does this mean in the context of REST and the ROA?

Creating subordinate resources

In a RESTful design, POST is commonly used to create subordinate resources: resources
that exist in relation to some other “parent” resource. A weblog program may expose
each weblog as a resource (/weblogs/myweblog), and the individual weblog entries as
subordinate resources (/weblogs/myweblog/entries/1). A web-enabled database may
expose a table as a resource, and the individual database rows as its subordinate re-
sources. To create a weblog entry or a database record, you POST to the parent: the
weblog or the database table. What data you post, and what format it’s in, depends on
the service, but as with PUT, this is the point where application state becomes resource
state. You may see this use of POST called POST(a), for “append”. When I say “POST”
in this book, I almost always mean POST(a).

Why can’t you just use PUT to create subordinate resources? Well, sometimes you can.
An S3 object is a subordinate resource: every S3 object is contained in some S3 bucket.
But we don’t create an S3 object by sending a POST request to the bucket. We send a
PUT request directly to the URI of the object. The difference between PUT and POST
is this: the client uses PUT when it’s in charge of deciding which URI the new resource
should have. The client uses POST when the server is in charge of deciding which URI
the new resource should have.

The S3 service expects clients to create S3 objects with PUT, because an S3 object’s
URI is completely determined by its name and the name of the bucket. If the client

The Uniform Interface | 99

knows enough to create the object, it knows what its URI will be. The obvious URI to
use as the target of the PUT request is the one the bucket will live at once it exists.

But consider an application in which the server has more control over the URIs: say, a
weblog program. The client can gather all the information neccessary to create a weblog
entry, and still not know what URI the entry will have once created. Maybe the server
bases the URIs on ordering or an internal database ID: will the final URI be /weblogs/
myweblog/entries/1 or /weblogs/myweblog/entries/1000? Maybe the final URI is based
on the posting time: what time does the server think it is? The client shouldn’t have to
know these things.

The POST method is a way of creating a new resource without the client having to
know its exact URI. In most cases the client only needs to know the URI of a “parent”
or “factory” resource. The server takes the representation from the entity-body and use
it to create a new resource “underneath” the “parent” resource (the meaning of “un-
derneath” depends on context).

The response to this sort of POST request usually has an HTTP status code of 201
(“Created”). Its Location header contains the URI of the newly created subordinate
resource. Now that the resource actually exists and the client knows its URI, future
requests can use the PUT method to modify that resource, GET to fetch a representation
of it, and DELETE to delete it.

Table 4-1 shows how a PUT request to a URI might create or modify the underlying
resource; and how a POST request to the same URI might create a new, subordinate
resource.

Table 4-1. PUT actions

 PUT to a new resource PUT to an existing resource POST

/weblogs N/A (resource already ex-
ists)

No effect Create a new weblog

/weblogs/myweblog Create this weblog Modify this weblog’s settings Create a new weblog
entry

/weblogs/myweblog/
entries/1

N/A (how would you get
this URI?)

Edit this weblog entry Post a comment to this
weblog entry

Appending to the resource state

The information conveyed in a POST to a resource doesn’t have to result in a whole
new subordinate resource. Sometimes when you POST data to a resource, it appends
the information you POSTed to its own state, instead of putting it in a new resource.

Consider an event logging service that exposes a single resource: the log. Say its URI
is /log. To get the log you send a GET request to /log.

Now, how should a client append to the log? The client might send a PUT request
to /log, but the PUT method has the implication of creating a new resource, or

100 | Chapter 4: The Resource-Oriented Architecture

overwriting old settings with new ones. The client isn’t doing either: it’s just appending
information to the end of the log.

The POST method works here, just as it would if each log entry was exposed as a
separate resource. The semantics of POST are the same in both cases: the client adds
subordinate information to an existing resource. The only difference is that in the case
of the weblog and weblog entries, the subordinate information showed up as a new
resource. Here, the subordinate information shows up as new data in the parent’s rep-
resentation.

Overloaded POST: The not-so-uniform interface

That way of looking at things explains most of what the HTTP standard says about
POST. You can use it to create resources underneath a parent resource, and you can
use it to append extra data onto the current state of a resource. The one use of POST
I haven’t explained is the one you’re probably most familiar with, because it’s the one
that drives almost all web applications: providing a block of data, such as the result of
submitting a form, to a data-handling process.

What’s a “data-handling process”? That sounds pretty vague. And, indeed, just about
anything can be a data-handling process. Using POST this way turns a resource into a
tiny message processor that acts like an XML-RPC server. The resource accepts POST
requests, examines the request, and decides to do... something. Then it decides to serve
to the client... some data.

I call this use of POST overloaded POST, by analogy to operator overloading in a pro-
gramming language. It’s overloaded because a single HTTP method is being used to
signify any number of non-HTTP methods. It’s confusing for the same reason operator
overloading can be confusing: you thought you knew what HTTP POST did, but now
it’s being used to achieve some unknown purpose. You might see overloaded POST
called POST(p), for “process.”

When your service exposes overloaded POST, you reopen the question: “why should
the server do this instead of that?” Every HTTP request has to contain method infor-
mation, and when you use overloaded POST it can’t go into the HTTP method. The
POST method is just a directive to the server, saying: “Look inside the HTTP request
for the real method information.” The real information may be in the URI, the HTTP
headers, or the entity-body. However it happens, an element of the RPC style has crept
into the service.

When the method information isn’t found in the HTTP method, the interface stops
being uniform. The real method information might be anything. As a REST partisan I
don’t like this very much, but occasionally it’s unavoidable. By Chapter 9 you’ll have
seen how just about any scenario you can think of can be exposed through HTTP’s
uniform interface, but sometimes the RPC style is the easiest way to express complex
operations that span multiple resources.

The Uniform Interface | 101

You may need to expose overloaded POST even if you’re only using POST to create
subordinate resources or to append to a resource’s representation. What if a single
resource supports both kinds of POST? How does the server know whether a client is
POSTing to create a subordinate resource, or to append to the existing resource’s rep-
resentation? You may need to put some additional method information elsewhere in
the HTTP request.

Overloaded POST should not be used to cover up poor resource design. Remember, a
resource can be anything. It’s usually possible to shuffle your resource design so that
the uniform interface applies, rather than introduce the RPC style into your service.

Safety and Idempotence
If you expose HTTP’s uniform interface as it was designed, you get two useful properties
for free. When correctly used, GET and HEAD requests are safe. GET, HEAD, PUT
and DELETE requests are idempotent.

Safety

A GET or HEAD request is a request to read some data, not a request to change any
server state. The client can make a GET or HEAD request 10 times and it’s the same
as making it once, or never making it at all. When you GET http://www.google.com/
search?q=jellyfish, you aren’t changing anything about the directory of jellyfish resour-
ces. You’re just retrieving a representation of it. A client should be able to send a GET
or HEAD request to an unknown URI and feel safe that nothing disastrous will happen.

This is not to say that GET and HEAD requests can’t have side effects. Some resources
are hit counters that increment every time a client GETs them. Most web servers log
every incoming request to a log file. These are side effects: the server state, and even
the resource state, is changing in response to a GET request. But the client didn’t ask
for the side effects, and it’s not responsible for them. A client should never make a GET
or HEAD request just for the side effects, and the side effects should never be so big
that the client might wish it hadn’t made the request.

Idempotence

Idempotence is a slightly tricker notion. The idea comes from math, and if you’re not
familiar with idempotence, a math example might help. An idempotent operation in
math is one that has the same effect whether you apply it once, or more than once.
Multiplying a number by zero is idempotent: 4 ×0 ×0 ×0 is the same as 4 ×0.# By anal-
ogy, an operation on a resource is idempotent if making one request is the same as

Multiplying a number by one is both safe and idempotent: 4 ×1 ×1 ×1 is the same as 4 ×1, which is the same
as 4. Multiplication by zero is not safe, because 4 ×0 is not the same as 4. Multiplying by any other number
is neither safe nor idempotent.

102 | Chapter 4: The Resource-Oriented Architecture

http://www.google.com/search?q=jellyfish
http://www.google.com/search?q=jellyfish

making a series of identical requests. The second and subsequent requests leave the
resource state in exactly the same state as the first request did.

PUT and DELETE operations are idempotent. If you DELETE a resource, it’s gone. If
you DELETE it again, it’s still gone. If you create a new resource with PUT, and then
resend the PUT request, the resource is still there and it has the same properties you
gave it when you created it. If you use PUT to change the state of a resource, you can
resend the PUT request and the resource state won’t change again.

The practical upshot of this is that you shouldn’t allow your clients to PUT represen-
tations that change a resource’s state in relative terms. If a resource keeps a numeric
value as part of its resource state, a client might use PUT to set that value to 4, or 0, or
−50, but not to increment that value by 1. If the initial value is 0, sending two PUT
requests that say “set the value to 4” leaves the value at 4. If the initial value is 0, sending
two PUT requests that say “increment the value by 1” leaves the value not at 1, but at
2. That’s not idempotent.

Why safety and idempotence matter

Safety and idempotence let a client make reliable HTTP requests over an unreliable
network. If you make a GET request and never get a response, just make another one.
It’s safe: even if your earlier request went through, it didn’t have any real effect on the
server. If you make a PUT request and never get a response, just make another one. If
your earlier request got through, your second request will have no additional effect.

POST is neither safe nor idempotent. Making two identical POST requests to a “fac-
tory” resource will probably result in two subordinate resources containing the same
information. With overloaded POST, all bets are off.

The most common misuse of the uniform interface is to expose unsafe operations
through GET. The del.icio.us and Flickr APIs both do this. When you GET https://
api.del.icio.us/posts/delete, you’re not fetching a representation: you’re modifying the
del.icio.us data set.

Why is this bad? Well, here’s a story. In 2005 Google released a client-side caching tool
called Web Accelerator. It runs in conjunction with your web browser and “pre-fetch-
es” the pages linked to from whatever page you’re viewing. If you happen to click one
of those links, the page on the other side will load faster, because your computer has
already fetched it.

Web Accelerator was a disaster. Not because of any problem in the software itself, but
because the Web is full of applications that misuse GET. Web Accelerator assumed
that GET operations were safe, that clients could make them ahead of time just in case
a human being wanted to see the corresponding representations. But when it made
those GET requests to real URIs, it changed the data sets. People lost data.

There’s plenty of blame to go around: programmers shouldn’t expose unsafe actions
through GET, and Google shouldn’t have released a real-world tool that didn’t work

The Uniform Interface | 103

https://api.del.icio.us/posts/delete
https://api.del.icio.us/posts/delete

with the real-world web. The current version of Web Accelerator ignores all URIs that
contain query variables. This solves part of the problem, but it also prevents many
resources that are safe to use through GET (such as Google web searches) from being
pre-fetched.

Multiply the examples if you like. Many web services and web applications use URIs
as input, and the first thing they do is send a GET request to fetch a representation of
a resource. These services don’t mean to trigger catastrophic side effects, but it’s not
up to them. It’s up to the service to handle a GET request in a way that complies with
the HTTP standard.

Why the Uniform Interface Matters
The important thing about REST is not that you use the specific uniform interface that
HTTP defines. REST specifies a uniform interface, but it doesn’t say which uniform
interface. GET, PUT, and the rest are not a perfect interface for all time. What’s im-
portant is the uniformity: that every service use HTTP’s interface the same way.

The point is not that GET is the best name for a read operation, but that GET means
“read” across the Web, no matter which resource you’re using it on. Given a URI of a
resource, there’s no question of how you get a representation: you send an HTTP GET
request to that URI. The uniform interface makes any two services as similar as any
two web sites. Without the uniform interface, you’d have to learn how each service
expected to receive and send information. The rules might even be different for different
resources within a single service.

You can program a computer to understand what GET means, and that understanding
will apply to every RESTful web service. There’s not much to understand. The service-
specific code can live in the handling of the representation. Without the uniform
interface, you get a multiplicity of methods taking the place of GET: doSearch and
getPage and nextPrime. Every service speaks a different language. This is also the reason
I don’t like overloaded POST very much: it turns the simple Esperanto of the uniform
interface into a Babel of one-off sublanguages.

Some applications extend HTTP’s uniform interface. The most obvious case is Web-
DAV, which adds eight new HTTP methods including MOVE, COPY, and SEARCH.
Using these methods in a web service would not violate any precept of REST, because
REST doesn’t say what the uniform interface should look like. Using them would vio-
late my Resource-Oriented Architecture (I’ve explicitly tied the ROA to the standard
HTTP methods), but your service could still be resource-oriented in a general sense.

The real reason not to use the WebDAV methods is that doing so makes your service
incompatible with other RESTful services. Your service would use a different uniform
interface than most other services. There are web services like Subversion that use the
WebDAV methods, so your service wouldn’t be all alone. But it would be part of a
much smaller web. This is why making up your own HTTP methods is a very, very bad

104 | Chapter 4: The Resource-Oriented Architecture

idea: your custom vocabulary puts you in a community of one. You might as well be
using XML-RPC.

Another uniform interface consists solely of HTTP GET and overloaded POST. To
fetch a representation of a resource, you send GET to its URI. To create, modify, or
delete a resource, you send POST. This interface is perfectly RESTful, but, again, it
doesn’t conform to my Resource-Oriented Architecture. This interface is just rich
enough to distinguish between safe and unsafe operations. A resource-oriented web
application would use this interface, because today’s HTML forms only support GET
and POST.

That’s It!
That’s the Resource-Oriented Architecture. It’s just four concepts:

1. Resources

2. Their names (URIs)

3. Their representations

4. The links between them

and four properties:

1. Addressability

2. Statelessness

3. Connectedness

4. A uniform interface

Of course, there are still a lot of open questions. How should a real data set be split
into resources, and how should the resources be laid out? What should go into the
actual HTTP requests and responses? I’m going to spend much of the rest of the book
exploring issues like these.

That’s It! | 105

