
Quotient Filters: Approximate 
Membership Queries on the GPU

Afton Geil
University of California, Davis

GTC 2016



Outline

● What are approximate membership queries and 
how are they used?

● Background on quotient filters
● Quotient filter implementation on the GPU
● Performance results
● Conclusions & Future Work



Problem

● You run a web service with user accounts, and 
you allow users to choose their own unique 
usernames. 

● When someone chooses a username, you need 
to make sure it is not already being used.

● The data is too large to be stored in memory, so 
it must be stored on disk, which means slow 
access times.

● Use a approximate membership query to 
quickly tell the user whether they need to pick 
different username.



Approximate Membership Queries 
(AMQs)

● Fast, small data structures for testing set 
membership

● Saves space and utilizes memory hierarchy to 
improve performance

● Want to know if item is in the set without 
retrieving the data from disk

● Applications in databases, networking, file 
systems, and more 



Approximate Membership Queries 
(AMQs)

● AMQs return false positives with small, tunable 
probability

– False positive- AMQ says the item is in the 
set, but it is not

● No false negatives
– False negative- AMQ says the item is not in 

the set, but it actually is

● Answer membership queries with “item is 
probably in the dataset” or “item is not in 
dataset”



Bloom Filters

● The most well-known AMQ
● Bit array stores items using a set of hash 

functions
● No deletes
● Simple GPU implementation



So what is a quotient filter?

● Like a Bloom filter, a quotient filter is a type of 
hash table.

● Each item is stored in a compressed format in a 
single slot in the hash table.

● Each slot also contains extra bits to handle 
collisions.



Quotient Filter Terms

● Quotient / Canonical slot
● Remainder
● Metadata bits
● Run
● Cluster
● How to find items in the quotient filter



Quotient Filter Basics

Image source: Bender, et al., 2012. "Don't thrash: how to cache your hash on flash".



Quotient Filter Basics

● Hash key; divide result into two parts:

– q most significant bits = quotient, f
q

– r least significant bits = remainder, f
r

● Quotient → canonical slot
● Remainder → value stored in QF
● Elements hash to the same slot → shift to the 

right



Quotient Filter Basics

● Run- group of items 
with same canonical 
slot

● Cluster- group of runs 
that have all been 
shifted



Quotient Filter Basics

● Metadata- 3 bits used to resolve collisions



Metadata Bits: How to Deal with 
Collisions

● is_occupied: set when the slot is the 
canonical slot for a value stored in the filter 
(although it may not be stored in this particular 
slot).

● is_continuation: set when the slot holds a 
remainder that is not the first in a run.

● is_shifted: set when the slot holds a 
remainder that is not in its canonical slot.



Lookup Algorithm

● Check canonical slot, f
q

– If empty, item is not in filter

– If occupied, item might be in filter → continue



Lookup Algorithm

● Search to left, looking for beginning of cluster
– Look for is_shifted = false

– Count number of runs passed along the way 
by counting is_occupied bits



Lookup Algorithm

● Search right to find desired run
– Each is_continuation = 0 marks the 

start of a run

● Check slots in run for remainder, f
r



Cluster Length



Quotient Filter Advantages

● Much greater memory locality
● Can recover the keys from the data stored in 

the filter. This allows us to:
– Delete items

– Re-size the filter

– Merge quotient filters



Challenges for Mutable Data 
Structures on the GPU

● Hard to avoid collisions when making changes 
in parallel

● Usually easier to just do a complete rebuild
● Can the advantage of better memory locality 

win out against the restrictions of avoiding 
collisions? 

● Limited memory (< 12 GB)



Quotient Filters on the GPU

● Great memory locality
● Lookups are embarassingly parallel 
● Inserts are much more difficult

– All consecutive items to right of canonical slot 
may be modified

– All consecutive items to the left and right of 
canonical slot may be read



Finding Parallelism in Modifications

● Varying numbers of bits/item → not all stored in 
the same word

– Limit ourselves to number of bits/slot divisible 
by 8 to simplify and maximize available 
parallelism

● Items will be shifted to the right when new ones 
are inserted, so we must make sure two inserts 
do not overlap.

● Superclusters- independent regions 
– Separated by empty slots

– Insert one item per supercluster at a time



Finding Superclusters

● Let each slot have an indicator bit; initialize to 0.
● Each slot in filter checks its own value and slot 

to its left. If the slot is occupied and the slot to 
its left is empty, start of supercluster → set 
indicator bit to 1.

● Next, use prefix sum over indicator bits to label 
each slot with its supercluster number.



Supercluster Bidding & Inserts

● Supercluster bidding
– Array with one item per supercluster

– Each element in insert queue writes its index 
to its supercluster

– Whichever thread wins gets its value sent to 
insert kernel

● Run insert kernel for winning values
● Remove these items from the queue
● Loop → parallelism reduced as filter gets fuller



Results: Performance Degrades as QF 
Fills Up



Results: Performance Comparison 
with Bloom Filter

BloomGPU Quotient Filter Improvement

Inserts [Mops/s] 53.8 15.7 0.3x

Lookups [Mops/s] 55.0 163 3x



Results: Analysis

● Bloom filter performance is independent of 
occupancy level

● False positive rate for BF is dependent on 
fullness, whereas for QF it depends on number 
of remainder bits

● BloomGPU filters are 5x size of QF for same 
false positive

● Traditional BF is 10-25% smaller than QF



Which AMQ to use?



Conclusions

● Insert performance limited by parallelism → 
high filter occupancy hurts twice as much

● BloomGPU beats us at inserts
● Our quotient filter implementation has faster 

lookups and uses less memory than BloomGPU
● Lookups are usually more frequent and 

performance-critical than inserts, so QF should 
be better in many cases



Future Work

● Speeding up inserts
● Merge two quotient filters- see how 

performance compares to normal batch inserts
● More real world datasets
● Cascade filters



Thanks!

Questions?

angeil@ucdavis.edu


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

