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Abstract

We study the problem of learning a linear model to set the reserve price in an
auction, given contextual information, in order to maximize expected revenue
from the seller side. First, we show that it is not possible to solve this problem in
polynomial time unless the Exponential Time Hypothesis fails. Second, we present
a strong mixed-integer programming (MIP) formulation for this problem, which
is capable of exactly modeling the nonconvex and discontinuous expected reward
function. Moreover, we show that this MIP formulation is ideal (i.e. the strongest
possible formulation) for the revenue function of a single impression. Since it can
be computationally expensive to exactly solve the MIP formulation in practice, we
also study the performance of its linear programming (LP) relaxation. Though
it may work well in practice, we show that, unfortunately, in the worst case the
optimal objective of the LP relaxation can be O(number of samples) times larger
than the optimal objective of the true problem. Finally, we present computational
results, showcasing that the MIP formulation, along with its LP relaxation, are able
to achieve superior in- and out-of-sample performance, as compared to state-of-
the-art algorithms on both real and synthetic datasets. More broadly, we believe
this work offers an indication of the strength of optimization methodologies like
MIP to exactly model intrinsic discontinuities in machine learning problems.

1 Introduction

Digital advertising is a tremendously fast growing industry: the worldwide digital advertising
expenditure was $283 billion in 2018, and it is estimated to further grow to $517 billion in 2023m

Real time bidding (RTB) stands out as one of the most significant developments of the past decade in
the space of advertisement allocation mechanisms, as it is widely utilized by major online advertising
platforms including—but not limited to—Google, Facebook, and Amazon. In RTB for display ads, a
user visiting a webpage instantaneously triggers an auction held by an Ad Exchange, wherein the
winner of the auction earns the ad slot and pays the publisher a certain price.

A form of auction commonly used in practice by Ad Exchanges is a second-price auction with reserve
price [22]. In such auctions, the publisher or Ad Exchange sets a reserve price before the auction
is held, and the highest bidder wins the ad slot and pays the maximum of the second price and the

“Digital advertising spending worldwide 2018-2023”, retrieved May 25 2020 from https://www.
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Figure 1: (Left) The revenue function r(v; b(), b(2)). (Right) Average revenue function R(B) with
d = 1 features and n = 8 samples.

reserve price. Reserve prices can increase revenue if they are set between the top two bids, but can
also lead to a failed auction if set too high.

One central question for Ad Exchanges is how to set the reserve price for each incoming impression
in order to maximize the total revenue. In general, the reserve price is set based on the contextual
information of the ad campaign, including publisher data (e.g. ad site and ad size), user data (e.g.
device type and various geographic information), and time (e.g. date and hour). In this paper, we
aim to learn an offline linear model to set the reserve price in order to maximize total revenue on the
seller side, using available contextual information. We model this via the optimization problem
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where bgl) and b§2) are, respectively, the (nonnegative) highest bidding price and the second highest
bidding price of impression i, w’ € R¢ is the contextual feature vector of impression 7, and X =
[L,U]* C R? is a bounded hypercube which serves as a feasible region for the model parameters
B. Note that, by artificially modifying the problem data, (1) can readily recover a first price auction
(by setting b(®) = b(1)) or a pure price-setting problem (by setting b(2) = 0). Additionally, 7 is the
discontinuous reward function
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Figureplots the reward function 7 (v; b, b)), which is a simple univariate (though discontinuous)
function for given bidding prices b") and b(?). If the reserve price is set below b(?), the auction
reverts to a second price auction. If the seller manages to set the reserve price in the “sweet spot”
between b(2) and b(l), the seller can capture additional revenue from the auction. However, the seller
must be wary not to set the reserve price too high, as in this case the sale does not occur and the
reward drops to zero. Note that the reserve price is set after the contextual information is observed,
but before the bidding prices are observed, making this price setting problem nontrivial.

Although the univariate function r(-; b, b)) is simple, the average revenue function R can be
extremely complicated, even for small problem instances. Figure Eplots the average revenue R(f3)
over 8 samples as a function of a single feature 8 € R, randomly drawn from a log-normal distribution
as specified in Section |4} As we can see in Figure|l} the average revenue function R has many local
maximizers and is discontinuous, even in the small-sample, univariate setting. This complexity will
only be exacerbated in the large-sample, multivariate case which is the focus of this paper.

As the reserve price must be set before the auction is held, any proposed model must allow extremely
fast inference. However, the model can be trained off-line and then updated at regular intervals (e.g.
daily or weekly), meaning that learning need not happen in real time. We focus on linear models in
this submission, as their simplicity, interpretability, and fast inference lend themselves exceedingly
well to the RTB setting. However, the proposed formulation and techniques can also be extended to
more complicated machine learning models, such as kernel methods and (optimal) decision trees.



Moreover, many RTB platforms support an incredibly large number of auctions, meaning that an
enormous amount of training data is available. This motivates learning algorithms which are highly
scalable and, ideally, parallelizable.

1.1 Our Results

Our contribution in this work is threefold.

Hardness (Section[2). Our first main result is to build off the intuition gleaned from Figure|l|to show
that is, indeed, a hard problem. In particular, we show that there is no algorithm that solves in
polynomial time unless the Exponential Time Hypothesis fails. The Exponential Time Hypothesis
is a very popular assumption is computational complexity concerning the 3-SAT problem [31]], and
it is the basis of many hardness results [[1} [10L [11} [13} [18} 29, 134} 136/ |42]. The Exponential Time
Hypothesis states that 3-SAT can not be solved in subexponential time in the worst case. In order to
show this result, we reduce our problem to the classic k-densest subgraph problem.

New algorithms (Section [3). Our second main result is an exact model for the problem using Mixed-
Integer Programming (MIP). MIP is an optimization methodology capable of modeling complex,
nonconvex feasible regions, and which is widely used in practice. In particular, MIP allows us to
exactly model the underlying discontinuous reward function, without relying on convex or continuous
proxies which may be poor approximations or require careful hyperparameter tuning.

One issue with MIP is that it is not scalable beyond medium-sized instances, and so is it cannot be
brought to bear on problem instances with millions of past observations. In order to deal with the
large-scale problems in daily auctions, we propose a Linear Programming (LP) relaxation of our MIP
formulation. Modern LP solvers, such as Gurobi, are capable of solving very large LPs with millions
of variables. The solution to the LP not only provides a valid upper bound to the optimal expected
revenue, but can also yield feasible solutions to (I). While these solutions are often of relatively good
quality, we show that in the worst case the LP relaxation can produce arbitrarily bad bounds on the
true optimal reward.

Computational validation (Section|4). Finally, we present a thorough computational study on both
synthetic and real data. We start with a low-dimensional artificial data set where we observe that
existing methods, while exhibiting low generalization error, are substantially outperformed by our
approaches. We also study a real data set comprised of eBay sports memorabilia auctions, where
we observe a consistent improvement of our MIP-based methods over existing techniques. In both
studies, we observe that our MIP formulation substantially outperforms the LP relaxation, its convex
counterpart, suggesting the merit of using principled nonconvex approaches for this problem.

1.2 Related Work

Reserve price optimization. Reserve price optimization has been widely studied in both academia
and industry due to its critical role in online advertisement. The main departure of our setting from
much of the literature in this area is our explicit incorporation of the contextual information w into the
optimization. Most previous theoretical works proceed under the assumption that the bidding prices
come from a certain distribution without the consideration of contextual information. For example,
[12] shows a regret minimization under the assumption that all bids are independently drawn from
the same unknown distribution; [30] shows the constant reserve is optimal when the distribution
is known and satisfies certain regularity assumptions; and [2]] studies the case when the buyers are
strategic and would like to maximize their long-term surplus.

In practice, however, an Ad Exchange logs contextual information of every auction and uses this
data to determine future reserve price. For example, in a large field study at Yahoo! [39], contextual
information was used to learn the bidding distribution of buyers, which was then use to set up the
future reserve price. This is an indirect use of contextual information. In contrast, builds a linear
model for reserve price optimization by directly using the contextual information.

To the best of our knowledge, the only work which directly uses the contextual information to set
up the reserve price is that of Mohri and Medina [38]]. In order to handle the discontinuity in the
revenue function r, [38] present a continuous piecewise linear surrogate function, and optimize over
this surrogate function using difference-of-convex programming. There are several difficulties of the
method proposed in [38]: (i) it is non-trivial to tune the hyper-parameter + in the surrogate function,



which controls the closeness of the two problems and the hardness to solve the surrogate problem; (ii)
the global convergence of difference-of-convex programming is slow (requiring, e.g., a cutting plane
or branch-and-bound method) and requires a careful implementation [26]], and (iii) it can only find a
local optimizer of the surrogate problem. In contrast, we directly solve the reserve price optimization
problem (1) by mixed-integer programming.

Mixed-integer programming for piecewise linear functions. Mixed-integer programming has
long been used to model piecewise linear functions in a number of application areas as disparate
as operations [16, (17, 33]], analytics [7, 8], engineering [23} 24], and robotics [19, 20, |32} 137]. In
this literature, our approach is most related to a recent strain of approaches applying MIP to model
high-dimensional piecewise linear functions arising as trained neural networks for various tasks such
as verification and reinforcement learning (4}, 3140, 141]. Moreover, there are sophisticated and mature
implementations of algorithms for mixed-integer programming (i.e. solvers) that can reliably solve
many instances of practical interest in reasonable time frames.

Hardness. We study the hardness of the reserve price optimization problem and show that it
is impossible to solve in polynomial time unless the Exponential Time Hypothesis [27] fails. The
exponential time hypothesis is a very popular assumption in computational complexity and it is the
basis for many hardness results such as approximating the best Nash equilibrium [[11]], k-densest
subgraph [10} 27], SVP [1], network design [14], and many others [34} 42} 29113 [18,136].

2 Hardness

In this section we show the hardness of the reserve price optimization problem (I)). Specifically, we
show that it is not possible to solve this problem in polynomial time unless the Exponential Time
Hypothesis fails. We prove this by showing that a polynomial time optimal algorithm for this problem
implies a polynomial time constant approximation algorithm for the k-densest subgraph problem.
Definition 1 (k-densest subgraph problem). Take a graph G = (Vg, E¢), where Vi represents the
vertex set and E¢ represents the edge set. The goal is to find a subgraph H = (Vi, Ery) C G with
|Ve| = K that maximizes % .

There is no |Vg |~/ Polv(loglog [Val)_ approximation polynomial time algorithm for the k-densest
subgraph problem unless the exponential time hypothesis fails [36]]. Therefore, we produce a
reduction that gives the following result.

Theorem 1. There is no polynomial time algorithm for the reserve price optimization problem (1)),
unless the Exponential Time Hypothesis fails.

The proofs for Theorem|I] and all other technical results, are deferred to the Appendix.

3 New formulations

In this section, we develop a mixed-integer programming (MIP) formulation for solving (I), study its
important computational properties, and discuss how to use it in practice.

MIP is an common optimization methodology capable of modeling complex, nonconvex constraints.
MIP formulations comprise a set of linear constraints in the decision variables, along with integrality
constraints on some (or all) of the variables.

In order to model (T)) with MIP, we first start with the graph of the revenue function 7 (-; b(*), b(2)),
which is defined as gr(r(-; b1, b®); D) := { (v,y) | v € D, y = r(v; b, b®) }. This set is not
closed, due to the discontinuity of 7 at input b(!). Nonetheless, (I)) can be reformulated using closures:

1 n
By w2t @
st. v=w-fB Vi € [n] (3b)
(vi,y5) € cl(gr(r( b7 02 [, us])) Vi € [n] (3¢)
BcX, (3d)



where the bounds on the v variables are computed as /; := minge x w’ - Band u; := maxge x w' - B.
It is straightforward to add a learned constant offset term (3, to the model by changing (3b) to
v; = w" - B+ By, though we omit it for the remainder of the section for notational simplicity.

Proposition 1. If a point (B,v,y) is an optimal solution for (3), then B is an optimal solution for
(1). Conversely, if B is an optimal solution for (1), then there exists some v and y such that (B8,v,y)
is an optimal solution for (3).

We can now construct a mixed-integer programming formulation for (3c).

Proposition 2. A valid MIP formulation for the constraint

(v,y) € cl(gr(r(-;bM,6@); [1,u])) 4)
is:
y <5z + 002, y 2 b (21 + 22) (5a)
y<v+ (b(z) -z — b 24, Y > v — uzs (5b)
[ <v<u (5¢)
2zt =1 zc[0,1? (5d)
ze 73 (5e)

Piecing it all together, we can present a MIP formulation for the original problem (T)).

Corollary 1. Take F(b™) b3 1, u) as the set of all points feasible for (3), given data bV, b2, |,
and u. Modify @) by, for each i € [n], replacing the constraint with the constraint (v;,y;) €
F(bl(»l), b£2), li,u;); call this modification MIP. Then is equivalent to MIP in the sense that: (i) if
(B,v,y) is an optimal solution to MIP, then B is an optimal solution to (1)), and (ii) if B is an optimal
solution to (1), then there exists some v and y such that (8,v,y) is an optimal solution to MIP.

3.1 The tightness of formulation

One measure of the quality of a MIP formulation is how tightly its LP relaxation approximates the
set it formulates. MIP formulations with tight relaxations are likely to solve much more quickly than
those with looser relaxations. The tightest possible MIP formulation is ideal, wherein all extreme
points of the LP relaxation are integral [43]]. The next proposition shows that (3)) is ideal for ().

Proposition 3. The MIP formulation (3) is ideal for @), in the sense that the linear programming
relaxation is a description of the convex hull of all (v, y, z) feasible for (3).

3.2 The feasible region

While the statement of the problem (1)) constrains the model parameters 3 to lie within a bounded
hypercube, it may be difficult to infer the correct size of the domain a priori. To illustrate, we
present a low-dimensional family of instances where the problem data is bounded in magnitude, but
nevertheless the magnitude of the optimal model parameters goes to infinity.

Proposition 4. Fix n = 2 samples and d = 2 features, and consider X = R?, i.e. the unbounded
variant of (1). There exists a sequence of instances where the problem data is bounded in magnitude
by one, and yet the magnitude of the unique optimal solution to (1) grows arbitrarily large.

In other words, we cannot bound the magnitude of the components of an optimal solution solely
as a function of n, d, and the magnitude of the data. However, due to existential representability
results [28]], applying MIP formulation techniques to model (1) will require a bounded domain X
on the model parameters. To circumvent this, we model the magnitude of the bounding box as
a hyperparameter, and tune it using a validation data set. This is the same approach taken in the
difference-of-convex algorithm due to Mohri and Medina [38§]].

3.3 The linear programming relaxation

Our MIP formulation (3)) comprises two types of constraints: linear constraints (3a{5d), and integrality
constraints (5¢). The linear programming relaxation comprises only the linear constraints, and



provides a valid dual upper bound on the optimal reward of a linear programming formulation.
Furthermore, for this particular problem, each feasible solution for the linear programming relaxation
corresponds to a feasible solution for the original problem (I)).

Proposition 5. Take W (b™),b(2) 1, u) as the set of all points feasible for the LP relaxation
of @), given data b, b2, 1, and u. Modify by, for each i € [n], replacing the constraint

(Bc) with the constraint (v;,y;) € W(bgl)7 bl(?), li, u;); call this modification LP. Then LP is an LP
relaxation of (1)) in the sense that the optimal reward for LP upper bounds the reward of any feasible
solution for (1). Moreover;, for any feasible solution (8,v,y) to LP, B is a feasible solution to (1).

Therefore, a third approach to solve (1) is simply to solve the linear programming relaxation. Linear
programming problems can be solved in polynomial time, and there exist algorithms that can very
efficiently solve large scale problem instances. Therefore, the approach of Proposition [5 can be
applied to very large scale instances of the problem (1))

In practice, the Ad Exchange usually processes millions of impressions per minute, and updates the
model parameters frequently (say, every 10 minutes) by learning from the data in the past time period.
In this large-scale setting, MIP-based algorithms or the approach of Mohri and Medina [38]] are not
viable. Fortunately, the LP relaxation method remains viable, as modern Linear Programming solvers,
such as Gurobi or CPLEX, can often solve huge LP with millions of variables within minutes.

A corollary of Propositionis that, if n = 1, the LP relaxation LP is exact, and so exactly represents
the convex hull of feasible points for MIP. Unfortunately, the composition of ideal formulations will,
in general, fail to be ideal. In fact, the the optimal reward from LP can be arbitrarily bad as n grows.

Proposition 6. There is a family of instances of (1), parameterized by the sample size n, where the
optimal reward of (1)) decreases as 1/n, but the optimal reward for the LP relaxation LP is at least 1.

4 Computational study
We now perform a computational study on our proposed methods, using both synthetic and real data.
4.1 Implementation details
Methods. Throughout, we compare seven methods:
1. CP: max, % S (v bgl), bz(?)) — The optimal constant reserve price policy (i.e, set the

reserve price to a constant for all samples without using contextual information). It is used as
a benchmark to measure the improvement to be gained from using contextual information.

2. LP: The linear programming relaxation presented in Proposition 5]

3. MIP: The MIP formulation of Corollary [T terminated after a time limit (to be specified
subsequently).

4. MIP-R: The MIP formulation of Corollary terminated at the root nod

5. DC: The difference-of-convex algorithm of Mohri and Medina [38]].

6. GA: Gradient ascent, with a strong Wolfe line search.

7. UB: % Py bl(-l) — This is a perfect information upper bound equal to the average first bid

price. This is the largest reward that can possibly be garnered from the auction. Note that
this may be quite a loose upper bound, as in general there will not exist a linear model
capable of setting such reserve prices given the contextual information.

Hyperparameter tuning. The LP, MIP-R, and MIP algorithms require that the parameter domain X
is explicitly specified. We utilize cross validation to tune the bounds on each parameter as [—7, 47
for T € {271, ...,2°}. Additionally, DC requires two hyperparameters: one for a penalty associated
with the bound constraints, and the second for the “slope” of its continuous approximation of the
discontinuous reward function . We do cross-validation as suggested in Mohri and Medina [38]].

2This means the solver will terminate just before begining its enumerative tree search procedure. It will solve
the LP relaxation, but crucially will also run a bevy of heuristics to improve primal solutions and dual bounds
that require the knowledge that the underlying model is a MIP.



Evaluation. For each experiment, we report the average reward (i.e. R(8)) of the final model from
each algorithm on both the training and test data sets. We also use the “gap closed” metric to measure
the improvement of MIP over DC, the best existing algorithm from the literature. This is computed
as as ”’g;__DDCC , where in an abuse of notation we use the algorithm names to denote their respective
rewards.

Implementation. We implement our experiment in Julia [9]. We use JuMP [21} [35] and Gurobi
v8.1.1 [25] to model and solve, respectively, the optimization problems underlying the MIP,
MIP-R, LP, and DC methods. Our implementation is publicly available at: https://github.com/
joehuchette/reserve-price-optimization|

4.2 Synthetic data

Data generation. Here we describe how we generate our synthetic data (w*, bgl), bl(»Q))?:l. First, the
feature vectors w* are generated i.i.d. from a Gaussian distribution with identity covariance matrix,

ie., w' %0 d=1/2N(0, I%), normalized so that E[|w?||2 = 1. In order to generate the bidding prices
bgl) and b\?) , we assume there are two buyers, and they have underlining generative parameters ¢;

and ¢y, such that their bids come from log-normal distributions as b} YN (e1 - wi, ole; - wt|)
and b, Y LN (cy - wi,oles - wi|), where o controls the signal-to-noise ratio of the log-normal
distribution. We then set b'") = (1 4 o) max{bi, b3} and b = (1 — &) min{b}, b3}, where o is a
dilation factor to enlarge the difference between bl(.l) and b§2) Moreover, the underlying parameters
¢ and ¢, of the two buyers should be correlated, since the bidding prices for high-valued slots should
be high for all buyers. In order to model this, we set ¢; = h; and ¢2 = phy + /1 — p2hs, where
hy,hs “d g-12 (0, 1) and p controls the correlation between ¢; and ¢,. We normalize the bid
prices so that the mean first price is 1.

Overall, we have three parameters in the data generation process: o controls the signal-to-noise level
of the model, p controls the similarity between two buyers, and « controls the degree of flexibility
the seller has when setting a reserve price.

Experimentation. We fix d = 50 features, n = 1000 training samples, along with test and validation
data sets each with 5000 samples. We first set a “baseline” configuration for our generative model
with 0 = 0.1, p = 0.9, and o = 0.1. To explore the robustness of our model to changes in the data
generation scheme, we then study three variants of this baseline with “high noise” (¢ = 0.5), “low
correlation” (p = 0.5), and “low margin” (o = 0.02). For each of these four parameter settings, we
give aggregate results over three trials in Table (I} We set a time limit of 3 minutes for each algorithm.

In all four experiments, MIP offers an improvement over DC, typically considerably so. On the
baseline configuration, MIP closes an average of 83.5% of the gap left by DC on the training set, and
66.2% of the gap left remaining on the test set. Unsurprisingly, the high noise configuration leads
to degradation of performance with respect to the perfect information upper bound, but MIP is still
able to close 65.5% and 47.4% of the gap on the training and test data sets, respectively. The low
correlation configuration sees MIP closing 79.0% and 61.5% of the remaining gap on training and
test data sets, respectively, while on the low margin configuration MIP closes 60.5% of training gap
and 16.3% of test gap.

While MIP-R does not quite attain the same level of performance as MIP, it is quite close and still
generally outperforms DC both in- and out-of-sample. The LP method also outperforms DC on three of
four experiments, albeit by a smaller margin. We observe that DC produces models that lead to sales
on nearly every impression. In contrast, the LP algorithm sets reserve prices too aggressively, leading
to a model that set reserve prices that lead to failed auctions on roughly 10-20% of impressions.
Additionally, we observe that the MIP and MIP-R methods both produce models that yield sales on
nearly all impressions. This indicates that they are not exploiting a small number of impressions that
garner a high reward, but instead are intelligently setting a reserve price policy that captures excess
reward across the population, without too aggressively setting the prices so that many impressions
fail to sell.

3We note that this dilation is similar to the scaling of linear functions used in the generative model of [38].
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method train test method train test
CP 0.790 +o0.007 | 0.788 +0.002 CP 0.783 +o0.015 | 0.777 +0.020
LP 0.854 +o0.005 | 0.808 +o0.011 LP 0.810 +o0.008 | 0.774 +o.025
MIP 0.962 +0.006 | 0.924 +0.003 MIP 0.907 +o0.013 | 0.858 +o0.017

MIP-R | 0.962 +0.006 | 0.923 +o0.002 MIP-R | 0.832 +0.004 | 0.792 +o0.026
DC 0.776 +o0.006 | 0.776 +0.002 DC 0.752 +0.004 | 0.750 +o0.007
GA 0.516 +o.516 | 0.518 +o.518 GA 0.395 +o0.418 | 0.386 +o0.419
UB 0.999 +0.006 | 1.000 +o0.001 UB 0.998 +0.004 | 1.000 +o0.001

(a) Baseline. (b) High noise.

method train test method train test
CP 0.785 +o0.026 | 0.781 +o0.026 CP 0.911 +o0.003 | 0.910 +o0.003
LP 0.798 +o0.037 | 0.766 +o0.042 LP 0.917 +0.003 | 0.890 +0.004
MIP 0.942 +o0.010 | 0.889 +o0.014 MIP 0.964 +o0.002 | 0.921 +o0.007

MIP-R | 0.943 +o0.087 | 0.889 +o0.013 MIP-R | 0.911 +0.003 | 0.910 +o0.003
DC 0.733 +o0.011 | 0.730 +o0.013 DC 0.911 +o0.003 | 0.910 +o0.003
GA 0.488 +o.479 | 0.484 +o.450 GA 0.708 +0.220 | 0.706 +0.222
UB 1.001 +0.003 | 0.999 +o0.001 UB 1.001 +o0.001 | 0.999 +o0.001

(c) Low correlation. (d) Low margin.

Table 1: Synthetic data results.

Finally, GA does very poorly in all settings with quite high variance of the performance. This makes
intuitive sense, as gradient information is less informative when the objective is discontinuous.

4.3 eBay auctions for sports memorabilia

We now turn our attention to a real data set. We use a published medium-size eBay data set for
reproducibility, which comprises 70,000 sports memorabilia auctions, to illustrate the performance of
our algorithms. The data set is provided by Jay Grossman and was subsequently studied in the context
of reserve price optimization [3 8] There are 78 features in the data, with both seller information
(e.g. rating and location) and item information. We preprocess the data by normalizing the bidding
prices with the mean of their first prices.

Tabledepicts the average and the 95% confidence interval of the cumulative reward on both training
and test data set over 10 random runs. In both, we use 2000 randomly selected samples from the data
set for testing and for validation. In Table [2a] we train using 2000 randomly selected samples and a
time limit of 5 minutes, while in Table 2b we utilize 5000 training samples and a time limit of 15
minutes.

In Table 2, MIP outperforms all other methods, producing the best performing models as measured
on both the training and test data sets. The DC algorithm is the next best performer, producing higher
quality models than both LP and MIP-R. Indeed, MIP closes 7.39% of the gap left by DC on the
training data set, with respect to the UB upper bound. However, due to a lack of generalization,
this number shrinks considerably to 1.66% on the test data set. There is no doubt that DC has
a smaller generalization gap, although one plausible explanation for this could be the additional
hyperparameters tuned over in the DC method. Moreover, we emphasize that these gaps are computed
based on a conservative upper bound (i.e., UB) which, as observed in Section 4.2, may be quite loose.

In order to understand the behavior of the algorithms on larger data sets, we increase the training data
sample size to 5000 and repeat the eBay experiments. The results are depicted in Table[2b] While the
rankings of the algorithms remains the same, MIP is able to extract more information from the larger
data set. The training reward grows, and the models produced also generalize much more successfully
to the testing data set. In contrast, the DC algorithm appears unable to exploit the extra available data,
with training and test accuracy that remain nearly identical with the previous experiment. Indeed, MIP
is able to close 9.11% of the remaining gap on the training data set, and 7.01% on the testing data set.

““Ebay Data Set”, accessed May 25 2020 from https://cims.nyu.edu/ munoz/data/, We refer the
reader to [38]] for a more detailed description of the data set.
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method train test method train test
CP 0.563 +o0.007 | 0.568 +o.010 CP 0.564 +0.004 | 0.567 +0.023
LP 0.668 +o0.006 | 0.654 +o.020 LP 0.665 +0.006 | 0.650 +o.016
MIP 0.726 +o0.009 | 0.714 +0.015 MIP 0.731 +o0.009 | 0.725 +0.013

MIP-R | 0.657 +o0.022 | 0.652 +o0.027 MIP-R | 0.596 +o0.038 | 0.596 +o0.041
DC 0.704 +o0.007 | 0.709 +o0.016 DC 0.704 +o0.007 | 0.704 +o0.015
GA 0.396 +o.165 | 0.398 +o.165 GA 0.363 +0.164 | 0.363 +0.261
UB 0.992 +o0.006 | 1.014 +o0.018 UB 1.002 +0.006 | 0.999 +o0.023

(a) 2000 training samples. (b) 5000 training samples.

Table 2: Ebay data set experiments.

Comparing Table[2a and Table[2b] we can clearly see that the difference in reward produced by MIP
between the training and test data sets decreases as number of samples increases. This is intuitively
consistent with what could be expected from a learning theory analysis, and we expect that this gap
will likely keep shrinking in the “big data” regime as we further enlarge the training sample size.

5 Conclusion and Future Directions

In this paper, we study the linear model for reserve price optimization in a second-price auction. We
first show that this is indeed a hard problem — unless the Exponential Time Hypothesis fails, there is
no polynomial time optimal algorithm. Then we propose a mixed-integer programming formulation
and a LP relaxation for solving the problem. Linear models are the simplest learning model for
this problem with fast inference and straightforward interpretability. How to extend our approaches
developed herein to other learning methods, such as kernel methods and optimal decision trees, are
solid future research directions.

Broader Impact

This work presents new methods, and as such does not have direct societal impact. However, if the
context provided allows the model to reason about protected classes or sensitive information, either
directly or indirectly, the model—-and, therefore, the application of this work—has the potential for
adverse effects.
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