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ABSTRACT

All modern web browsers — Internet Explorer, Firefox, Chrome,
Opera, and Safari — have a core rendering engine written in C++.
This language choice was made because it affords the systems pro-
grammer complete control of the underlying hardware features and
memory in use, and it provides a transparent compilation model.
Unfortunately, this language is complex (especially to new con-
tributors!), challenging to write correct parallel code in, and highly
susceptible to memory safety issues that potentially lead to security
holes.

Servo is a project started at Mozilla Research to build a new
web browser engine that preserves the capabilities of these other
browser engines but also both takes advantage of the recent trends
in parallel hardware and is more memory-safe. We use a new lan-
guage, Rust, that provides us a similar level of control of the un-
derlying system to C+ but which statically prevents many memory
safety issues and provides direct support for parallelism and con-
currency.

In this paper, we show how a language with an advanced type
system can address many of the most common security issues and
software engineering challenges in other browser engines, while
still producing code that has the same performance and memory
profile. This language is also quite accessible to new open source
contributors and employees, even those without a background in
C++ or systems programming. We also outline several pitfalls en-
countered along the way and describe some potential areas for fu-
ture improvement.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation]: Hypertext/Hy-
permedia; D.2.11 [Software Engineering]: Software Architec-
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1. INTRODUCTION

When most web browsers were originally designed, web pages
were mostly static. Modern web browsers do not just display static
pages, but run web applications with complexity similar to native
software. From application suites such as Google Apps' to games
based on the Unreal Engine,> modern browsers are a delivery plat-
form for the types of rich media experiences historically tied to
single hardware and operating system platforms. This shift has
greatly increased the amount and complexity of code in a modern
web engine as well as users’ expectations around performance and
security.

The heart of a modern web browser is its engine, the code re-
sponsible for loading, processing, evaluating, and rendering web
content. There are three major browser engine families:

1. Trident/Spartan, the engine in Internet Explorer [IE]

2. Webkit{WEB]/Blink, the engine in Safari [SAF],
Chrome [CHR], and Opera [OPE]

3. Gecko, the engine in Firefox [FIR]

All of these engines have at their core many millions of lines of C+
code. The use of C+ has enabled all of these browsers to achieve
excellent sequential performance on a single web page, particularly
on desktop computers. But, they all face several challenges:

e On mobile devices with lower processor speed but many
more processors, these browsers do not provide the same
level of interactivity [MTK+ 12, CFMO*1 3].

o In Gecko, roughly 50% of the security critical bugs are mem-
ory use after free, array out of range access, or related to
integer overflow, all mistakes commonly made by even ex-
perienced C++ programmers with access to the best static
analysis tools available.

"https://apps.google.com
Zhttps://www.unrealengine.com/



e As the web has become more interactive, the mostly-
sequential architecture of these engines has made it challeng-
ing to incorporate new features without sacrificing interactiv-

1ty.

e With the growth in the popularity of other languages at the
expense of C+, the number of volunteer contributors to the
core C+ parts of these browser engine open source codebases
has not grown apace with the increase in the size of the code-
base.

Servo [SER] is a new web browser engine designed to ad-
dress the major environment and architectural changes over the last
decade. The goal of the Servo project is to produce a browser that
enables new applications to be authored against the web platform
that run with more safety, better performance, and better power us-
age than in current browsers.

To address memory-related safety issues, we are using a new
systems programming language, Rust [RUS]. In Rust, errors such
as off-by-one array access or memory buffer use after free are pre-
vented by the language and its builtin libraries.

For parallelism and power, we scale across a wide variety of
hardware by building either data- or task-parallelism, as appropri-
ate, into each part of the web platform. Additionally, we are im-
proving concurrency by reducing the simultaneous access to data
structures and using a message-passing architecture between com-
ponents such as the JavaScript engine and the rendering engine that
paints graphics to the screen.

With an average of 5 new contributors per week and several vol-
unteers who have turned into key members of the project, we be-
lieve that Rust has helped Servo to lower the barrier to entry in
systems programming.

Servo is currently over 800k lines of Rust code and implements
enough of the web platform to render and process many pages,
though it is still a far cry from the over 7 million lines of code
in the Mozilla Firefox browser. However, we believe that we have
implemented enough of the web platform to provide an early re-
port on the successes, failures, and open problems remaining in
Servo, from the point of view of experimenting with the new pro-
gramming language, Rust. In this experience report, we discuss
the design and architecture of a modern web browser engine, show
how using the Rust programming language has helped us to address
the engineering challenges we have encountered when building the
browser engine, and also touch on open problems and areas of fu-
ture investigation.

2. BROWSERS

The architecture of all browsers are broadly the same, as de-
manded be the specifications of the web platform and the shared
history and wisdom of browsers and their authors. As such, the
steps Servo uses in Figure 1 to process a web page are similar to
those used in all modern browsers.

2.1 Parsing HTML and CSS

A URL identifies a resource to load. This resource usually con-
sists of HTML, which is then parsed and typically turned into a
Document Object Model (DOM) tree. From an implementation
standpoint, there are two interesting aspects of the parser design
for HTML. First, though the specification allows the browser to
abort on a parse error,® in practice browsers follow the recovery

3http://www.html5rocks.com/en/tutorials/internals/
howbrowserswork/

*https://html.spec.whatwg.org/multipage/#parsing

algorithms described in that specification precisely so that even ill-
formed HTML will be handled in an interoperable way across all
browsers. Second, due to the presence of the <script> tag, the
token stream can be modified during operation. For example, the
below example that injects an open tag for the header and comment
blocks works in all modern browsers.

<html>
<script>
document .write ("<h");
</script>1>
This is a hl title

<script>
document .write ("<!-");
</script>-
This is commented
——>
</html>

This requires parsing to pause until JavaScript code has run to com-
pletion. But since resource loading is such a large factor in the la-
tency of loading many webpages, all modern parsers also perform
speculative token stream scanning and prefetch of resources likely
to be required [WLZC11].

2.2 Styling

After constructing the DOM, the browser uses the styling infor-
mation in linked CSS files and in the HTML to compute a styled
tree of flows and fragments. This flow tree, as it is named in Servo,
describes the layout of DOM elements on the page, and may con-
tain many more flows than previously existed in the DOM. For ex-
ample, when a list item is styled to have an associated bullet, that

bullet will itself be represented in the flow tree, though it is not part
of the DOM.

2.3 Layout

The flow tree is then processed to produce a set of display list
items. These list items are the actual graphical elements, text runs,
etc. in their final on-screen positions. The order in which these
elements are displayed is well-defined by the standard.’

2.4 Rendering

Once all of the elements to appear on screen have been com-
puted, these elements are rendered, or painted, into memory buffers
or directly to graphics surfaces.

2.5 Compositing

The set of memory buffers or graphical surfaces, called layers,
are then transformed and composited together to form a final image
for presentation. These layers are then used to optimize interactive
transformations, such as scrolling and certain animations, by only
redrawing the buffers that have changed and otherwise simply re-
composing the surface that has already been rendered into.

2.6 Scripting

Whether through timers, <script> blocks in the HTML, user
interactions, or other event handlers, JavaScript code may execute
at any point during parsing, layout, and painting or afterwards dur-
ing display. These scripts can modify the DOM tree, which may
require rerunning the layout and painting passes in order to update
the output. Most modern browsers use some form of dirty bit mark-
ing to attempt to minimize the recalculations during this process.

Shttp://www.w3.0rg/TR/CSS21/zindex.html#painting-order
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Figure 1: Processing stages and intermediate representations in a browser engine.

3. RUST

Rust is a statically typed systems programming language most
heavily inspired by the C and ML families of languages [RUS].
Like the C family of languages, it gives the developer fine control
over memory layout and predictable performance. Unlike C pro-
grams, Rust programs are memory safe by default, only allowing
unsafe operations in specially-delineated unsafe blocks. Specifi-
cally, Rust prevents all of the following conditions:

e Dangling pointers
e Data races
e Integer overflow (in debug builds)

Buffer overflow

e Iterator invalidation

Only integer overflow checking and prevention of buffer overflow
require run-time checks, and buffer overflow checks are minimized
idiomatically through the use of iterators.

Beyond performance and safety Rust features the expressive fa-
cilities of modern high level languages such as generics, algebraic
data types, pattern matching, and closures. Abstractions in Rust
are designed to have predictable and minimal performance impact,
approaching the ideal of *zero-cost’ abstractions.

Complete documentation and a language reference for Rust are
available at: http://doc.rust-lang.org/.

3.1 Feature overview

Rust’s syntax draws heavily from C++, and many of its features
will be familiar to modern programmers, though the details of both
often differ in significant and interesting ways. What follows is a
brief primer of the basics needed to understand the examples in this
paper.

Local variables, declared with 1let, are immutable by default.
To mutate a variable in Rust it must be declared mut. Both scalars
and aggregates like structs are value types, allocated on the stack.
The heap is accessed through library container types, the simplest
of which are Box, a pointer to a value on the heap, and Vec,
a dynamically-sized array of values. Both mutability and simple
heap types are illustrated in Figure 2.

Rust’s most prominent influence from the ML languages are al-
gebraic data types, along with pattern matching to destructure them
into their components. Rust calls algebraic data types enums, and
they are the union of multiple types, each of which contains their
own fields. Although superficially similar to C unions, they are
significantly different in that instances of enums cannot be indis-
criminately cast between variants. To access the values in an enum
one must employ the match expression to first check the variant,

let max = 100;
let mut counter = 0;
let mut boxes: Vec<Box<i32>> = Vec::new();
while counter < max {
// Append a boxed integer to a vector
boxes.push (Box: :new (counter) ) ;
counter += 1;

Figure 2: Mutability and heap allocation.

enum Canvas2dMsg {
BeginPath,
ArcTo (Point2D<£f32>, Point2D<f32>, £32),
EndPath

let msg = Canvas2dMsg: :BeginPath;

match msg {
BeginPath => { }
EndPath => { }
ArcTo (point_a, point_b, radius) => {
draw_arc_to(point_a, point_b, radius);

}

Figure 3: Pattern matching to access the fields of an enum vari-
ant.

then bind references to its interior fields. In Figure 3 the values
of a drawing message are extracted from an enum for further pro-
cessing, with the bindings to the enum’s fields established to the
left of the fat arrow (=>) and the block of code operating on those
bindings to the right.

Both enums and structs (which are substantially similar to C
structs) may have associated instance methods and static methods,
called with the dot (.) operator and the double-colon (: :) opera-
tor, respectively. Static methods are common in Rust as they are
used to construct values, conventionally with a method called new,
asin Point2D::new (0.0, 0.0). Notably, methods in Rust
are dispatched statically, making them eligible for inlining and ag-
gressive optimization. Methods are never dispatched dynamically
through a function pointer in Rust unless explicitly requested.

Like many modern languages, Rust has first-class closures,
anonymous functions that capture their environment. These use a
compact notation with the arguments between pipes, and the body



// The single value we'll work with.
let val = Box::foo(0);

// Move the value in ‘val' to a new location
let moved_val = val;

// ‘val' is no longer accessible.

// The following will not compile.

// println( " {}'', val);

// Borrow and share the value immutably
// several times. This 1s done 1iIn a new
// block to limit the scope of the borrows.
{
let sharedl = &moved_val;
let shared2 = &moved_val;
println! (" {}'', sharedl);
println! (" {}'"', shared2);
// Borrows are released at the end
// of the block.

Figure 4: Ownership and borrowing.

between brackets: |a, b| { a + b }. The closure that takes
no arguments and performs no computation is thus signified by the
adorable series of characters, | | { }. Rust closures are translated as
efficiently as other types in Rust and can be inlined and optimized
as well as any function.

Finally, Rust has a hygienic macro system, much more pow-
erful than the C preprocessor. Macro invocations look like func-
tion invocations where the function name is appended with a bang
(!). They are not functions, but are instead expanded in place at
compile time, and perform syntactic transformations unavailable
to functions. The common method of performing console output,
println! ("{}", foo), is a macro. See Figure 5 for an ex-
ample of closures and macros.

3.2 Ownership

The features of Rust described so far are common to many lan-
guages. Rust’s novelty is in ownership and borrowing. In Rust,
each value is uniquely owned by a single variable, and assigning
that value to another variable transfers ownership of, and access to,
that value to the receiver. Rust calls this transfer of ownership a
move. When a value is allowed to go out of scope it is destroyed.
In this way ownership-based resource management is like RAII® in
C++.

To make using variables ergonomic, Rust can create temporary
references to values with the ampersand (&) operator. References
are simply pointers with limited scope, and may be either im-
mutable or mutable. They are the only type of pointer in safe Rust.
The rules for borrowing ensure that no two pointers are ever mu-
tably aliased, and that invalid memory is never accessible. This is
what makes Rust memory safe. See the example in Figure 4.

Ownership-based type systems are a kind of affine type system.
Rust’s model is influenced by the ownership model of Singularity
0OS [HLAT05], as well as the region systems in the Cyclone lan-
guage [GMJ102] and MLKit [TB98].

3.3 Ownership and concurrency

8“resource acquisition is initialization”

fn main() {
// An owned pointer to a heap-allocated
// integer
let mut data = Box::new(0);

// The ‘move  keyword here moves ownership of

// the environment into the closure.
thread: :spawn (move || {

*data = xdata + 1;
}) i
// error: accessing moved value
print! ("{}", data);

Figure 5: Code that will not compile because it attempts to ac-
cess mutable state from two threads.

fn main () {
// An immutable shared pointer
// (atomically reference counted)
let data = Arc::new(l);
let shared_data = data.clone();

thread: :spawn (move || {
println! ("{}", =*shared_data);

}) i
print! ("{}", =xdata);

Figure 6: Safely reading immutable state from two threads.

Because the Rust type system provides very strong guarantees
about memory aliasing, Rust code is memory safe even in concur-
rent and multithreaded environments, and, perhaps surprisingly, is
even guaranteed to be data-race free.

In concurrent programs, the data operated on by distinct threads
is also itself distinct: under Rust’s ownership model, data cannot
be owned by two threads at the same time. For example, the code
in Figure 5 generates a static error from the compiler because after
the first thread is spawned, the ownership of data has been trans-
ferred into the closure associated with that thread and is no longer
available in the original thread.

On the other hand, the immutable value in Figure 6 can be bor-
rowed and shared between multiple threads as long as those threads
don’t outlive the scope of the data, and even mutable values can
be shared as long as they are owned by a type that preserves the
invariant that mutable memory is unaliased, as with the mutex in
Figure 7.

With relatively few simple rules, ownership in Rust enables fool-
proof task parallelism, but also data parallelism, by partitioning
vectors and lending mutable references across threads. Rust’s
concurrency abstractions are entirely implemented in libraries,
and though many advanced concurrent patterns such as work-
stealing [ABP98] cannot be implemented in safe Rust, they can
usually be encapsulated in a memory-safe interface.

4. SERVO

A crucial test of Servo is performance — Servo must be at least
as fast as other browsers at similar tasks to succeed, even if it pro-
vides additional memory safety. Table 1 shows a preliminary com-



fn main() {
// A heap allocated integer protected by an
// atomically-reference-counted mutex
let data = Arc::new (Mutex::new(0));
let shared_data = data.clone();

thread: :spawn (move || {
*shared_data.lock () .unwrap() = 1;

)i

print! ("{}", =*data.lock() .unwrap());

Figure 7: Safely mutating state from two threads.

Site || Gecko | Servo 1 thread | Servo 4 threads
Reddit 250 100 55
CNN 105 50 35

Table 1: Performance of Servo against Mozilla’s Gecko render-
ing engine on the layout portion of some common sites. Times
are in milliseconds, where lower numbers are better.

parison of the performance of the layout stage (described in Sec-
tion 2) of rendering several web sites in Mozilla Firefox’s Gecko
engine compared to Servo, taken on a modern MacBook Pro. While
these measurements only reflect layout performance, they show
that Servo is already faster than Gecko with even a single thread,
and achieves speedups with multiple threads.

In the remainder of this section, we cover specific areas of
Servo’s design or implementation that make use of Rust and the
impacts and limitations of these features.

4.1 Rust’s syntax

Rust has struct and enum types (similar to Standard ML’s record
types and datatypes [MTHMO97]) as well as pattern matching.
These types and associated language features provide two large
benefits to Servo over traditional browsers written in C+. First,
creating new abstractions and intermediate representations is syn-
tactically easy, so there is very little pressure to tack additional
fields into classes simply to avoid creating a large number of new
header and implementation files. More importantly, pattern match-
ing with static dispatch is typically faster than a virtual function
call on a class hierarchy. Virtual functions can have an in-memory
storage cost associated with the virtual function tables (sometimes
many thousands of bytes’) but more importantly incur indirect
function call costs. All C+ browser implementations transform
performance-critical code to either use the final specifier wher-
ever possible or specialize the code in some other way to avoid this
cost.

Rust also attempted to stay close to familiar syntax, but did not
require full fidelity or easy porting of programs from languages
such as C+. This approach has worked well for Rust because it has
prevented some of the complexity that arose in Cyclone [GMJ02]
with their attempts to build a safe language that required minimal
porting effort for even complicated C code.

4.2 Compilation strategy

"https://chromium.googlesource.com/chromium/blink/+/
c048c5¢7¢2578274d82faf96e9ebdadcS55e428da

Many statically typed implementations of polymorphic lan-
guages such as Standard ML of New Jersey [AMO91] and
OCAML [Ler00] have used a compilation strategy that optimizes
representations of data types when polymorphic code is monomor-
phically used, but defaults to a less efficient style otherwise, in or-
der to share code [Ler90]. This strategy reduces code size, but leads
to unpredictable performance and code, as changes to a codebase
that either add a new instantiation of a polymorphic function at a
given type or, in a modular compilation setting, that expose a poly-
morphic function externally, can change the performance of code
that is not local to the change being made.

Monomorphization, as in MLton [CFJW], instead instantiates
each polymorphic code block at each of the types it is applied
against, providing predictable output code to developers at the cost
of some code duplication. This strategy is used by virtually all C++
compilers to implement templates, so it is proven and well-known
within systems programming. Rust also follows this approach, al-
though it improves on the ergonomics of C+ templates by embed-
ding serialized generic function ASTs within “compiled” binaries
so that library consumers can instantiate that AST directly instead
of re-parsing the C+ header files for the templates.

Rust also chooses a fairly large default compilation unit size. A
Rust crate is subject to whole-program compilation [Wee06], and
is optimized as a unit. A crate may comprise hundreds of modules,
which provide namespacing and abstraction. Module dependencies
within a crate are allowed to be cyclic.

The large compilation unit size slows down compilation and es-
pecially diminishes the ability to build code in parallel. However,
it has enabled us to write Rust code that easily matches the sequen-
tial speed of its C+ analog, without requiring the Servo developers
to become compiler experts. Servo contains thousands of modules
from over 200 crates.

4.3 Memory management

As described in Section 3, Rust has an affine type system that
ensures every value is used at most once. One result of this fact is
that in the more than two years since Servo has been under devel-
opment, we have encountered zero use-after-free memory bugs in
safe Rust code. Given that these bugs make up such a large portion
of the security vulnerabilities in modern browsers, we believe that
even the additional work required to get Rust code to pass the type
checker initially is justified.

Rust also requires that all memory is initialized. Failure to ini-
tialize memory also has led to crashes in Firefox.®

One area for future improvement is related to allocations that are
not owned by Rust itself. Today, we simply wrap raw C pointers
in unsafe blocks when we need to use a custom memory alloca-
tor or interoperate with the SpiderMonkey JavaScript engine from
Gecko. We have implemented wrapper types and compiler plugins
that restrict incorrect uses of these foreign values, but they are still
a source of bugs and one of our largest areas of unsafe code.’

Additionally, Rust’s ownership model assumes that there is a sin-
gle owner for each piece of data. However, many data structures do
not follow that model, in order to provide multiple traversal APIs
without favoring the performance of one over the other. For ex-
ample, a doubly-linked list contains a back pointer to the previous
element to aid in traversals in the opposite direction. Many opti-
mized hashtable implementations also have both hash-based access
to items and a linked list of all of the keys or values. In Servo, we
have had to use unsafe code to implement data structures with this

8https://bugzilla.mozilla.org/show_bug.cgi?id=1088731
*https://blog.mozilla.org/research/2014/08/26/
javascript-servos-only-garbage-collector/



Language || Lines of Code

C or C+ 1,187,939
Rust 816,158
HTML or JavaScript 248,768

Table 2: Lines of code in Servo (October 2015)

form, though we are typically able to provide a safe interface to
users.

4.4 Language interoperability

Rust has nearly complete interoperability with C code, both ex-
posing code to and using code from C programs. The ability to use
C code has allowed us to smoothly integrate with many browser li-
braries, which has been critical for bootstrapping a browser without
rewriting all of the lower-level libraries immediately, such as graph-
ics rendering code, the JavaScript engine, font selection code, etc.
Additionally, interoperation with C is required for components of
a browser engine such as media decoders for DRM content, which
are sometimes delivered by vendors as a binary along with a C
API. Table 2 shows the breakdown between current lines of Rust
code (including generated code that handles interfacing with the
JavaScript engine) and C code. This table also includes test code,
though the majority of that code is in HTML and JavaScript.

In the future, we hope to expose our Rust libraries written for
Servo to C, in order to reuse them in the Firefox web browser. A
first potential library is our Rust-based URL parser.'” While URL
parsing seems like a simple and secure task, an audit of the public
security bugs'! shows that all four of the ones that come from URL
parsing are related to either indexing out of range of a raw memory
buffer or using data that had already been freed — both of which
are prevented by Rust code.

There are two limitations in the language interoperability that
pose challenges for Servo today. First, Rust cannot currently ex-
pose varargs-style functions to C code. Second, Rust cannot com-
pile against C+ code. In both cases, Servo uses C wrapper code to
call into the code that Rust cannot directly reach. While this ap-
proach is not a large problem for varargs-style functions, it defeats
many of the places where the C+ code has been crafted to ensure the
code is inlined into the caller, resulting in degraded performance.
We intend to fix this through cross-language inlining, taking advan-
tage of the fact that both rustc and clang++ can produce output
in the LLVM intermediate representation [LLV], which is subject
to link-time optimization. We have demonstrated this capability at
small scale, but have not yet deployed it within Servo.

4.5 Libraries and abstractions

Many high-level languages provide abstractions over I/O, thread-
ing, parallelism, and concurrency. Rust provides functionality that
addresses each of these concerns, but they are designed as thin
wrappers over the underlying services, in order to provide a pre-
dictable, fast implementation that works across all platforms. Much
like other modern browsers, Servo contains many of its own spe-
cialized implementations of library functions that are tuned for the
specific use cases of web browsers. This exhibits the control that
Rust provides the programmer — high level abstractions are avail-
able, but should the need arise for a specialized abstraction, it can
be written with ease by using lower-level constructs. For example,
we have special “small” vectors that allow instantiation with a de-

nttps://github.com/servo/rust-url
"Firefox public security bugs: http://mzl.1a/1GkOiIC

match self.state {
states::Data => loop {
match get_char! (self) {
'¢' => go! (self: consume_char_ref),
'<'" => go! (self: to TagOpen),
'"\O' => go! (self: error; emit '\0'"),
¢} => go! (self: emit c),

Figure 8: Incremental HTML tokenizer rules, written in a suc-
cinct form using macros. Macro invocations are of the form
identifier!(...).

fault inline size, as there are use cases where we create many thou-
sands of vectors, nearly none of which have more than 4 elements.
In that case, removing the extra pointer indirection — particularly
if the values are of less than pointer size — can be a significant
space savings. We also have our own work-stealing library that has
been tuned to work on the DOM and flow trees during the process
of styling and layout, as described in Section 2. It is our hope that
this code might be useful to other projects as well, though it is fairly
browser-specific today.

Concurrency is available in Rust in the form of CML-style chan-
nels [Rep91], but with a separation between the reader and writer
ends of the channel. This separation allows Rust to enforce a
multiple-writer, single-reader constraint, both simplifying and im-
proving the performance of the implementation over one that sup-
ports multiple readers. We have structured the entire Servo browser
engine as a series of threads that communicate over channels,
avoiding unsafe explicitly shared global memory for all but a sin-
gle case (reading properties in the flow tree from script, an opera-
tion whose performance is crucially tested in many browser bench-
marks).

Many other systems programs have struggled with the com-
plexity that arises in systems that have many concurrent threads.
This complexity comes in the form of difficulty reasoning about
whether a protocol will terminate, whether a message will eventu-
ally be handled, etc. Fortunately, Rust has a library that implements
session types, which allow expressing a concurrent communica-
tion protocol in the type system and having the compiler enforce
it [JML15]. We are just starting to use this library in Servo to man-
age the complexity of concurrency.

4.6 Macros

Rust provides a hygienic macro system. Macros are defined us-
ing a declarative, pattern-based syntax [KW87]. The macro sys-
tem has proven invaluable; we have defined more than one hundred
macros throughout Servo and its associated libraries.

For example, our HTML tokenizer rules, such as those shown
in Figure 8, are written in a macro-based domain specific language
that closely matches the format of the HTML specification.'? An-
other macro handles incremental tokenization, so that the state ma-
chine can pause at any time to await further input. If no next char-
acter is available, the get _char ! macro will cause an early return
from the function that contains the macro invocation. This careful
use of non-local control flow, together with the overall expression-
oriented style, makes Servo’s HTML tokenizer unusually succinct
and comprehensible.

The Rust compiler can also load compiler plugins written in
Rust. These can perform syntactic transformations beyond the ca-

https://html.spec. whatwg.org/multipage/syntax.html#
tokenization



pabilities of the hygienic pattern-based macros. Compiler plug-
ins use unstable internal APIs, so the maintenance burden is high
compared to pattern-based macros. Nevertheless, Servo uses pro-
cedural macros for a number of purposes, including building per-
fect hash maps at compile time,'> interning string literals, and
auto-generating GC trace hooks. Despite the exposure to internal
compiler APIs, the deep integration with tooling makes procedural
macros an attractive alternative to the traditional systems metapro-
gramming tools of preprocessors and code generators.

4.7 Project-specific static analysis

Compiler plugins can also provide “lint” checks'* that use the
same infrastructure as the compiler’s built-in warnings. This allows
project-specific safety or style checks to integrate deeply with the
compiler. Lint plugins traverse a typechecked abstract syntax tree
(AST), and they can be enabled/disabled within any lexical scope,
the same way as built-in warnings.

Lint plugins provide some essential guarantees within Servo. Be-
cause our DOM objects are managed by the JavaScript garbage col-
lector, we must add GC roots for any DOM object we wish to ac-
cess from Rust code. Interaction with a third-party GC written in
C+ is well outside the scope of Rust’s built-in guarantees, so we
bridge the gap with lint plugins. These capabilities enable a safer
and more correct interface to the SpiderMonkey garbage collector.
For example, we can enforce at compile time that, during the trac-
ing phase of garbage collection, all Rust objects visible to the GC
will report all contained pointers to other GC values, avoiding the
threat of incorrectly collecting reachable values. Furthermore, we
restrict the ways our wrappers around SpiderMonkey pointers can
be manipulated, thus turning potential runtime memory leaks and
ownership semantic API mismatches into static compiler errors in-
stead.

As the “lint” / “warning” terminology suggests, these checks
may not catch all possible mistakes. Ad-hoc extensions to a type
system cannot easily guarantee soundness. Rather, lint plugins are
a lightweight way to catch mistakes deemed particularly common
or damaging in practice. As plugins are ordinary libraries, mem-
bers of the Rust community can share lint checks that they have
found useful.'s

Future plans include refining our safety checks for garbage col-
lected values, such as flagging invalid ownership transference,
and introducing compile-time checks for constructs that are non-
optimal in terms of performance or memory usage.

4.8 Integer overflow

While more rare than memory safety bugs, overflowing an in-
teger is still a source of some bugs in modern systems software.
In Rust, integer overflow is checked by default in debug builds,
and we have caught several potential bugs simply by compiling the
code and running our tests with debugging enabled in our automa-
tion systems.

4.9 New contributors

As mentioned in Section 1, Servo gains roughly 5 new contrib-
utors per week. While part of that is due to tremendous outreach
efforts on the part of the team, we believe that the accessibility of
Rust to non-systems programmers plays a large role as well. Al-
most none of our new contributors come to Servo with C+ expe-
rience, and nearly a third of our full-time staff members did not
program in it professionally before beginning work on Servo.

Bhttps://github.com/sfackler/rust-phf
Yhttp://doc.rust-lang.org/book/plugins. html#lint-plugins
Bhttps://github.com/Manishearth/rust-clippy

4.10 Modular development

Most large systems projects have a monorepo design for their
source code control (SCC) and build system. That is, all of the
millions of lines of code that make them up live in a single SCC
system and use a toplevel build system that drives it all in one step.
This organization is great for developers on the system, as they can
make coordinated changes to many parts of the system and com-
plete them in one step. However, it has meant that many parts of
the browser engine, such as the HTML parser, CSS selector match-
ing, or URL parsing, could not easily be separated out and reused
by other projects, so there are separate projects (which do not typ-
ically implement quite the same standards as the implementations
in browsers!) that attempt to provide these facilities to other pro-
grams.

In Servo, we instead use a polyrepo design, which is inherited
from Rust’s default tooling. Our source code is stored across many
repositories on GitHub'®, and we use Rust’s Cargo'” build system
to compile, link, and manage the dependencies between all of the
parts that make up Servo. While this design has the downside that
coordinated changes spanning multiple parts of the system take
many steps, it has the advantage that many of Servo’s submodules
are used and contributed to by developers who do not directly work
on Servo.

S. OPEN PROBLEMS

While this work has discussed many challenges in browser de-
sign and our current progress, there are many other interesting open
problems.

5.1 Just-in-time code

JavaScript engines dynamically produce native code that is in-
tended to execute more efficiently than an interpreted strategy. Un-
fortunately, this area is a large source of security bugs. These bugs
come from two sources. First, there are potential correctness is-
sues. Many of these optimizations are only valid when certain
conditions of the calling code and environment hold, and ensur-
ing the specialized code is called only when those conditions hold
is non-trivial. Second, dynamically producing and compiling na-
tive code and patching it into memory while respecting all of the
invariants required by the JavaScript runtime (e.g., the garbage col-
lector’s read/write barriers or free vs. in-use registers) is also a
challenge.

5.2 Unsafe code correctness

Today, when we write unsafe code in Rust there is limited val-
idation of memory lifetimes or type safety within that code block.
However, many of our uses of unsafe code are well-behaved trans-
lations of either pointer lifetimes or data representations that cannot
be annotated or inferred in Rust. We are very interested in addi-
tional annotations that would help us prove basic properties about
our unsafe code, even if these annotations require a theorem prover
or ILP solver to check.

5.3 Incremental computation

As mentioned in Section 2, all modern browsers use some com-
bination of dirty bit marking and incremental recomputation heuris-
tics to avoid reprocessing the full page when a mutation is per-
formed. Unfortunately, these heuristics are not only frequently the
source of performance differences between browsers, but they are
also a source of correctness bugs. A library that provided a form

Yhttp://www.github.com
http://crates.io



of self adjusting computation suited to incremental recomputation
of only the visible part of the page, perhaps based on the Adap-
ton [HPHF14] approach, seems promising.

6. RELATED BROWSER RESEARCH

The ZOOMM browser was an effort at Qualcomm Research
to build a parallel browser, also focused on multicore mobile de-
vices [CFMO™13]. This browser includes many features that we
have not yet implemented in Servo, particularly around resource
fetching. They also wrote their own JavaScript engine, which we
have not done. Servo and ZOOMM share an extremely concurrent
architecture — both have script, layout, rendering, and the user
interface operating concurrently from one another in order to max-
imize interactivity for the user. Parallel layout is one major area
that was not investigated in the ZOOMM browser, but is a focus of
Servo. The other major difference is that Servo is implemented in
Rust, whereas ZOOMM is written in C+, similarly to most modern
browser engines.

Ras Bodik’s group at the University of California Berkeley
worked on a parallel browsing project (funded in part by Mozilla
Research) that focused on improving the parallelism of lay-
out [MB10]. Instead of our approach to parallel layout, which fo-
cuses on multiple parallel tree traversals, they modeled a subset of
CSS using attribute grammars. They showed significant speedups
with their system over a reimplementation of Safari’s algorithms,
but we have not used this approach due to questions of whether
it is possible to use attribute grammars to both accurately model
the web as it is implemented today and to support new features as
they are added. Servo uses a very similar CSS selector matching
algorithm to theirs.

7. CONCLUSION

In this experience report, we have described our experiences us-
ing the new Rust programming language to develop Servo. We can-
not yet quantify the amount of additional work that is required by
the stricter typesystem to author Rust code instead of C or C+. But,
we have found that the Rust language is accessible to new develop-
ers who only have experience in C+, Python, or JavaScript — even
for writing core performance- and memory-sensitive libraries. Fur-
ther, with a relatively small team and short time, we have written
a browser engine that is increasingly competitive both in perfor-
mance and functionality with other modern browser engines.

The strongest evidence that Rust is not too expensive to write,
though, is that it can statically verify the absence of memory safety
errors. Other systems projects — including all currently shipping
browser engines — have spent great amounts of time writing and
reviewing their C or C+ code, written fuzzers, and used internal and
external static analysis tools, but their security vulnerabilities are
still primarily memory safety errors. For projects where memory
safety errors need to be eliminated, Rust is a superior choice.
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