
Controlled chaos: Predicting
object addresses in Chrome
(without breaking a sweat)

POC2022 / Controlled chaos: Predicting object addresses in Chrome (without breaking a sweat)
@m-y-mo / Nov 10-11 2022

Who am I?
Man Yue Mo

● Works at GitHub Security Lab, focus on Chrome and
Android security

● Most work can be found at the GitHub Security Lab
website: https://securitylab.github.com/research/ and
at GitHub blog: https://github.blog/author/mymo/

https://securitylab.github.com/research/
https://github.blog/author/mymo/

What this talk is about
● Getting compressed (lower 32 bits) addresses of

objects in V8, both builtin objects, (e.g. object maps)
and user allocated objects

● Getting addresses of executable region (e.g. compiled
JIT code)

● “Bruteforcing” the top 32 bit address

Use cases
● Bugs with write primitive or UAF that allows calling of

virtual function. For example, exploiting UAF in blink
usually need to know addresses to controlled data (e.g.
address of user allocated V8 object) and executable
memory region (e.g. jump to rop gadgets etc.)

● Less often to have V8 bug that doesn’t also give info
leak primitive

● So need to know both compressed address and top 32
bits

Historic context
● Side channel attack: Pre

spectre [1]

ASLR on the line:
Practical Cache Attacks
on the MMU [2]

Historic context
● Side channel attack:

Spectre and meltdown

Historic context
● Side channel attack: Spectre and meltdown:

“Our research reached the conclusion that, in principle,
untrusted code can read a process’s entire address
space using Spectre and side channels.”

-- A year with Spectre: a V8 perspective:
https://v8.dev/blog/spectre

https://v8.dev/blog/spectre

Historic context
• Bypassing ASLR using

Oilpan’s conservative
garbage collector [3]

Historic context
We've thought about this and have decided to
WontFix this bug, even though it's real … While this
is a new avenue, and particularly convenient, we
already have to plan for a world in which ASLR is
bypassable. (Bummer!)” [4]

Present context
● Nothing new, can be

achieved via
Spectre/Meltdown

● But can be done a lot
simpler

● Comically simple, in fact

Chaos
“… branch of mathematics focused on underlying
patterns and deterministic laws, of dynamical systems,
that are highly sensitive to initial conditions, that were
once thought to have completely random states of
disorder and irregularities.”

-- Wikipedia “Chaos theory”

What is the V8 Heap
● Area of 4GB virtual memory (VirtualMemory)
● Aligned to 4GB, i.e. all lower 32 bits zero at the start of

area
● Memory allocator use for allocating the memory

(MemoryAllocator)
● MemoryAllocator is the interface to allocate memory

from the heap

Structure of V8 Heap
● Divided into different spaces, e.g. New space, Old

space
● Spaces use the MemoryAllocator of heap to allocate

backing stores
● Backing stores are allocated as MemoryChunk
● MemoryChunk contains metadata such as chunk

header.
● Spaces are created in Heap::SetupSpaces when the

renderer process is initialized

Structure of V8 Heap

MemoryChunk MemoryChunk

VirtualMemory

MMemoryAllocator

New space Old space

Data vs Code
● Two different kinds of spaces: data (non executable)

and code (executable)
● MemoryAllocator contains two PageAllocator:

data_page_allocator and code_page_allocator
● data_page_allocator allocates data (non executable)

pages from the VirtualMemory of the heap
● code_page_allocator allocates code memory

(executable) from outside the heap

Structure of V8 Heap

MemoryChunk MemoryChunk

VirtualMemory

Mdata_page_allocator

New space Old space

Code memory

MemoryChunk

code_page_allocator

Code space

Data spaces
● NEW_SPACE: Most newly allocated Objects
● OLD_SPACE: New objects moved to old space after

garbage collection, but some objects, like
WasmInstance allocated in OLD_SPACE right away

● NEW/OLD_LO(LargetObject)_SPACE: Objects larger
than certain threshold (kMaxRegularHeapObjectSize)

● MAP_SPACE: maps for objects

Data spaces
● Different behaviour for allocating backing stores
● New space is a SemiSpaceNewSpace and allocates

backing store at creating time
● Other spaces derived directly from PageSpace or

Space and allocate backing store on the first object
allocation

SemiSpaceNewSpace
● Backing store allocated as MemoryChunk at

construction time
● Constructor calls SemiSpace::Commit to allocate the

backing store

SemiSpaceNewSpace

Page* new_page =
heap()->memory_allocator()->AllocatePage(

 MemoryAllocator::AllocationMode::kUsePool, this,
NOT_EXECUTABLE);

 ...

memory_chunk_list_.PushBack(new_page);

SemiSpaceNewSpace
● Page (Subclass of MemoryChunk) allocated using

MemoryAllocator of heap, then added to
memory_chunk_list_

● memory_chunk_list_ used for setting current_page_ in
SemiSpace::Reset, which is where objects are
allocated

● The very first space to be allocated

Old space and Map space
● Backing stores not allocated when spaces are created
● Instead, allocated when object is allocated

Old space and Map space
AllocateRaw

AllocateRawSlow

EnsureAllocation

Unable to allocate (No backing store)

Allocate backing store

Old space and Map space
● During initialization of renderer process, built-in objects

are allocated in both Old space and Map space, so
their backing stores are still allocated during
initialization

Large object space
● Similar to Old space and Map space, backing store is

only allocated when object is allocated
● No large object is allocated during initialization, so

backing store only allocated in Javascript (i.e. we
control when it is allocated)

Initialization order
● Heap and spaces are created in Isolate::Init when

renderer is created
● Heap::SetUp: Allocates the VirtualMemory region for

both the heap and the Code space and creates
MemoryAllocator

● Heap::SetUpSpaces: Create the data spaces, the
backing store of NEW_SPACE allocated here

● DeserializeIntoIsolate: Deserialize heap snapshot to
create built-in objects, maps etc. OLD_SPACE and
MAP_SPACE backing store allocated here

MemoryAllocator
● Use data_page_allocator_ and code_page_allocator_ to

allocate backing stores
● data_page_allocator_ allocates from heap (4GB

VirtualMemory region)
● code_page_allocator_ allocates from a separate region
● Order of allocation is fixed
● What kind of randomness is involved?

MemoryChunk allocation
● MemoryAllocator::AllocateUninitializedChunk:

#ifdef V8_COMPRESS_POINTERS

 // When pointer compression is enabled, spaces are expected to be at a

 // predictable address (see mkgrokdump) so we don't supply a hint and rely on

 // the deterministic behaviour of the BoundedPageAllocator.

 void* address_hint = nullptr;

#else

 …

MemoryChunk allocation
● MemoryAllocator::AllocateUninitializedChunk:

 Address base =

 AllocateAlignedMemory(chunk_size, area_size, MemoryChunk::kAlignment,

 executable, address_hint, &reservation);

address_hint == 0 for compressed pointers =>
Chunk (compressed) addresses not randomized

MemoryChunk allocation
● MemoryAllocator::AllocateAlignedMemory:

 v8::PageAllocator* page_allocator = this->page_allocator(executable);

 VirtualMemory reservation(page_allocator, chunk_size, hint, alignment);

page_allocator: data_page_allocator_ or code_page_allocator_ depending on executable

hint: Zero for compressed pointer

page_allocator is a BoundedPageAllocator

MemoryChunk allocation
● AllocatePages: Used by VirtualMemory constructor to

allocate backing region

 if (FLAG_randomize_all_allocations) { //Only for testing

 hint = AlignedAddress(page_allocator->GetRandomMmapAddr(), alignment);

 }

 void* result = nullptr;

 for (int i = 0; i < kAllocationTries; ++i) {

 result = page_allocator->AllocatePages(hint, size, alignment, access);

hint == 0

MemoryChunk allocation
● BoundedPageAllocator::AllocatePages: Use

RegionAllocator to allocate the pages
● Allocator with a free list that initially consists of the

whole region
● When allocation is made, regions in the free list that is

large enough is used. The region is split and the
remaining region goes back to the free list

RegionAllocator
Free list

Free list

Free list

Free

Allocate

V8 Heap after initialization
New space Old space Map space

First new
object

First old
object

JSArray map

Compressed address
For example, run this JS code (tested 107.0.5304.87):

 function load() {

 %DebugPrint([1,2]);

 }

Compressed address

Large Object space

0x280000: New large object space offset

0x2138: Chunk header size

Code space
● Backing store allocated using CodeRange, which is a

VirtualMemoryCage separated from the heap
● Integrated into the heap by using the

code_page_allocator_
● code_page_allocator_ is a v8::PageAllocator and not a

BoundedPageAllocator (i.e. different type from the
data_page_allocator_)

Code space
● code_page_allocator_ is not a BoundedPageAllocator

but a v8::PageAllocator

bool CodeRange::InitReservation(v8::PageAllocator* page_allocator,

 size_t requested) {

 if (V8_EXTERNAL_CODE_SPACE_BOOL) {

 page_allocator = GetPlatformPageAllocator();

 }

Overwrites page_allocator (code_page_allocator_)

Code space
● Backing store allocated during Heap::Setup, at

CodeRange::InitReservation

params.requested_start_hint =

 GetCodeRangeAddressHint()->GetAddressHint(requested, allocate_page_size);

 if (!VirtualMemoryCage::InitReservation(params)) return false;

requested_start_hint used as a hint to allocate backing
store

Code space
● GetCodeRangeAddressHint()->GetAddressHint()
● Tries to look for an address near the region where the

builtin code is stored

Code space
● Address hint used by code_page_allocator_ to allocate

backing store
● code_page_allocator_ (v8::PageAllocator) uses

partition_alloc::AllocPages
● Code region size:

#elif V8_TARGET_ARCH_ARM64

constexpr size_t kMaximalCodeRangeSize =

 (COMPRESS_POINTERS_BOOL && !V8_EXTERNAL_CODE_SPACE_BOOL) ? 128 * MB

 : 256 * MB;

●

Code space
● partition_alloc::AllocPages:
● Two or Three tries to allocate pages at the hinted

address.
● Hinted address updated to a new random address on

failure
● Often not enough space to allocate code space near

the initial hinted address
● Use random hint most of the time

Code space
● On failure, GetRandomPageBase is used to generate

new random hint
● Returns a masked result

uintptr_t GetRandomPageBase() {

 …

 random &= internal::ASLRMask();

 random += internal::ASLROffset();

}

Code space
● ASLRMask:

Windows: (1 << 47) (>= windows 8.10)

 (1 << 43) (< windows 8.10)

MacOS: (1 << 38)

Linux/ChromeOS: (1 << 46)

Code space
● ASLRMask:

Android: (1 << 30) (both 64 and 32 bits)

Code space alignment: (1 << 28) (256 MB), same as
Code space size

4 different possible “random” locations

Code space
For example, run this JS code (Tested 107.0.5304.54):

 function foo(a, b) { return a + b;}

 function load() {

 %DebugPrint([1,2]);

 //Needs both to allocate JIT code

 for (let i = 0; i < 20000; i++) foo(1, 2);

 x = foo(3, 4);

 }

Code space

Top 32 bits
● V8 VirtualMemoryCage reserved in

IsolateAllocator::InitializeOncePerProcess
● When heap sandbox is configured, uses

sandbox->address_space()->AllocatePages

Address base = sandbox->address_space()->AllocatePages(

 sandbox->base(), params.reservation_size, params.base_alignment,

 PagePermissions::kNoAccess);

Top 32 bits
● Uses

GetProcessWidePtrComprCage()->InitReservation
otherwise

 if (!GetProcessWidePtrComprCage()->InitReservation(params,

 existing_reservation)) {

Top 32 bits
● Either way, uses OS::GetRandomMmapAddr to obtain

address hint to map the virtual memory

#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64

 raw_addr &= uint64_t{0x3FFFFFFFF000};

Address is random and masked to 46 bits. On Arm64,
address space is 39 bits, so hint is almost certain to fail
and the first free address is used => Fixed once per
boot (Memory layout depends on Zygote on Android)

Entropy summary
● Compressed pointer addresses in data space (Object

map, JS objects (New, Old, Large): Predictable and
deterministic depends on version

● Code space location: “Randomized” to 4 possible
locations on Android

● Top 32 bit entropy: 14 bit for x64, once per boot fixed
with 1 << 7 = 128 possibilities

Bruteforcing top 32 bits
● OK if only compressed address is needed
● How to get top 32 bits address? (e.g. Use in blink)
● 1 / 128 or even 1 / 4 is not good enough
● Chrome renderer actually is “fault tolerant”

Bruteforcing top 32 bits
● Ki Chan Ahn: Making a Stealth Exploit by abusing

Chrome’s Site Isolation [5]
● Site Isolation => Separate renderer process for each

different origin
● Create many iframes with different hosts to guess the

top 32 bits
● Wrong guess crashes iframe, but does not affect main

frame, iframe can be restarted
● Can bruteforce small entropy

Bruteforcing top 32 bits
● Android does not have full site isolation
● Site isolation possible since M92
● By default, different origins shared same process
● Various ways to use site isolation

Cross-Origin-Opener-Policy
(COOP) header

● Stated in documentation:
https://security.googleblog.com/2021/07/protecting-m
ore-with-site-isolation.html

● Only works for main frame 😔
bool NavigationRequest::ShouldRequestSiteIsolationForCOOP() {

 // COOP isolation can only be triggered from main frames. COOP headers

 // aren't honored in subframes.

 if (!IsInMainFrame()) return false;

https://security.googleblog.com/2021/07/protecting-more-with-site-isolation.html
https://security.googleblog.com/2021/07/protecting-more-with-site-isolation.html

Sandbox iframe
● Not implemented on Android (as of M 107) 😔

bool SiteIsolationPolicy::AreIsolatedSandboxedIframesEnabled() {

 return !IsSiteIsolationDisabled(SiteIsolationMode::kPartialSiteIsolation) &&

 UseDedicatedProcessesForAllSites() &&

 base::FeatureList::IsEnabled(features::kIsolateSandboxedIframes);

}

UseDedicatedProcessForAllSites => Full site isolation, not on Android

kIsolateSandBoxedIframes disabled on Android

Origin-Agent-Cluster header

bool NavigationRequest::IsOptInIsolationRequested() {

 if (!SiteIsolationPolicy::IsOriginAgentClusterEnabled())

 return false;

 return response_head_->parsed_headers->origin_agent_cluster ==

 network::mojom::OriginAgentClusterValue::kTrue;

}

const base::Feature kOriginIsolationHeader{"OriginIsolationHeader",
base::FEATURE_ENABLED_BY_DEFAULT};

Origin-Agent-Cluster header
● Feature enabled by default
● Can be used in iframe
● Determined by a header

res.writeHead(200, { 'Content-Type': 'text/html',
'Origin-Agent-Cluster': '?1' });

Works for both 32 and 64 bit Chrome on Android

Summary
● Compressed addresses (lower 32 bits) are fixed and

depends only on Chrome version
● Top 32 bits and Code space can be bruteforce using

site isolation
● On Android, code space mostly in 4 locations

References
1. https://bugs.chromium.org/p/chromium/issues/detail?i

d=665930
2. https://download.vusec.net/papers/anc_ndss17.pdf
3. https://bugs.chromium.org/p/chromium/issues/detail?i

d=1144662
4. https://bugs.chromium.org/p/chromium/issues/detail?i

d=1144662#c18

https://bugs.chromium.org/p/chromium/issues/detail?id=665930
https://bugs.chromium.org/p/chromium/issues/detail?id=665930
https://download.vusec.net/papers/anc_ndss17.pdf
https://bugs.chromium.org/p/chromium/issues/detail?id=1144662
https://bugs.chromium.org/p/chromium/issues/detail?id=1144662
https://bugs.chromium.org/p/chromium/issues/detail?id=1144662
https://bugs.chromium.org/p/chromium/issues/detail?id=1144662

References
5. https://blog.exodusintel.com/2019/01/22/exploiting-the

-magellan-bug-on-64-bit-chrome-desktop/?fbclid=IwA
R0WiWjsUnun8AuipENIUCMwTvWl35I7rAgsTflQTecma
zElNoCAYvm0BsA

https://blog.exodusintel.com/2019/01/22/exploiting-the-magellan-bug-on-64-bit-chrome-desktop/?fbclid=IwAR0WiWjsUnun8AuipENIUCMwTvWl35I7rAgsTflQTecmazElNoCAYvm0BsA
https://blog.exodusintel.com/2019/01/22/exploiting-the-magellan-bug-on-64-bit-chrome-desktop/?fbclid=IwAR0WiWjsUnun8AuipENIUCMwTvWl35I7rAgsTflQTecmazElNoCAYvm0BsA
https://blog.exodusintel.com/2019/01/22/exploiting-the-magellan-bug-on-64-bit-chrome-desktop/?fbclid=IwAR0WiWjsUnun8AuipENIUCMwTvWl35I7rAgsTflQTecmazElNoCAYvm0BsA
https://blog.exodusintel.com/2019/01/22/exploiting-the-magellan-bug-on-64-bit-chrome-desktop/?fbclid=IwAR0WiWjsUnun8AuipENIUCMwTvWl35I7rAgsTflQTecmazElNoCAYvm0BsA

