
Differentially Private Clustering:
Tight Approximation Ratios

Badih Ghazi
Google Research

Mountain View, CA
badihghazi@gmail.com

Ravi Kumar
Google Research

Mountain View, CA
ravi.k53@gmail.com

Pasin Manurangsi
Google Research

Mountain View, CA
pasin@google.com

Abstract

We study the task of differentially private clustering. For several basic cluster-
ing problems, including Euclidean DensestBall, 1-Cluster, k-means, and k-
median, we give efficient differentially private algorithms that achieve essentially
the same approximation ratios as those that can be obtained by any non-private al-
gorithm, while incurring only small additive errors. This improves upon existing
efficient algorithms that only achieve some large constant approximation factors.
Our results also imply an improved algorithm for the Sample and Aggregate pri-
vacy framework. Furthermore, we show that one of the tools used in our 1-Cluster
algorithm can be employed to get a faster quantum algorithm for ClosestPair in
a moderate number of dimensions.

1 Introduction

With the significant increase in data collection, serious concerns about user privacy have emerged.
This has stimulated research on formalizing and guaranteeing strong privacy protections for user-
sensitive information. Differential Privacy (DP) [DMNS06, DKM+06] is a rigorous mathematical
concept for studying user privacy and has been widely adopted in practice [EPK14, Sha14, Gre16,
App17, DKY17, Abo18]. Informally, the notion of privacy is that the algorithm’s output (or output
distribution) should be mostly unchanged when any one of its inputs is changed. DP is quantified by
two parameters ✏ and �; the resulting notion is referred to as pure-DP when � = 0, and approximate-
DP when � > 0. See Section 2 for formal definitions of DP and [DR14, Vad17] for an overview.

Clustering is a central primitive in unsupervised machine learning [XW08, AC13]. An algorithm
for clustering in the DP model informally means that the cluster centers (or the distribution on
cluster centers) output by the algorithm should be mostly unchanged when any one of the input
points is changed. Many real-world applications involve clustering sensitive data. Motivated by
these, a long line of work has studied clustering algorithms in the DP model [BDMN05, NRS07,
FFKN09, GLM+10, MTS+12, WWS15, NSV16, NCBN16, SCL+16, FXZR17, BDL+17, NS18,
HL18, NCBN16, NS18, SK18, Ste20]. In this work we focus on several basic clustering problems
in the DP model and obtain efficient algorithms with tight approximation ratios.

Clustering Formulations. The input to all our problems is a set X of n points, each contained
in the d-dimensional unit ball. There are many different formulations of clustering. In the popular
k-means problem [Llo82], the goal is to find k centers minimizing the clustering cost, which is the
sum of squared distances from each point to its closest center. The k-median problem is similar
to k-means except that the distances are not squared in the definition of the clustering cost.1 Both
problems are NP-hard, and there is a large body of work dedicated to determining the best possible

1For the formal definitions of k-means and k-median, see Definition 3 and the paragraph following it.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Reference w t Running time
[NSV16], � > 0 O(

p
log n) O(

p
d

✏
· poly log 1

�
) poly(n, d, log

1

r
)

[NS18], � > 0 O(1) Õ✏,�(

p
d

✏
· n0.1 · poly log 1

�
) poly(n, d, log

1

r
)

Exp. Mech. [MT07], � = 0 1 + ↵ O↵(
d

✏
· log 1

r
) O

⇣�
1

↵r

�d⌘

Theorem 6, � = 0 1 + ↵ O↵

�
d

✏
· log

�
d

r

��
(nd)

O↵(1)
poly log

1

r

Theorem 6, � > 0 1 + ↵ O↵

⇣p
d

✏
· poly log

�
nd

✏�

�⌘
(nd)

O↵(1)
poly log

1

r

Table 1: Comparison of (✏, �)-DP algorithms for (w, t)-approximations for DensestBall given r.

approximation ratios achievable in polynomial time (e.g. [Bar96, CCGG98, CGTS02, JV01, JMS02,
AGK+04, KMN+04, AV07, LS16, ACKS15, BPR+17, LSW17, ANSW17, CK19]), although the
answers remain elusive. We consider approximation algorithms for both these problems in the DP
model, where a (w, t)-approximation algorithm outputs a cluster whose cost is at most the sum of t
and w times the optimum; we refer to w as the approximation ratio and t as the additive error. It is
important that t is small since without this constraint, the problem could become trivial. (Note also
that without privacy constraints, approximation algorithms typically work with t = 0.)

We also study two even more basic clustering primitives, DensestBall and 1-Cluster, in the DP
model. These underlie several of our results.
Definition 1 (DensestBall). Given r > 0, a (w, t)-approximation for the DensestBall problem is

a ball B of radius w · r such that whenever there is a ball of radius r that contains at least T input

points, B contains at least T � t input points.

This problem is NP-hard for w = 1 [BS00, BES02, She15]. Moreover, approximating the
largest number of points within any ball of radius of r and up some constant factor is also NP-
hard [BES02]. On the other hand, several polynomial-time approximation algorithms achieving
(1 + ↵, 0)-approximation for any ↵ > 0 are known [AHPV05, She13, BES02].

DensestBall is a useful primitive since a DP algorithm for it allows one to “peel off” one important
cluster at a time. This approach has played a pivotal role in a recent fruitful line of research that
obtains DP approximation algorithms for k-means and k-median [SK18, Ste20].

The 1-Cluster problem studied, e.g., in [NSV16, NS18] is the “inverse” of DensestBall, where
instead of the radius r, the target number T of points inside the ball is given. Without DP constraints,
the computational complexities of these two problems are essentially the same (up to logarithmic
factors in the number of points and the input universe size), as we may use binary search on r to
convert a DensestBall algorithm into one for 1-Cluster, and vice versa.2 These two problems are
generalizations of the MinimumEnclosingBall (aka MinimumBoundingSphere) problem, which
is well-studied in statistics, operations research, and computational geometry.

As we elaborate below, DensestBall and 1-Cluster are also related to other well-studied problems,
such as learning halfspaces with a margin and the Sample and Aggregate framework [NRS07].

Main Results. A common highlight of most of our results is that for the problems we study, our
algorithms run in polynomial time (in n and d) and obtain tight approximation ratios. Previous work
sacrificed one of these, i.e., either ran in polynomial time but produced sub-optimal approximation
ratios or took time exponential in d to guarantee tight approximation ratios.

(i) For DensestBall, we obtain for any ↵ > 0, a pure-DP (1 + ↵, Õ↵(
d

✏
))-approximation algorithm

and an approximate-DP (1+↵, Õ↵(

p
d

✏
))-approximation algorithm.3 The runtime of our algorithms

is poly(nd). Table 1 shows our results compared to previous work. To solve DensestBall with DP,

2To reduce from 1-Cluster to DensestBall, one can binary-search on the target radius. In this case, the
number of iterations needed for the binary search depends logarithmically on the ratio between the maximum
possible distance between two input points and the minimum possible distance between two (distinct) input
points. In the other direction (i.e., reducing from DensestBall to 1-Cluster), one can binary-search on the
number of points inside the optimal ball, and here the number of iterations will be logarithmic in the number of
input points.

3The notation Õx(·) ignores factors involving x and factors polylogarithmic in n, d, ✏, �.

2

we introduce and solve two problems: efficient list-decodable covers and private sparse selection.
These could be of independent interest.

(ii) For 1-Cluster, informally, we obtain for any ↵ > 0, a pure-DP (1 + ↵, Õ↵(
d

✏
))-approximation

algorithm running in time (nd)
O↵(1). We also obtain an approximate-DP (1 + ↵, Õ↵(

p
d

✏
))-

approximation algorithm running in time (nd)O↵(1). The latter is an improvement over the previous
work of [NS18] who obtain an (Õ(1 +

1

�
), Õ✏,�(n

�
p
d))-approximation. In particular, they do not

get an approximation ratio w arbitrarily close to 1. Even worse, the exponent � in the additive error t
can be made close to 0 only at the expense of blowing up w. Our algorithm for 1-Cluster follows by
applying our DP algorithm for DensestBall, along with “DP binary search” similarly to [NSV16].

(iii) For k-means and k-median, we prove that we can take any (not necessarily private) ap-
proximation algorithm and convert it to a DP clustering algorithm with essentially the same
approximation ratio, and with small additive error and small increase in runtime. More pre-
cisely, given any w

⇤-approximation algorithm for k-means (resp., k-median), we obtain a
pure-DP (w

⇤
(1 + ↵), Õ↵(

kd+k
O↵(1)

✏
))-approximation algorithm and an approximate-DP (w

⇤
(1 +

↵), Õ↵(
k
p
d+k

O↵(1)

✏
))-approximation algorithm for k-means (resp., k-median). (The current best

known non-private approximation algorithms achieve w
⇤
= 6.358 for k-means and w

⇤
= 2.633

for k-median [ANSW17].) Our algorithms run in time polynomial in n, d and k, and improve on
those of [SK18] who only obtained some large constant factor approximation ratio independent of
w

⇤.

It is known that w⇤ can be made arbitrarily close to 1 for (non-private) k-means and k-median if we
allow fixed parameter tractable4 algorithms [BHPI02, DLVKKR03, KSS04, KSS05, Che06, FMS07,
FL11]. Using this, we get a pure-DP (1 + ↵, Õ↵(

kd+k
2

✏
))-approximation, and an approximate-DP

(1 + ↵, Õ↵(
k
p
d+k

2

✏
))-approximation. The algorithms run in time 2

O↵(k log k)
poly(nd).

Overview of the Framework. All of our DP clustering algorithms follow this three-step recipe:

(i) Dimensionality reduction: we randomly project the input points to a low dimension.

(ii) Cluster(s) identification in low dimension: we devise a DP clustering algorithm in the low-
dimensional space for the problem of interest, which results in cluster(s) of input points.

(iii) Cluster center finding in original dimension: for each cluster found in step (ii), we privately
compute a center in the original high-dimensional space minimizing the desired cost.

Applications. Our DP algorithms for 1-Cluster imply better algorithms for the Sample and Ag-
gregate framework of [NRS07]. Using a reduction from 1-Cluster due to [NSV16], we get an
algorithm that privately outputs a stable point with a radius not larger than the optimal radius than
by a 1+↵ factor, where ↵ is an arbitrary positive constant. For more context, please see Section 5.2.

Moreover, by combining our DP algorithm for DensestBall with a reduction of [BS00, BES02], we
obtain an efficient DP algorithm for agnostic learning of halfspaces with a constant margin. Note
that this result was already known from the work of Nguyen et al. [NUZ20]; we simply give an
alternative proof that employs our DensestBall algorithm as a blackbox. For more on this and
related work, please see Section 5.3.

Finally, we provide an application of one of our observations outside of DP. In particular, we give a
faster (randomized) history-independent data structure for dynamically maintaining ClosestPair in
a moderate number of dimensions. This in turn implies a faster quantum algorithm for ClosestPair
in a similar setting of parameters.

Organization. Section 2 contains background on DP and clustering. Our algorithms for Dens-
estBall are presented in Section 3, and those for k-means and k-median are given in Section 4.
Applications to 1-Cluster, Sample and Aggregate, agnostic learning of halfspaces with a margin,
and ClosestPair are described in Section 5. We conclude with some open questions in Section 6.
All missing proofs are deferred to the Appendix.

4Recall that an algorithm is said to be fixed parameter tractable in k if its running time is of the form
f(k) · poly(n) for some function f , and where n is the input size [DF13].

3

2 Preliminaries

Notation. For a finite universe U and ` 2 N, we let
�
U

`

�
be the set of all subsets of U of size at

most `. Let [n] = {1, . . . , n}. For v 2 Rd and r 2 R�0, let B(v, r) be the ball of radius r centered
at v. For  2 R�0, denote by Bd


the quantized d-dimensional unit ball with discretization step .5

We throughout consider closed balls.

Differential Privacy (DP). We next recall the definition and basic properties of DP. Datasets X
and X0 are said to be neighbors if X0 results from removing or adding a single data point from X.6

Definition 2 (Differential Privacy (DP) [DMNS06, DKM+06]). Let ✏, � 2 R�0 and n 2 N. A

randomized algorithm A taking as input a dataset is said to be (✏, �)-differentially private if for any

two neighboring datasets X and X0
, and for any subset S of outputs of A, it holds that Pr[A(X) 2

S]  e
✏ · Pr[A(X0

) 2 S] + �. If � = 0, then A is said to be ✏-differentially private.

We assume throughout that 0 < ✏  O(1), 0 < ↵ < 1, and when used, � > 0.

Clustering. Since many of the proof components are common to the analyses of k-means and
k-median, we will use the following notion, which generalizes both problems.

Definition 3 ((k, p)-Clustering). Given k 2 N and a multiset X = {x1, . . . , xn} of points

in the unit ball, we wish to find k centers c1, . . . , ck 2 Rd
minimizing cost

p

X(c1, . . . , ck) :=P
i2[n]

�
minj2[k] kxi � cjk

�p
. Let OPT

p,k

X denote
7
minc1,...,ck2Rd cost

p

X(c1, . . . , ck). A (w, t)-
approximation algorithm for (k, p)-Clustering outputs c1, . . . , ck such that cost

p

X(c1, . . . , ck) 
w ·OPT

p,k

X +t. When X, p, and k are unambiguous, we drop the subscripts and superscripts.

Note that (k, 1)-Clustering and (k, 2)-Clustering correspond to k-median and k-means respec-
tively. It will also be useful to consider the Discrete (k, p)-Clustering problem, which is the same as
in Definition 3, except that we are given a set C of “candidate centers” and we can only choose the
centers from C. We use OPT

p,k

X (C) to denote minci1 ,...,cik2C cost
p

X(ci1 , . . . , cik).

Centroid Sets and Coresets. A centroid set is a set of candidate centers such that the optimum
does not increase by much even when we restrict the centers to belong to this set.

Definition 4 (Centroid Set [Mat00]). For w, t > 0, p � 1, k, d 2 N, a set C ✓ Rd
is a (p, k, w, t)-

centroid set of X ✓ Rd
if OPT

p,k

X (C)  w ·OPT
p,k

X +t. When k and p are unambiguous, we simply

say that C is a (w, t)-centroid set of X.

A coreset is a (multi)set of points such that, for any possible k centers, the cost of (k, p)-Clustering
of the original set is roughly the same as that of the coreset (e.g., [HM04]).

Definition 5 (Coreset). For �, t > 0, p � 1, k 2 N, a set X0
is a (p, k, �, t)-coreset of X ✓ Rd

if for

every C = {c1, . . . , ck} ✓ Rd
, we have (1��) ·costpX(C)�t  costX0(C)  (1+�) ·costpX(C)+t.

When k and p are unambiguous, we simply say that X0
is a (�, t)-coreset of X.

3 Private DensestBall

In this section, we obtain pure-DP and approximate-DP algorithms for DensestBall.

5Whenever we assume that the inputs lie in Bd

, our results will hold for any discretization as long as the
minimum distance between two points as at least .

6This definition of DP is sometimes referred to as removal DP. Some works in the field consider the alter-
native notion of replacement DP where two datasets are considered neighbors if one results from modifying
(instead of removing) a single data point of the other. We remark that (✏, �)-removal DP implies (2✏, 2�)-
replacement DP. Thus, our results also hold (with the same asymptotic bounds) for the replacement DP notion.

7The cost is sometimes defined as the (1/p)th power.

4

Theorem 6. There is an ✏-DP (resp., (✏, �)-DP) algorithm that runs in time (nd)
O↵(1) ·

poly log(1/r) and, w.p.
8

0.99, returns a
�
1 + ↵, O↵

�
d

✏
· log

�
d

r

���
-approximation (resp.,⇣

1 + ↵, O↵

⇣p
d

✏
· poly log

�
nd

✏�

�⌘⌘
-approximation) for DensestBall.

To prove this, we follow the three-step recipe from Section 1. Using the Johnson–Lindenstrauss (JL)
lemma [JL84] together with the Kirszbraun Theorem [Kir34],we project the input to O((log n)/↵

2
)

dimensions in step (i). It turns out that step (iii) is similar to (ii), as we can repeatedly apply a
low-dimensional DensestBall algorithm to find a center in the high-dimensional space. Therefore,
the bulk of our technical work is in carrying out step (ii), i.e., finding an efficient, DP algorithm for
DensestBall in O((log n)/↵

2
) dimensions. We focus on this part in the rest of this section; the full

proof with the rest of the arguments can be found in Appendix D.2.

3.1 A Private Algorithm in Low Dimensions

Having reduced the dimension to d
0
= O((log n)/↵

2
) in step (i), we can afford an algorithm that

runs in time exp(O↵(d
0
)) = n

O↵(1). With this in mind, our algorithms in dimension d
0 have the

following guarantees:
Theorem 7. There is an ✏-DP (resp., (✏, �)-DP) algorithm that runs in time (1 +

1/↵)
O(d

0
)
poly log(1/r) and, w.p. 0.99, returns a

⇣
1 + ↵, O↵

⇣
d
0

✏
log

�
1

r

�⌘⌘
-approximation (resp.,

⇣
1 + ↵, O↵

⇣
d
0

✏
log

�
n

✏�

�⌘⌘
-approximation) for DensestBall.

As the algorithms are allowed to run in time exponential in d
0, Theorem 7 might seem easy to devise

at first glance. Unfortunately, even the Exponential Mechanism [MT07], which is the only known
algorithm achieving approximation ratio arbitrarily close to 1, still takes ⇥↵(1/r)

d
0

time, which is
exp(!(d

0
)) for r = o(1). (In fact, in applications to k-means and k-median, we set r to be as small

as 1/n, which would result in a running time of n⌦(logn).) To understand, and eventually overcome
this barrier, we recall the implementation of the Exponential Mechanism for DensestBall:

• Consider any (↵r)-cover9
C of the unit ball B(0, 1).

• For every c 2 C, let score[c] be the number of input points lying inside B(c, (1 + ↵)r).

• Output a point c⇤ 2 C with probability e
(✏/2)·score[c⇤]

P
c2C

e(✏/2)·score[c]
.

By the generic analysis of the Exponential Mechanism [MT07], this algorithm is ✏-DP and achieves
a
⇣
1 + ↵, O↵

⇣
d
0

✏
log

�
1

r

�⌘⌘
-approximation as in Theorem 7. The existence of an (↵r)-cover of

size ⇥
�

1

↵r

�d0

is well-known and directly implies the ⇥↵(1/r)
d
0

running time stated above.

Our main technical contribution is to implement the Exponential Mechanism in ⇥↵(1)
d
0
poly log

1

r

time instead of ⇥↵(1/r)
d
0
. To elaborate on our approach, for each input point xi, we define Si to be

C \ B(xi, (1 + ↵)r), i.e., the set of all points in the cover C within distance (1 + ↵)r of xi. Note
that the score assigned by the Exponential Mechanism is score[c] = {i 2 [n] | c 2 Si}, and our
goal is to privately select c⇤ 2 C with as large a score as possible. Two main questions remain: (1)
How do we find the Si’s efficiently? (2) Given the Si’s, how do we sample c

⇤? We address these in
the following two subsections, respectively.

3.1.1 Efficiently List-Decodable Covers

In this section, we discuss how to find Si in time (1 + 1/↵)
O(d

0
). Motivated by works on error-

correcting codes (see, e.g., [Gur06]), we introduce the notion of list-decodability for covers:
Definition 8 (List-Decodable Cover). A �-cover is list-decodable at distance �

0 � � with list size `

if for any x 2 B(0, 1), we have that |{c 2 C | kc�xk  �
0}|  `. Moreover, the cover is efficiently

list-decodable if there is an algorithm that returns such a list in time poly(`, d
0
, log(1/�)).

8In the main body of the paper, we state error bounds that hold with probability 0.99. In the appendix, we
extend all our bounds to hold with probability 1� � for any � > 0, with a mild dependency on � in the error.

9A ⇣-cover C of B(0, 1) is a set of points such that for any y 2 B(0, 1), there is c 2 C with kc� yk  ⇣.

5

We prove the existence of efficiently list-decodable covers with the following parameters:
Lemma 9. For every 0 < � < 1, there exists a �-cover C� that is efficiently list-decodable at any

distance �
0 � � with list size (1 +�

0
/�)

O(d
0
)
.

In this terminology, Si is exactly the decoded list at distance �
0
= (1 + ↵)r, where � = ↵r in our

cover C. As a result, we obtain the (1 + 1/↵)
O(r) bound on the time for computing Si, as desired.

The proof of Lemma 9 includes two tasks: (i) bounding the size of the list and (ii) coming up with
an efficient decoding algorithm. It turns out that (i) is not too hard: if our cover is also an ⌦(�)-
packing10, then a standard volume argument implies the bound in Lemma 9. However, carrying out
(ii) is more challenging. To do so, we turn to lattice-based covers. A lattice is a set of points that can
be written as an integer combination of some given basis vectors. Rogers [Rog59] (see also [Mic04])
constructed a family of lattices that are both �-covers and ⌦(�)-packings. Furthermore, known
lattice algorithms for the so-called Closest Vector Problem [MV13] allow us to find a point c 2 C�

that is closest to a given point x in time 2
O(d

0
). With some more work, we can “expand” from c to

get the entire list in time polynomial in `. This concludes the outline of our proof of Lemma 9.

3.1.2 SparseSelection

We now move to (2): given Si’s, how to privately select c⇤ with large score[c⇤] = |{i | c⇤ 2 Si}|?

Algorithm 1
1: procedure DENSESTBALL (x1, . . . , xn; r,↵)

2: C↵r (↵r)-cover from Lemma 9
3: for i 2 [n] do
4: Si decoded list of x at distance (1+↵)r

with respect to C↵r

5: return SparseSelection(S1, . . . , Sn)

We formalize the problem as follows:
Definition 10 (SparseSelection). For

` 2 N, the input to the `-SparseSelection
problem is a list S1, . . . , Sn of sub-

sets, where S1, . . . , Sn 2
�
C

`

�
for

some finite universe C. An algorithm

solves `-SparseSelection with additive

error t if it outputs a universe element

ĉ 2 C such that |{i | ĉ 2 Si}| �
maxc2C |{i | c 2 Si}|� t.

The crux of our SparseSelection algo-
rithm is the following. Since score[c⇤] = 0 for all c⇤ /2 S1 [· · · [Sn, to implement the Ex-
ponential Mechanism it suffices to first randomly select (with appropriate probability) whether we
should sample from S1 [· · · [Sn or uniformly from C. For the former, the sampling is efficient
since S1 [· · · [Sn is small. This gives the following for pure-DP:
Lemma 11. Suppose there is a poly log |C|-time algorithm O that samples a random element

of C where each element of C is output with probability at least 0.1/|C|. Then, there is a

poly(n, `, log |C|)-time ✏-DP algorithm that, with probability 0.99, solves `-SparseSelection with

additive error O
�
1

✏
· log |C|

�
.

We remark that, in Lemma 11, we only require O to sample approximately uniformly from C.
This is due to a technical reason that we only have such a sampler for the lattice covers we use.
Nonetheless, the outline of the algorithm is still exactly the same as before.

For approximate-DP, it turns out that we can get rid of the dependency of |C| in the additive error
entirely, by adjusting the probability assigned to each of the two cases. In fact, for the second case,
it even suffices to just output some symbol ? instead of sampling (approximately) uniformly from
C. Hence, there is no need for a sampler for C at all, and this gives us the following guarantees:
Lemma 12. There is a poly(n, `, log |C|)-time (✏, �)-DP algorithm that, with probability 0.99,

solves `-SparseSelection with additive error O
�
1

✏
log

�
n`

✏�

��
.

3.1.3 Putting Things Together

With the ingredients ready, the DensestBall algorithm is given in Algorithm 1. The pure- and
approximate-DP algorithms for SparseSelection in Lemmas 11 and 12 lead to Theorem 7.

10A ⇣-packing is a set of points such that each pairwise distance is at least ⇣.

6

4 Private k-means and k-median

We next describe how we use our DensestBall algorithm along with additional ingredients adapted
from previous studies of coresets to obtain DP approximation algorithms for k-means and k-
median with nearly tight approximation ratios and small additive errors as stated next:
Theorem 13. Assume there is a polynomial-time (not necessarily DP) algorithm for k-
means (resp., k-median) in Rd

with approximation ratio w. Then, there is an ✏-

DP algorithm that runs in time k
O↵(1)

poly(nd) and, with probability 0.99, produces a⇣
w(1 + ↵), Ow,↵

⇣⇣
kd+k

O↵(1)

✏

⌘
poly log n

⌘⌘
-approximation for k-means (resp., k-median).

Moreover, there is an (✏, �)-DP algorithm with the same runtime and approximation ratio but with

additive error Ow,↵

⇣⇣
k
p
d

✏
· poly log

�
k

�

�⌘
+

⇣
k
O↵(1)

✏
· poly log n

⌘⌘
.

To prove Theorem 13, as for DensestBall, we first reduce the dimension of the clustering instance
from d to d

0
= O↵(log k), which can be done using the recent result of Makarychev et al. [MMR19].

Our task thus boils down to proving the following low-dimensional analogue of Theorem 13.
Theorem 14. Under the same assumption as in Theorem 13, there is an ✏-DP al-

gorithm that runs in time 2
O↵(d

0
)
poly(n) and, with probability 0.99, produces a⇣

w(1 + ↵), O↵,w

⇣
k
2
·2

O↵(d0)

✏
poly log n

⌘⌘
-approximation for k-means (resp., k-median).

We point out that it is crucial for us that the reduced dimension d
0 is O↵(log k) as opposed to

O↵(log n) (which is the bound from a generic application of the JL lemma), as otherwise the additive
error in Theorem 14 would be poly(n), which is vacuous, instead of poly(k). We next proceed by
(i) finding a “coarse” centroid set (satisfying Definition 4 with w = O(1)), (ii) turning the centroid
set into a DP coreset (satisfying Definition 5 with w = 1 + ↵), and (iii) running the non-private
approximation algorithm as a black box. We describe these steps in more detail below.

4.1 Finding a Coarse Centroid Set via DensestBall

We consider geometrically increasing radii r = 1/n, 2/n, 4/n, For each such r, we iteratively
run our DensestBall algorithm 2k times, and for each returned center, remove all points within a
distance of 8r from it. This yields 2k log n candidate centers. We prove that they form a centroid
set with a constant approximation ratio and a small additive error:
Lemma 15. There is a polynomial time ✏-DP algorithm that, with probability 0.99, outputs an⇣
O(1), O

⇣
k
2
d
0

✏
poly log n

⌘⌘
-centroid set of size 2k log n for k-means (resp., k-median).

We point out that the solution to this step is not unique. For example, it is possible to run the DP
k-means algorithm from [SK18] instead of Lemma 15. However, we choose to use our algorithm
since its analysis works almost verbatim for both k-median and k-means, and it is simple.

4.2 Turning a Coarse Centroid Set into a Coreset

Once we have a coarse centroid set from the previous step, we follow the approach of Feldman et
al. [FFKN09], which can turn the coarse centroid and eventually produce a DP coreset:
Lemma 16. There is an 2

O↵(d
0
)
poly(n)-time ✏-DP algorithm that, with probability 0.99, produces

an

⇣
↵, O↵

⇣
k
2
·2

O↵(d0)

✏
poly log n

⌘⌘
-coreset for k-means (and k-median).

Roughly speaking, the idea is to first “refine” the coarse centroid by constructing an exponential

cover around each center c from Lemma 15. Specifically, for each radius r = 1/n, 2/n, 4/n, . . . ,
we consider all points in the (↵r)-cover of the ball of radius r around c. Notice that the number of
points in such a cover can be bounded by 2

O↵(d
0
). Taking the union over all such c, r, this result in a

new fine centroid set of size 2
O↵(d

0
) · poly(k, log n). Each input point is then snapped to the closet

point in this set; these snapped points form a good coreset [HM04]. To make this coreset private,
we add an appropriately calibrated noise to the number of input points snapped to each point in the
fine centroid set. The additive error resulting from this step scales linearly with the size of the fine
centroid set, which is 2O↵(d

0
) · poly(k, log n) as desired.

7

We note that, although our approach in this step is essentially the same as Feldman et al. [FFKN09],
they only fully analyzed the algorithm for k-median and d  2. Thus, we cannot use their result as
a black box and hence, we provide a full proof that also works for k-means and for any d > 0 in
Appendix C.

4.3 Finishing Steps

Finally, we can simply run the (not necessarily DP) approximation algorithm on the DP coreset from
Lemma 16, which immediately yields Theorem 14.

5 Applications

Our DensestBall algorithms imply new results for other well-studied tasks, which we now describe.

5.1 1-Cluster

Recall the 1-Cluster problem from Section 1. As shown by [NSV16], a discretization of the inputs
is necessary to guarantee a finite error with DP, so we assume that they lie in Bd


. For this prob-

lem, they obtained an O(
p
log n) approximation ratio, which was subsequently improved to some

large constant by [NS18] albeit with an additive error that grows polynomially in n. Using our
DensestBall algorithms we get a 1 + ↵ approximation ratio with additive error polylogarithmic in
n:
Theorem 17. For 0 <  < 1, there is an ✏-DP algorithm that runs in (nd)

O↵(1)
poly log(

1


) time

and with probability 0.99, outputs a
�
1 + ↵, O↵

�
d

✏
poly log

�
n

✏

���
-approximation for 1-Cluster.

For any � > 0, there is an (✏, �)-DP algorithm with the same runtime and approximation ratio but

with additive error O↵

⇣p
d

✏
· poly log

�
nd

✏�

�⌘
+O

�
1

✏
· log(1

�
) · 9log⇤

(d/)
�
.

5.2 Sample and Aggregate

Consider functions f : U⇤ ! Bd


mapping databases to the discretized unit ball. A basic technique in
DP is Sample and Aggregate [NRS07], whose premise is that for large databases S 2 U

⇤, evaluating
f on a random subsample of S can give a good approximation to f(S). This method enables
bypassing worst-case sensitivity bounds in DP (see, e.g., [DR14]) and it captures basic machine
learning primitives such as bagging [JYvdS19]. Concretely, a point c 2 Bd


is an (m, r, ⇣)-stable

point of f on S if Pr[kf(S0
)� ck2  r] � ⇣ for S0 a database of m i.i.d. samples from S. If such a

point c exists, f is (m, r, ⇣)-stable on S, and r is a radius of c. Via a reduction to 1-Cluster, [NSV16]
find a stable point of radius within an O(

p
log n) factor from the smallest possible while [NRS07]

got an O(
p
d) approximation, and a constant factor is subsequently implied by [NS18]. Our 1-

Cluster algorithm yields a 1 + ↵ approximation:
Theorem 18. Let d,m, n 2 N and 0 < ✏, ⇣,↵, �, < 1 with m  n, ✏  ⇣

72
and �  ✏

300
.

There is an (✏, �)-DP algorithm that takes f : U
n ! Bd


and parameters m, ⇣, ✏, �, runs in time

(
nd

m
)
O↵(1)

poly log(
1


) plus the time for O(

n

m
) evaluations of f on a dataset of size m, and whenever

f is (m, r, ⇣)-stable on S, with probability 0.99, the algorithm outputs an (m, (1 + ↵)r,
⇣

8
)-stable

point of f on S, provided that n � m ·O↵

⇣p
d

✏
· poly log

�
nd

✏�

�
+

1

✏
· log(1

�
) · 9log⇤

(d/)

⌘
.

5.3 Agnostic Learning of Halfspaces with a Margin

We next apply our algorithms to the well-studied problem of agnostic learning of halfspaces with
a margin (see, e.g., [BS00, BM02, McA03, SSS09, BS12, DKM19, DKM20]). Denote the error
rate of a hypothesis h on a distribution D on labeled samples by err

D
(h), and the µ-margin error

rate of halfspace hu(x) = sgn(u · x) on D by err
D
µ
(u). (See Appendix G for precise definitions.)

Furthermore, let OPT
D

µ
:= minu2Rd err

D
µ
(u). The problem of learning halfspaces with a margin in

the agnostic PAC model [Hau92, KSS94] can be defined as follows.
Definition 19. Let d 2 N and µ, t 2 R+

. An algorithm properly agnostically PAC learns
halfspaces with margin µ, error t and sample complexity m, if given as input a training set

8

S = {(x(i)
, y

(i)
)}m

i=1
of i.i.d. samples drawn from an unknown distribution D on B(0, 1) ⇥ {±1},

it outputs a halfspace hu : Rd ! {±1} satisfying err
D
(hu)  OPT

D

µ
+t with probability 0.99.

Via a reduction of [BS00, BES02] from agnostic learning of halfspaces with a margin to Densest-
Ball, we can use our DensestBall algorithm to derive the following:

Theorem 20. For 0 < µ, t < 1, there is an ✏-DP algorithm that runs in time (
1

✏t
)
Oµ(1) +

poly
�
Oµ

�
d

✏t

��
, and with probability 0.99, properly agnostically learns halfspaces with margin µ,

error t, and sample complexity Oµ

�
1

✏t2
· poly log

�
1

✏t

��
.

We reiterate that this result can also be derived by an algorithm of Nguyen et al. [NUZ20]; we prove
Theorem 20 here as it is a simple blackbox application of the DensestBall algorithm.

5.4 ClosestPair

Finally, we depart from the notion of DP and instead give an application of efficiently list-decodable
covers to the ClosestPair problem:
Definition 21 (ClosestPair). Given points x1, . . . , xn 2 Zd

, where each coordinate of xi is repre-

sented as an L-bit integer, and an integer ⇠ 2 Z, determine whether there exists 1  i < j  n such

that kxi � xjk22  ⇠.

In the dynamic setting of ClosestPair, we start with an empty set S of points. At each step, a
point maybe added to and removed11 from S, and we have to answer whether there are two distinct
points in S whose squared Euclidean distance is at most ⇠. Our main contribution is a faster history-
independent data structure for dynamic ClosestPair. Recall that a deterministic data structure is said
to be history-independent if, for any two sequences of updates that result in the same set of points,
the states of the data structure must be the same in both cases. For a randomized data structure, we
say that it is history-independent if, for any two sequences of updates that result in the same set of
points, the distribution of the state of the data structure must be the same.
Theorem 22. There is a history-independent randomized data structure for dynamic ClosestPair
that supports up to n updates, with each update takes 2

O(d)
poly(log n, L) time, and uses O(nd ·

poly(log n, L)) memory.

We remark that the data structure is only randomized in terms of the layout of the memory (i.e.,
state), and that the correctness always holds. Our data structure improves that of Aaronson et
al. [ACL+20], in which the running time per update operation is dO(d)

poly(log n, L).

Aaronson et al. [ACL+20] show how to use their data structure together with quantum random walks
from [MNRS11] (see also [Amb07, Sze04]) to provide a fast quantum algorithm for ClosestPair
in low dimensions which runs in time d

O(d)
n
2/3

poly(log n, L). With our improvement above, we
immediately obtain a speed up in terms of the dependency on d under the same model12:
Corollary 23. There exists a quantum algorithm that solves (offline) ClosestPair with probability

0.99 in time 2
O(d)

n
2/3

poly(log n, L).

6 Conclusion and Open Questions

In this work, we obtained tight approximation ratios for several fundamental DP clustering tasks. An
interesting research direction is to study the smallest possible additive error for DP clustering while
preserving the tight non-private approximation ratios that we achieve. Another important direction
is to obtain practical implementations of DP clustering algorithms that could scale to large datasets
with many clusters. We focused in this work on the Euclidean metric; it would also be interesting to
extend our results to other metric spaces.

11Throughout, we assume without loss of generality that x must belong to S before “remove x” can be in-
voked. To make the algorithm work when this assumption does not hold, we simply keep a history-independent
data structure that can quickly answer whether x belongs to S [Amb07, BJLM13].

12The model assumes the presence of gates for random access to an m-qubit quantum memory that takes time
only poly(logm). As discussed in [Amb07], such an assumption is necessary even for element distinctness,
which is an easier problem than ClosestPair.

9

Broader Impact

Our work lies in the active area of privacy and its broader impact should be interpreted in light of
ongoing debates in academia and industry. The primary goal of our work is to develop efficient
differentially private algorithms for clustering data, with quality approaching that of clustering al-
gorithms that are indifferent to privacy.

Being able to cluster data without compromising privacy but with quality almost as good as without
privacy considerations, we believe, has a few societal benefits. Firstly, it could compel applications
that deal with sensitive data and that already use off-the-shelf clustering algorithms to switch to
using private clustering since the quality losses of our algorithm are guaranteed to be minimal and
our algorithms are only modestly more expensive to run. Secondly, since clustering is a fundamen-
tal primitive in machine learning and data analysis, our work can enable privacy in more intricate
applications that depend on clustering. Thirdly, we believe our work can spur further research into
making other private machine learning algorithms attain quality comparable to non-private ones. In
other words, it can lead to the following state: preserving privacy does not entail a compromise in
quality. This will have far-reaching effects on how researchers develop new methods.

On the other hand, there are possible negative consequences of our work. Since our work has not
been tested in practice, it is conceivable that practitioners might be dissuaded from using it on their
own. Further, there might be unintended or malicious applications of private clustering, where
privacy might be used in a negative way; our work might become a latent enablers of such activity.

Overall we believe that protecting privacy is a net positive for the society and our work contribute
towards this larger goal in a positive way.

Acknowledgments and Disclosure of Funding

We are grateful to Noah Golowich for providing helpful comments on a previous draft. We also
thank Nai-Hui Chia for useful discussions on the quantum ClosestPair problem.

References
[Abo18] John M Abowd. The US Census Bureau adopts differential privacy. In KDD, pages

2867–2867, 2018.

[AC13] Charu C. Aggarwal and K. R. Chandan. Data Clustering: Algorithms and Applica-

tions. Chapman and Hall/CRC Boca Raton, 2013.

[ACKS15] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop.
The hardness of approximation of Euclidean k-means. In SoCG, pages 754–767,
2015.

[ACL+20] Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and Ruizhe Zhang.
On the Quantum Complexity of Closest Pair and Related Problems. In CCC, pages
16:1–16:43, 2020.

[ADS15] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the clos-
est vector problem in 2

n time - the discrete Gaussian strikes again! In FOCS, pages
563–582, 2015.

[AGK+04] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala,
and Vinayaka Pandit. Local search heuristics for k-median and facility location
problems. SIAM J. Comput., 33(3):544–562, 2004.

[AHPV05] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approx-
imation via coresets. Combinatorial and Computational Geometry, 52:1–30, 2005.

[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Com-

put., 37(1):210–239, 2007.

10

[ANSW17] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guar-
antees for k-means and Euclidean k-median by primal-dual algorithms. In FOCS,
pages 61–72, 2017.

[App17] Apple Differential Privacy Team. Learning with privacy at scale. Apple Machine

Learning Journal, 2017.

[AS18] Divesh Aggarwal and Noah Stephens-Davidowitz. Just take the average! an embar-
rassingly simple 2n-time algorithm for SVP (and CVP). In SOSA, pages 12:1–12:19,
2018.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seed-
ing. In SODA, pages 1027–1035, 2007.

[Bar96] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic appli-
cations. In FOCS, pages 184–193, 1996.

[BDL+17] Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang
Zhang. Differentially private clustering in high-dimensional Euclidean spaces. In
ICML, pages 322–331, 2017.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy:
the sulq framework. In PODS, pages 128–138, 2005.

[BEL03] Shai Ben-David, Nadav Eiron, and Philip M. Long. On the difficulty of approxi-
mately maximizing agreements. JCSS, 66(3):496–514, 2003.

[Bes98] Sergei Bespamyatnikh. An optimal algorithm for closest-pair maintenance. Discret.

Comput. Geom., 19(2):175–195, 1998.

[BES02] Shai Ben-David, Nadav Eiron, and Hans Ulrich Simon. The computational com-
plexity of densest region detection. JCSS, 64(1):22–47, 2002.

[BF13] Karl Bringmann and Tobias Friedrich. Exact and efficient generation of geometric
random variates and random graphs. In ICALP, pages 267–278, 2013.

[BHPI02] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-
sets. In STOC, pages 250–257, 2002.

[BJLM13] Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer. Quantum
algorithms for the subset-sum problem. In PQCrypto, pages 16–33, 2013.

[BM02] Peter L Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities:
Risk bounds and structural results. JMLR, 3:463–482, 2002.

[BPR+17] Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa
Trinh. An improved approximation for k-median and positive correlation in budgeted
optimization. ACM Trans. Algorithms, 13(2):23:1–23:31, 2017.

[BS76] Jon Louis Bentley and Michael Ian Shamos. Divide-and-conquer in multidimen-
sional space. In STOC, pages 220–230, 1976.

[BS00] Shai Ben-David and Hans Ulrich Simon. Efficient learning of linear perceptrons. In
NIPS, pages 189–195, 2000.

[BS12] Aharon Birnbaum and Shai Shalev-Shwartz. Learning halfspaces with the zero-one
loss: Time-accuracy tradeoffs. In NIPS, pages 935–943, 2012.

[BST14] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empirical risk min-
imization: Efficient algorithms and tight error bounds. In FOCS, pages 464–473,
2014.

[BU17] Mitali Bafna and Jonathan Ullman. The price of selection in differential privacy. In
COLT, pages 151–168, 2017.

11

[CCGG98] Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha. Rounding via
trees: Deterministic approximation algorithms for group Steiner trees and k-median.
In STOC, pages 114–123, 1998.

[CGTS02] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. JCSS, 65(1):129–149, 2002.

[Che06] Ke Chen. On k-median clustering in high dimensions. In SODA, pages 1177–1185,
2006.

[CK19] Vincent Cohen-Addad and Karthik C. S. Inapproximability of clustering in lp met-
rics. In FOCS, pages 519–539, 2019.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially pri-
vate empirical risk minimization. JMLR, 12:1069–1109, 2011.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-

plexity. Texts in Computer Science. Springer, 2013.

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson
and Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[DJW13] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local privacy and
statistical minimax rates. In FOCS, pages 429–438, 2013.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In EURO-

CRYPT, pages 486–503, 2006.

[DKM19] Ilias Diakonikolas, Daniel Kane, and Pasin Manurangsi. Nearly tight bounds for
robust proper learning of halfspaces with a margin. In NeurIPS, pages 10473–10484,
2019.

[DKM20] Ilias Diakonikolas, Daniel M. Kane, and Pasin Manurangsi. The complexity of
adversarially robust proper learning of halfspaces with agnostic noise. CoRR,
abs/2007.15220, 2020.

[DKY17] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data
privately. In NIPS, pages 3571–3580, 2017.

[DLVKKR03] W Fernandez De La Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani.
Approximation schemes for clustering problems. In STOC, pages 50–58, 2003.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In TCC, pages 265–284, 2006.

[DNR+09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan.
On the complexity of differentially private data release: efficient algorithms and
hardness results. In STOC, pages 381–390, 2009.

[DR14] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Pri-
vacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407,
2014.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential
privacy. In FOCS, pages 51–60, 2010.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized
aggregatable privacy-preserving ordinal response. In CCS, pages 1054–1067, 2014.

[FFKN09] Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. Private coresets. In
STOC, pages 361–370, 2009.

[FL11] Dan Feldman and Michael Langberg. A unified framework for approximating and
clustering data. In STOC, pages 569–578, 2011.

12

[FMS07] Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means
clustering based on weak coresets. In SoCG, pages 11–18, 2007.

[FXZR17] Dan Feldman, Chongyuan Xiang, Ruihao Zhu, and Daniela Rus. Coresets for dif-
ferentially private k-means clustering and applications to privacy in mobile sensor
networks. In IPSN, pages 3–16, 2017.

[GLM+10] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.
Differentially private combinatorial optimization. In SODA, pages 1106–1125, 2010.

[Gre16] Andy Greenberg. Apple’s “differential privacy” is about collecting your data – but
not your data. Wired, June, 13, 2016.

[Gur06] Venkatesan Guruswami. Algorithmic Results in List Decoding. Foundations and

Trends in Theoretical Computer Science, 2(2), 2006.

[Hau92] David Haussler. Decision theoretic generalizations of the PAC model for neural
net and other learning applications. Information and Computation, 100(1):78–150,
1992.

[HL18] Zhiyi Huang and Jinyan Liu. Optimal differentially private algorithms for k-means
clustering. In PODS, pages 395–408, 2018.

[HM04] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In STOC, pages 291–300, 2004.

[Jef14] Jeffery, Stacey. Frameworks for Quantum Algorithms. PhD thesis, University of
Waterloo, 2014.

[JKT12] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online
learning. In COLT, pages 24.1–24.34, 2012.

[JL84] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings
into Hilbert space. Contemporary mathematics, 26:189–206, 1984.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for
facility location problems. In STOC, pages 731–740, 2002.

[JV01] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility loca-
tion and k-median problems using the primal-dual schema and lagrangian relaxation.
J. ACM, 48(2):274–296, 2001.

[JYvdS19] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. Differentially private
bagging: Improved utility and cheaper privacy than subsample-and-aggregate. In
NeurIPS, pages 4325–4334, 2019.

[Kir34] Mojżesz Kirszbraun. Über die zusammenziehende und Lipschitzsche transformatio-
nen. Fundamenta Mathematicae, 22(1):77–108, 1934.

[KM19] Karthik C. S. and Pasin Manurangsi. On closest pair in Euclidean metric: Monochro-
matic is as hard as bichromatic. In ITCS, pages 17:1–17:16, 2019.

[KMN+04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. Comput. Geom., 28(2-3):89–112, 2004.

[KS96] Sanjiv Kapoor and Michiel H. M. Smid. New techniques for exact and approximate
dynamic closest-point problems. SIAM J. Comput., 25(4):775–796, 1996.

[KSS94] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2-3):115–141, 1994.

[KSS04] A Kumar, Y Sabharwal, and S Sen. A simple linear time (1 + ✏)-approximation
algorithm for k-means clustering in any dimensions. In FOCS, pages 454–462, 2004.

13

[KSS05] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear time algorithms for clus-
tering problems in any dimensions. In ICALP, pages 1374–1385, 2005.

[KST12] Daniel Kifer, Adam D. Smith, and Abhradeep Thakurta. Private convex optimization
for empirical risk minimization with applications to high-dimensional regression. In
COLT, pages 25.1–25.40, 2012.

[Llo82] Stuart Lloyd. Least squares quantization in PCM. IEEE TOIT, 28(2):129–137, 1982.

[LS92] Hans-Peter Lenhof and Michiel H. M. Smid. Enumerating the k closest pairs opti-
mally. In FOCS, pages 380–386, 1992.

[LS16] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation.
SIAM J. Comput., 45(2):530–547, 2016.

[LSW17] Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inap-
proximability for k-means. Inf. Process. Lett., 120:40–43, 2017.

[Mat00] Jivr’i Matouvsek. On approximate geometric k-clustering. Discret. Comput. Geom.,
24(1):61–84, 2000.

[McA03] David McAllester. Simplified PAC-Bayesian margin bounds. In Learning theory

and Kernel machines, pages 203–215. Springer, 2003.

[MG12] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: A Cryp-

tographic Perspective, volume 671. Springer Science & Business Media, 2012.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and appli-
cations to Ajtai’s connection factor. SIAM J. Comput., 34(1):118–169, 2004.

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of
Johnson–Lindenstrauss transform for k-means and k-medians clustering. In STOC,
pages 1027–1038, 2019.

[MNRS11] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via
quantum walk. SIAM J. Comput., 40(1):142–164, 2011.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
FOCS, pages 94–103, 2007.

[MTS+12] Prashanth Mohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, and David Culler.
GUPT: privacy preserving data analysis made easy. In SIGMOD, pages 349–360,
2012.

[MV13] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential
time algorithm for most lattice problems based on Voronoi cell computations. SIAM

J. Comput., 42(3):1364–1391, 2013.

[NCBN16] Richard Nock, Raphaël Canyasse, Roksana Boreli, and Frank Nielsen. k-variates++:
more pluses in the k-means++. In ICML, pages 145–154, 2016.

[Nov62] Albert B.J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the

Symposium on the Mathematical Theory of Automata, volume 12, pages 615–622,
1962.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and
sampling in private data analysis. In STOC, pages 75–84, 2007.

[NS18] Kobbi Nissim and Uri Stemmer. Clustering algorithms for the centralized and local
models. In ALT, pages 619–653, 2018.

[NSV16] Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Locating a small cluster privately.
In PODS, pages 413–427, 2016.

14

[NUZ20] Huy Lê Nguyen, Jonathan Ullman, and Lydia Zakynthinou. Efficient private algo-
rithms for learning large-margin halfspaces. In ALT, pages 704–724, 2020.

[Rab76] Michael O. Rabin. Probabilistic algorithms. In Proceedings of a Symposium on

New Directions and Recent Results in Algorithms and Complexity, Computer Science

Department, Carnegie-Mellon University, April 7-9, 1976, pages 21–39, 1976.

[Rog59] Claude A Rogers. Lattice coverings of space. Mathematika, 6(1):33–39, 1959.

[Ros58] Frank Rosenblatt. The Perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–407, 1958.

[Sal91] Jeffrey S. Salowe. Shallow interdistnace selection and interdistance enumeration. In
WADS, pages 117–128, 1991.

[SCL+16] Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially
private k-means clustering. In CODASPY, pages 26–37, 2016.

[SH75] Michael Ian Shamos and Dan Hoey. Closest-point problems. In FOCS, pages 151–
162, 1975.

[Sha14] Stephen Shankland. How Google tricks itself to protect Chrome user privacy. CNET,

October, 2014.

[She13] Vladimir Shenmaier. The problem of a minimal ball enclosing k points. Journal of

Applied and Industrial Mathematics, 7(3):444–448, 2013.

[She15] Vladimir Shenmaier. Complexity and approximation of the smallest k-enclosing ball
problem. Eur. J. Comb., 48:81–87, 2015.

[SK18] Uri Stemmer and Haim Kaplan. Differentially private k-means with constant multi-
plicative error. In NeurIPS, pages 5436–5446, 2018.

[Smi92] Michiel Smid. Maintaining the minimal distance of a point set in polylogarithmic
time. Discrete & Computational Geometry, 7(4):415–431, 1992.

[SSS09] S. Shalev Shwartz, O. Shamir, and K. Sridharan. Agnostically learning halfspaces
with margin errors. TTI Technical Report, 2009.

[Ste20] Uri Stemmer. Locally private k-means clustering. In SODA, pages 548–559, 2020.

[SU17] Thomas Steinke and Jonathan Ullman. Tight lower bounds for differentially private
selection. In FOCS, pages 552–563, 2017.

[Sze04] Mario Szegedy. Quantum speed-up of Markov chain based algorithms. In FOCS,
pages 32–41, 2004.

[Ull18] Jonathan Ullman. Tight lower bounds for locally differentially private selection.
CoRR, abs/1802.02638, 2018.

[Vad17] Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations

of Cryptography, pages 347–450. Springer, 2017.

[WWS15] Yining Wang, Yu-Xiang Wang, and Aarti Singh. Differentially private subspace
clustering. In NIPS, pages 1000–1008, 2015.

[WYX17] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimiza-
tion revisited: Faster and more general. In NIPS, pages 2722–2731, 2017.

[XW08] Rui Xu and Don Wunsch. Clustering, volume 10. John Wiley & Sons, 2008.

15

	Introduction
	Preliminaries
	Private DensestBall
	A Private Algorithm in Low Dimensions
	Efficiently List-Decodable Covers
	SparseSelection
	Putting Things Together

	Private k-means and k-median
	Finding a Coarse Centroid Set via DensestBall
	Turning a Coarse Centroid Set into a Coreset
	Finishing Steps

	Applications
	1-Cluster
	Sample and Aggregate
	Agnostic Learning of Halfspaces with a Margin
	ClosestPair

	Conclusion and Open Questions
	Additional Preliminaries
	Composition Theorems

	DensestBall in Low Dimensions
	List-Decodable Covers of the Unit Ball
	Additional Preliminaries on Lattices
	Almost Perfect Lattices and Proof of Lemma 29
	Near-Uniform Sampler: Proof of Lemma 30

	SparseSelection
	Approximate-DP Algorithm
	Pure-DP Algorithm

	Putting Things Together

	k-means and k-median in Low Dimensions
	Coarse Centroid Set via Repeated Invocations of DensestBall
	Centroid Set Refinement via Exponential Covers
	Approximation Algorithm I: Achieving Non-Private Approximation Ratio via Private Coresets
	Private Coreset Construction
	From Coreset to Approximation Algorithm

	Approximation Algorithms II: Private Discrete (k, p)-Clustering Algorithm
	Centroid Set Guarantee of RefinedCentroidSet
	Approximation Algorithm from Private Discrete (k, p)-Cluster

	Dimensional Reduction: There and Back Again
	(k, p)-Clustering
	DensestBall
	1-Center Algorithm in High Dimension
	From 1-Center to DensestBall via Dimensionality Reduction

	From DensestBall to 1-Cluster
	Sample and Aggregate
	Agnostic Learning of Halfspaces with a Margin
	ClosestPair
	History-Independent Dynamic Data Structure

