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Abstract

We study an online linear optimization (OLO) problem in which the learner is
provided access to K “hint” vectors in each round prior to making a decision. In
this setting, we devise an algorithm that obtains logarithmic regret whenever there
exists a convex combination of the K hints that has positive correlation with the
cost vectors. This significantly extends prior work that considered only the case
K = 1. To accomplish this, we develop a way to combine many arbitrary OLO
algorithms to obtain regret only a logarithmically worse factor than the minimum
regret of the original algorithms in hindsight; this result is of independent interest.

1 Introduction

In this paper we consider a variant of the classic online linear optimization (OLO) problem [28]. In
OLO, at each time step, an algorithm must play a point xt in some convex set X ✓ Rd, and then
it is presented with a cost vector ct and incurs loss hct, xti. This process repeats for T time steps.
The algorithm’s performance is measured via the regret relative to some comparison point u 2 X ,
defined as

P
T

t=1hct, xt � ui.
This problem is of fundamental interest in a variety of fields. OLO algorithms are directly applicable
for solving the learning with expert advice problem as well as online convex optimization [4]. Further,
in machine learning, one frequently encounters stochastic convex optimization problems, which
may be solved via online convex optimization through the online-to-batch conversion [3]. Many
of the popular optimization algorithms used in machine learning practice today (e.g., [10, 18]) can
be analyzed within the OLO framework. For more details and further applications, we refer the
interested reader to the excellent texts [4, 12, 24].

OLO is well-understood from an algorithmic viewpoint. For the vanilla version of the problem,
algorithms with regret O(

p
T ) are known [28, 16] and this bound is tight [4]. An interesting line of

research has been to identify situations and conditions where the regret can be substantially smaller
than
p
T . Towards this, Dekel et al. [9] proposed the study of OLO augmented with hints; their work

was motivated by an earlier work of Hazan and Megiddo [14]. In their setup, the algorithm has access
to a hint at each time step before it responds and this hint is guaranteed to be more than ↵-correlated
with the cost vector. They obtained an algorithm with a regret of O(d/↵ · log T ), where d is the
dimension of the space. Very recently, Bhaskara et al. [2] generalized their results to the case when
the hints can be arbitrary, i.e., not necessarily weakly positively correlated at each time step. They
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obtain an algorithm with a dimension-free regret bound of roughly O(
p
B/↵ · log T ), where B is the

number of (bad) time steps when the hints are less than ↵-correlated with the cost vector.

While this line of work gives a promising way to go beyond
p
T regret, in many situations, it is not

clear how to obtain a hint sequence that correlates well with the cost vector in most time steps. Prior
work on optimism [13, 23, 26] has suggested using costs from earlier time steps, costs from earlier
batches, or even from other learning algorithms. This suggests that it is often possible to obtain
multiple sources that provide hint sequences, and we may hope that an appropriate combination of
them correlates well with the cost vector in most time steps.

In this work, we focus on this natural setting in which multiple (arbitrary) hints are available to the
algorithm at each time step. If some aggregate of the hints is helpful, we would like to perform as
well as if we knew this aggregate a priori. As we discuss in Section 3.2, this is difficult because the
benefit of aggregating multiple hints is a nonlinear function of the benefits of the individual hints.
Even if all the hints are individually bad, an algorithm may be able to gain significantly from using
some convex combination of the hints.

Our results. Let K be the number of hints available at each time step. We obtain an online learning
algorithm for the constrained case, where the responses of the algorithm must be inside the unit
ball. Our algorithm obtains a regret of roughly O(

p
B/↵ · log T + (log T +

p
(log T )(logK))/↵),

where B is the number of time steps when the best convex combination of the hints is less than
↵-correlated with the cost vector. We refer to Theorem 5 for the formal guarantees. We also obtain
lower bounds showing the dependence of the regret on both K and ↵ is essentially tight (Section 3.3).

Our algorithm is designed in two stages. In the first stage, we assume that the optimal threshold ↵
is known. We build an algorithm based on carefully defining a smoothed hinge loss function that
captures the performance over the entire simplex of hints and then using Mirror Descent on the losses.
The second stage eliminates the assumption on knowing ↵ by developing a new combiner algorithm.
This is a general randomized procedure that combines a collection of online learning algorithms and
achieves regret only logarithmically worse than the minimum regret of the original algorithms. (This
combiner is of independent interest and we show a few applications outside our main theme.)

For the unconstrained setting (defined formally below), we develop an algorithm that achieves a
(relative) regret of roughly O(log T · (

p
B/↵ +

p
logK/↵)), where B is once again defined as

before. Our algorithm thus competes with the best convex combination of the hints.

2 Preliminaries

Let [T ] = {1, . . . , T}. In the classical online learning setting, at each time t 2 [T ], an algorithm
A responds with a vector xt 2 Rd. After the response, a cost vector ct 2 Rd is revealed and the
algorithm incurs a cost of hct, xti. We assume that kctk  1, 8t  T , where k · k always indicates
the `2-norm unless specified otherwise. The regret of the algorithm A for a vector u 2 Rd is

RA(u,~c) = RA(u,~c, T ) =
TX

t=1

hct, xt � ui.

A hint is a vector h 2 Rd, khk  1 and ~h = (h1, h2, . . .) is a sequence of hints. We consider the
case when there are multiple hints available to the algorithm A. In each round t, the algorithm A
gets K hints h(1)

t
, . . . , h(K)

t
before it responds with xt. While some of the hint sequences might be

good and others might be misleading, our goal is to design an algorithm that does nearly as well as
if we were just given the best sequence of hints. Let H = {~h(1), . . . ,~h(K)} denote the set of hint
sequences. The regret definition is the same as always and is denoted RA(u,~c | H).

Let �K ⇢ RK denote the simplex. Given a sequence ~w = (w1, w2, . . .) of vectors in �K , we write
H(~w) to indicate the sequence of hints with tth hint

P
K

i=1 w
(i)
t

· h(i)
t

, where w(i)
t

indicates the ith
component of wt. If ~w is a constant sequence (w,w, . . .), then we write H(w) instead of H(~w).

Let ↵ > 0 be a fixed threshold. For a fixed hint sequence ~h, we define B
~h

↵
to be the set of all time

steps where the hint ht is bad, i.e., less than ↵-correlated with the cost ct. Formally, we have

B
~h

↵
=
�
t 2 [T ] : hct, hti < ↵ · kctk2

 
.
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We consider two settings to measure the worst-case regret of an algorithm. In the constrained

setting, we are given some set B and the worst-case regret of A is defined as RA(B,~c | H) =
sup

u2B RA(u,~c | H); in this paper we take B = {x 2 Rd : kxk  1}, the unit ball. In the
unconstrained setting, the regret of A is measured over u 2 Rd and we denote it by RA(u,~c | H),
which we will bound uniformly by another function of u.

2.1 Single hint case

Now we recall and mildly improve the results of [2] for the case that there is a single hint at every
time step (i.e., K = 1). We will consider the case of fixed and known ↵; note that the algorithm of [2]
is agnostic to ↵, but we show that by committing to a fixed ↵ we can improve the regret bound. We
will remove this dependence on a known ↵ later in Section 4. The modification to both the algorithm
and the analysis is not hard, and so we defer the proof to Appendix A.

Theorem 1. For any 0 < ↵ < 1, there exists an algorithm 1-HINT↵ that runs in O(d) time per

update, takes a single hint sequence ~h, and guarantees regret:

R1-HINT↵
(B,~c | {~h})  1

2
+ 4

0

@
sX

t2B
~h
↵

kctk2 +
log T

↵
+ 2

s
(log T )

P
T

t=1 max(0,�hct, hti)
↵

1

A

 O

0

@

s
(log T )|B~h

↵
|

↵
+

log T

↵

1

A .

In contrast, the bound in [2] had the factor (log T )/↵ instead of
p
(log T )/↵ (in the first term).

3 Constrained setting: Known ↵

Recall that in the constrained setting, the algorithm must always respond with xt 2 B, the unit ball.
Our main result is a version of Theorem 1 for K > 1, and it will extend the previous works of [2, 9].
The high-level approach is quite natural: we design a meta-learner that maintains a loss for each hint
sequence at each time, and at time t, uses the losses to decide on an appropriate convex combination
wt of the hints {hi

t
}K
i=1. We then run an instance of the single hint algorithm, 1-HINT↵, using this

combination as the provided hint.

There are two main challenges with this approach. First, the regret bound of 1-HINT↵ depends on
the quantity BH(~w)

↵ , which depends on the convex combination wt used at each step t, and it is not
clear how to relate it to the corresponding terms for the individual hint sequences. Second, the regret
bound assumes a knowledge of ↵, while our final goal is to compete with the best possible (unknown)
↵. We deal with the second challenge in Section 4 by designing a general combination algorithm.
In this section we address the first challenge; all the algorithms in this section assume a fixed and
known value of ↵. Any omitted proofs can be found in Appendix B.

3.1 Multiplicative weights on hint sequences

We first show a result weaker than the main result of this section (Theorem 5). The algorithm is
conceptually simpler, and it demonstrates what one obtains by using a simple multiplicative weight
update (MWU) rule to learn the best hint sequence among the K sequences, and then use Theorem
1 with the learned hint sequence. Since the single-hint regret bound (Theorem 1) depends on just
the number of time steps when the hint has a poor correlation with the cost vector, using an MWU
algorithm using binary losses suffices. In particular, if ~hMW denotes the hint sequence obtained from
the multiplicative weights algorithm, we can show that |B~h

MW

↵
|  O(mini2K |B~h

(i)

↵
|). We defer the

proof of the following theorem to Appendix B.1.

3



Theorem 2. Let ↵ 2 (0, 1) be given. There exists a randomized algorithm AMW for OLO with K
hint sequences that has a regret bound of

E[RAMW
(B,~c | H)]  O

0

@ inf
i2K

s
(log T )(|B~h(i)

↵
|+ logK)

↵
+

log T

↵

1

A .

Note that this is usually weaker than Theorem 5 because it competes only with the best individual

hint sequence, and not necessarily the best convex combination of hints. It can only be a better bound
if K � T so that logK = !(log T ).

3.2 Smoothed hinge loss

Algorithm 1 K-HINTS↵
Input: Parameter ↵

Define  (w) = (logK) +
P

K

i=1 w
(i)(logw(i))

Initialize 1-HINT↵/2

Initialize w1  (1/K, . . . , 1/K) 2 �K

for t = 1, . . . , T do
Get hints h(1)

t
, . . . , h(K)

t

Send ht  
P

K

i=1 w
(i)
t
h(i)
t

to 1-HINT↵/2
Get xt from 1-HINT↵/2
Respond xt, receive cost ct
Send ct to 1-HINT↵/2

`t(w) `
⇣
hct,

P
K

i=1 w
(i)h(i)

t
i,↵kctk2

⌘

gt  r`t(wt)
wt+1  argmin

w2�K

hg1:t, wi+
q

(logK)+
P

t

⌧=1 kg⌧k2
1

logK
 (w)

end for

The multiplicative weights approach allows us
to obtain regret guarantees that depend on the
number of bad hints in the best of the K hint
sequences. But, what we would really like is for
the regret bound to scale with the number of bad
hints in the best convex combination of the hint
sequences. This can be a significant gain: con-
sider the setting in which K = 2 and ↵ = 1

4 , and
on even iterations t we have hct, h(1)

t
i = �1/4

while on odd iterations hct, h(1)
t
i = 1. Sup-

pose h(2)
t

is the same, but has high correlation
on even iterations and negative correlation on
odd iterations. Then both h(1)

t
and h(2)

t
have

T/2 “bad hints”, but the convex combination
h
(1)
t

2 + h
(2)
t

2 has no bad hints! This highlights
the fundamental problem with the multiplica-
tive weights approach: linear combinations of
hints might result in much better performance
than the corresponding linear combination of
the respective performances of the hints.

We will address this issue by considering a spe-
cially crafted loss function that more accurately
captures performance over the entire simplex of hints. Intuitively, we would like to design a loss
function such that for any w 2 �K , the loss `t(w) is low if and only if ht(w) =

P
K

i=1 h
(i)
t
w(i) has

the desired correlation with kctk2. Once we have the appropriate loss function, we can then use an
online learning algorithm on the losses `t to obtain the desired convex combination of hints at each
time step.

Formally, the following smoothed version of the hinge loss is adequate for our purposes.

`(a, b) =

8
<

:

0 a > b
1
b
(b� a)2 a 2 [0, b]

b� 2a a < 0
(1)

For any w 2 �K , we define the loss function as `t(w) = `(hct, ht(w)i,↵kctk2) where ht(w) =P
K

i=1 w
(i)h(i)

t
and `(·) is as defined in (1). We first present several important properties of this loss

function in the following proposition.
Proposition 3. Let ↵ 2 (0, 1) be fixed and for all t 2 [T ], let `t(w) = `(hct, ht(w)i,↵kctk2). Then,

(a). `t is convex and non-negative.

(b). If ht(w) is ↵-good (i.e., hct, ht(w)i � ↵kctk2), then `t(w) = 0 and 0 2 @`t(w).
(c). If ht(w) is not (↵/2)-good (i.e., hct, ht(w)i < ↵kctk2/2), then `t(w) � ↵kctk2/4.

(d). `t is 2-Lipschitz with respect to the `1-norm.

(e). kr`t(w)k21  4
↵
`t(w) for all w 2 �K .
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(f). `t(w)  ↵kctk2 + 2max(0,�hct, ht(w)i).

Proof. Properties (a)–(b) are immediate from the definition of `(·, ·). For property (c), if
hct, ht(w)i < 0, then we have `t(w) = ↵kctk2 � 2hct, ht(w)i � ↵kctk2. On the other hand, if 0 
hct, ht(w)i < ↵kctk2/2, then we have `t(w) =

⇣
1

↵kctk2

⌘ �
↵kctk2 � hct, ht(w)i

�2 � ↵kctk2/4.

For the next properties, define f : R ! R by f(x) = `(x,↵kctk2). By manually computing
derivatives of f we can see that f is 2-Lipschitz and 1-smooth. Further since |hct, h(i)

t
i|  1 for all i,

we have that g(w) = hct, ht(w)i is 1-Lipschitz with respect to the `1-norm. Therefore `t must be
2-Lipschitz with respect to the `1-norm, proving (d).

By inspecting the derivatives of f , we see that f 0(x)2  4
↵kctk2 f(x). Further, we have r`t(w)(i) =

hct, h(i)
t
if 0(hct, ht(w)i). Therefore kr`t(w)k1  kctkf 0(hct, ht(w)i), from which (e) follows.

For (f), we observe that f(x)  ↵kctk2 + 2max(0,�x).

We are now ready to present our final algorithm K-HINTS↵. At each timestep t, we first choose
a wt 2 �K via FTRL using an entropic regularizer on the losses `t (see last line of Algorithm 1).
We then supply the learned hint ht(wt) =

P
K

i=1 w
(i)
t
h(i)
t

to an instance of the single hint algorithm.
For technical reasons, we use the single hint algorithm 1-HINT↵/2 where the desired correlation
with the cost vector is set to ↵/2 instead of ↵. Algorithm 1 presents the complete pseudocode. The
performance of the FTRL subroutine can be bounded via classical results in FTRL (see [19]) used
in concert with the smoothness of the losses `t, following [25]. The final result is the following
Proposition 4, which we prove in Appendix B.
Proposition 4. Let wt 2 �K be chosen via FTRL on the losses `t as in Algorithm 1. Then, for any

w? 2 �K , we have

TX

t=1

`t(wt) 
22 logK

↵
+ 2

TX

t=1

`t(w?).

With this proposition, we can prove the main result of this section:
Theorem 5. Let ↵ 2 (0, 1) be given. Then K-HINTS↵ on OLO with K hint sequences guarantees:

RK-HINTS↵(B,~c | H)  O

0

@ inf
w2�K

s
(log T )

X

t2B
H(w)
↵

kctk2 +

s
(log T )

P
T

t=1 max(0,�hct, ht(w)i)
↵

+
(log T ) +

p
(log T )(logK)

↵

!

 O

0

@ inf
w2�K

s
(log T )|BH(w)

↵ |
↵

+
(log T ) +

p
(log T )(logK)

↵

1

A .

In the above, ht(w) =
P

K

i=1 w
(i)h(i)

t
is the tth hint of the sequence H(w) for w 2 �K .

Proof. Let w? be an arbitrary element of �K . By Proposition 3(f), we have `t(w?)  ↵kctk2 +
2max(0,�hct, ht(w?)i) for all t, and `t(w?) = 0 if hct, ht(w?)i � ↵kctk2. Therefore,

TX

t=1

`t(w?) 
X

t2B
H(w?)
↵

�
↵kctk2 + 2max(0,�hct, ht(w?)i)

�
= Q, (2)

where we have defined the variable Q =
P

t2B
H(w?)
↵

↵kctk2 + 2max(0,�hct, ht(w?)i).

Further, by definition of the smoothed hinge loss, we have `t(wt) � max(0,�hct, ht(wt)i) for all
t 2 [T ]. Therefore, by Proposition 4 and (2), we have

TX

t=1

max (0,�hct, ht(wt)i) 
TX

t=1

`t(wt)  2Q+
22 logK

↵
. (3)
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Also, since the loss function is always non-negative, we have
TX

t=1

`t(wt) �
X

t2B
H(~w)
↵/2

`t(wt) �
X

t2B
H(~w)
↵/2

↵kctk2

4
,

where the second inequality uses Proposition 3(c). Once again, using Proposition 4 and (2), we have

X

t2B
H(~w)
↵/2

kctk2 
8Q

↵
+

88 logK

↵2
. (4)

Finally, recall that we have sent the hint sequence H(~w) = (h1(w1), . . . , hT (wT )) to the algorithm
1-HINT↵/2. Thus by Theorem 1, we have:

RK-HINTS↵(B,~c | H)  1

2
+ 4

0

BB@

vuut
X

t2B
H(~w)
↵/2

kctk2 +
log T

↵
+

s
(2 log T )

P
T

t=1 max(0,�hct, ht(wt)i)
↵

1

CCA

substituting (3) and (4),

 1

2
+ 4

0

BB@

r
8Q

↵
+

88 logK

↵2
+

log T

↵
+

vuut2(log T )
⇣
2Q+ 22 logK

↵

⌘

↵

1

CCA . (5)

The final result now follows from the definition of Q and simple calculations.

Non-negatively correlated hints. Recall that in the case of K = 1, [9] obtains a regret of
O((log T )/↵) in the case where all the hints are ↵-correlated with ct. A weaker assumption is
to have hht, cti � 0 at all steps, with the ↵-correlation property holding at all but B↵ time steps.
In this case, [2] showed that the regret must be at least ⌦(

p
B↵), and also gave an algorithm that

achieves a regret of O
⇣p

B↵ + log T

↵

⌘
. Using Theorem 5, we obtain this bound for general K.

Corollary 6. Consider OLO with K hint sequences where for every t and every hint h(i)
t

, we have

the property that hh(i)
t
, cti � 0. Further, suppose that for some ↵ > 0, there exists an (unknown)

convex combination w such that for the hint sequence H(w), the number of hints that do not satisfy

hht(w), cti � ↵ kctk2 is at most B↵. Then there exists an algorithm that achieves a regret at most

O

✓p
B↵ +

log T +
p
logK

↵

◆
.

Specifically, before substituting to obtain (5), observe that under the non-negative correlation assump-
tion, max(0, hct, ht(wt)i) = 0 for all t, and thus we only have the first two terms of (5). This gives
the desired bound.

3.3 Lower bounds

In this section we provide some lower bounds, focusing on the dependence on K and ↵. Our primary
technique is to specify hint sequences and costs such that, even given the hint, the cost is ↵-correlated
with some combination of hints, but otherwise is a random variable with mean 0 and variance 1. The
high variance in the costs guarantees nearly

p
T regret, which we express in terms of ↵ and K to

achieve our bounds. Omitted proofs can be found in Appendix C. We begin with a lower bound
showing that the dependence on

p
(logK)/↵ holds even in one dimension.

Theorem 7. For any ↵ and T � 1
↵
log 1

↵
, there exists a sequence ~c of costs and a set H of hint

sequences, |H| = K for some K, such that: (i) there is a convex combination of the K hints that

always has correlation ↵ with the costs and (ii) the regret of any online algorithm is at least

q
logK

2↵ .

6



Next, we show that a dependence on 1/↵ is also unavoidable:

Theorem 8. In the two-dimensional constrained setting, there is a sequence ~h and ~c of hints and

costs (K = 1) such that: (i) 8t, hht, cti � ↵, and (ii) the regret of any online algorithm is at least

⌦(1/↵).

Together, these bounds show that the
p
logK and 1/↵ terms in our upper bounds are necessary.

There is a gap in our upper and lower bounds in terms of the dependence on log T , and the gap
between

p
logK

↵
and max{

p
logK, 1/↵}.

4 Combining learners

Algorithm 2 Deterministic combiner Cdet.
Input: Online algorithms A1, . . . ,AK

Reset A1

Set i 1, �  1, r  0, ⌧  1, ri,�0  0
for t = 1, . . . , T do

Get y⌧ from Ai and respond xt  y⌧
Get cost ct, define g⌧  ct
Send g⌧ to Ai as ⌧ th cost
Set ri,�

⌧
 sup

u2B
P

⌧

⌧ 0=1hg⌧ 0 , y⌧ 0 � ui
if ri,�

⌧
> � then

if i = K then
Set �  2�

end if
Set i (i mod K) + 1
Set ⌧  1
Set ri,�0  0
Reset Ai

end if
Set ⌧  ⌧ + 1

end for

In Section 3, we presented an algorithm for on-
line learning with multiple hints. However, the
algorithm required knowing ↵, the desired cor-
relation between a hint h and the cost vector ct.
In this section, we eliminate this assumption. To
do this, we design a generic way to combine
incomparable-in-foresight regret guarantees ob-
tained by different algorithms and essentially get
the best regret among them in hindsight. With
this combiner, handling unknown ↵ is easy: con-
sider K-HINTS↵ for different values of ↵ and
apply the combiner to get the best among them.

The results in this section apply in the con-
strained setting and to both the hints and the
classical no-hints case (see [5] for analogous
results that apply in the unconstrained setting
when the base algorithms are “parameter-free”).
These combiner algorithms themselves are of
independent interest and lead to other applica-
tions in the constrained online learning setting
that we elaborate in Appendix E.

For technical reasons, we need the following definition of a “monotone regret bound”. Essentially all
regret bounds known for online linear optimization satisfy this definition.
Definition 9 (Monotone regret bound). An online learning algorithm A is associated with a monotone
regret bound S([a, b],~c), if S(·, ·) is such that when A is run on only the costs ca, . . . , cb, producing

outputs xa, . . . , xb, we have the guarantee:

sup
u2B

bX

t=a

hct, xt � ui  S([a, b],~c),

and further it satisfies S([a0, b0],~c)  S([a, b],~c) for all sequences ~c whenever [a0, b0] ✓ [a, b].

Note that if an algorithm A has a monotone regret bound S(·, ·), then the total regret experienced by
algorithm A is bounded as RA(B,~c)  S([1, T ],~c).

4.1 Deterministic combiner

We first design a simple deterministic algorithm Cdet that combines K online learning algorithms
with monotone regret bounds and obtains a regret that is at most K times the regret suffered by the
best algorithm on any given cost sequence. The combiner starts with an initial guess of the regret �
and guesses that the first algorithm is the best, playing its predictions. It keeps trusting the current
choice of the best algorithm until the regret it incurs exceeds the current guess �; once that happens, it
chooses the next algorithm. Once all the algorithms have been tried, it doubles the guess � and starts
over. Notice that this does not require knowledge of the bounds Si; these can be replaced with the
“true” regret bounds, rather than simply the best bound that present analysis is capable of delivering.

7



Theorem 10. Suppose A1, . . . ,AK are deterministic OLO algorithms that are associated with

monotone regret bounds S1, . . . ,SK . Suppose 8t, sup
x,y2Bhct, x� yi  1. Then, we have:

RCdet(B,~c)  K
⇣
4 + 4min

i

Si([1, T ],~c)
⌘
.

Proof sketch. We give a brief sketch here and defer the formal proof to Appendix D. We can divide
the operation of Algorithm 2 into phases in which � is constant. In each phase, Algorithm 2 incurs
a regret of at most � + 1 from each of the K algorithms for a total regret of at most K(� + 1).
Let P denote the total number of phases and let j = argmin

i
Si([1, T ],~c) be the algorithm with the

least total regret. In the (P � 1)th phase, algorithm Aj must have incurred a regret of at least 2P�2

(otherwise we would not have the P th phase). Since we assume that Sj is a monotone regret bound, it
follows that mini Si([1, T ],~c) � 2P�2 and hence P  max(1, 2 + log2(mini Si([1, T ],~c))). Since
� = 2p�1 in phase p, we can bound the total regret incurred by Algorithm 2 as

sup
u2B

TX

t=1

hct, xt � ui 
PX

p=1

K(2p�1 + 1)  K(P + 2P )  K2P+1

 K
⇣
4 + 4min

i

Si([1, T ],~c)
⌘
.

4.2 Randomized combiner

The deterministic combiner Cdet, while achieving the best regret among A1, . . . ,AK , incurs a factor
K. We now show that using randomization, this factor can be made O(logK) in expectation.

Intuitively, Cdet incurs the factor K since it might be unlucky and have to cycle through all the K
algorithms even after it correctly guesses �. We can avoid this worst-case behavior by selecting the
base algorithm uniformly at random, rather than in a deterministic order. We formally describe this
randomized combiner Crand in Algorithm 4 in Appendix D. Informally, in each phase with constant �,
at each time step, Crand simulates all the K algorithms and maintains a candidate set C of algorithms
that have incurred a regret of at most �. Once the current algorithm incurs a regret of � �, Crand
selects the next algorithm to be one from the set C uniformly at random. Suppose the algorithms
in C are ranked by the first time they incur a regret bound of �. Since an algorithm Ai is chosen
uniformly at random, in expectation, by the time Ai incurs a regret of �, half of the algorithms in C
have already incurred at least � regret and thus the size of C halves at each step. Thus, we can argue
that we only cycle through O(logK) base algorithms in each phase. We defer the formal proof of
the following theorem to Appendix D.
Theorem 11. Suppose A1, . . . ,AK are deterministic OLO algorithms with monotone regret bounds

S1, . . . ,SK . Suppose for all t, sup
x,y2Bhct, x� yi  1. Then for any fixed sequence ~c of costs (i.e.,

an oblivious adversary), we have:

E [RCrand(B,~c)]  log2(K + 1) ·
⇣
4 + 4min

i

Si([1, T ],~c)
⌘
.

Further, if ~c is allowed to depend on the algorithm’s randomness (i.e., an adaptive adversary), then

RCrand(B,~c)  K
⇣
4 + 4min

i

Si([1, T ],~c)
⌘
.

4.3 Constrained setting: Unknown ↵

For any fixed ↵ > 0, Theorem 5 yields a monotone regret bound. For 1  i  log T , let Ai denote
the instantiation of Algorithm 1 with ↵i = 2�i. By Theorem 5, each algorithm Ai is associated with
a monotone regret bound Si(·, ·) such that

RAi
(B,~c)  Si([1, T ],~c) = O

0

@ inf
w2�K

s
(log T )|BH(w)

↵i
|

↵i

+
(log T ) +

p
(log T )(logK)

↵i

1

A .

Further since |BH(w)
↵i+1 |  |BH(w)

↵i
|, we have Si+1(·,~c)  2Si(·,~c). Applying Theorem 11 on these

log T algorithms thus yields the following result.

Theorem 12. Given a set H = {~h1, . . . ,~hK} of hint sequences, there exists a randomized algorithm

A such that for any fixed sequence of cost vectors ~c, the expected regret E[RA(B,~c | H)] is at most:
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O

0

@inf
↵

inf
w2�K

8
<

:(log log T ) ·

0

@

s
(log T )|BH(w)

↵ |
↵

+
(log T ) +

p
(log T )(logK)

↵

9
=

;

1

A

1

A .

5 Unconstrained setting

In this section, we develop an algorithm that leverages multiple hints in the unconstrained setting.
Recall that in this setting, the output xt and comparison point u are allowed to range over all of Rd.
Thus we cannot hope to bound regret by a uniform constant for all u. Instead, we bound the regret as
a function of kuk. This setting has seen increased interest [6, 7, 11, 21, 22], and recently the notion
of hints has also been studied [2, 5]. Here, we consider multiple hints in the unconstrained setting.
Unlike the constrained case, this algorithm does not need to know ↵ and hence does not need the
combiner. The algorithm again competes with the best convex combination of the hints.

Following [2, 5], our algorithm initializes K + 1 unconstrained online learners. The first online
learner ignores the hints and attempts to output xt to minimize the regret. Each of the following
K online learners is restricted to output real numbers y(i)

t
for i = 1, . . . ,K rather than points in

Rd. The final output of our algorithm is then given by x̂t = xt +
P

K

i=1 y
(i)
t
h(i)
t

. Intuitively, the
ith one-dimensional algorithm is attempting to learn how “useful” the ith hint sequence is. Upon
receiving the cost ct, we provide the ith one-dimensional algorithm with the cost hct, h(i)

t
i. Note that

we are leaning heavily on the lack of constraints in this construction. Our regret bound is given in
Theorem 13, proved in Appendix F.
Theorem 13. There is an algorithm A for the unconstrained setting such that for any u 2 Rd

and

any ↵ 2 (0, 1), we have

RA(u,~c | H) = O

0

@ inf
w2�K

8
<

:kuk(log T )

0

@
p
logK

↵
+

s
BH(w)

↵

↵

1

A

9
=

;

1

A .

6 Conclusions

In this paper we obtained algorithms for online linear optimization in the presence of many hints
that can be imperfect. Besides generalizing previous results on online optimization with hints, our
contributions include a simple algorithm for combining arbitrary learners that seems to have broader
applications. Interesting future research directions include tightening the dependence on ↵ in various
cases and exploring the possibility of improved bounds for specific online optimization problems.

Broader Impact

Our work focuses on theoretical foundations. Online learning methods have had direct impact in
domains such as online advertising. But primarily, the methods developed are used in improving
other optimization procedures, and thus only have an indirect impact. We believe that there are no
adverse ethical aspects or potentially negative societal consequences of our work.
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