passing CSRF Protections

e 4
A Double Defeat of the Double-Submit
Cookie Pattern

D OWASP

/ The Open Web Application Security Project

About Me

The Open Web Application Security Project

e David Johansson (@securitybits)
— Security consultant since 2007
— Helping clients design and build secure software
— Security training

— Based in London since 3 years, working
for Cigital (now part of Synopsys)

SYNOPSYs

/——\
OWASP

The Open Web Application Security Project

CSRF Protection

DOUBLE-SUBMIT COOKIE PATTERN

OWASP

The Open Web Application Security Project

Cross-site Request Forgeny

* Attacker sends payload via victim’s browser

* Browser automatically includes user’s identity

Browser

User's identity | |

L J
Request=———————— |]

r il

m Web Server

Bl

Attacker's payload

Double-submit Cookie Pattern
OWASP

The Open Web Application Security Project

* Simple CSRF protection — no server-side state

Cookie with CSRF Token

— E (] U £ § | =— @

@ Do they match?
CSRF Token in Request —j

Cookies are differen

False Assumptions?

OWASP

The Open Web Application Security Project

0 Cross-Site Request Forg: X

< C | & Secure | https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_She <3 @& ¢

Double Submit Cookie

If storing the CSRF token in session is problematic, an alternative defense is use of a double
submit cookie. A double submit cookie is defined as sending a random value in both a cookie and
as a request parameter, with the server verifying if the cookie value and request value match.

When a user authenticates to a site, the site should generate a (cryptographically strong)
pseudorandom value and set it as a cookie on the user's machine separate from the session id.
t1 : to save this value in any way, thus avoiding server side state. The site then

e B - s = - = g

_nsaction request include this random value as a hidden formv Not really true...

requewter}. A cross origin attacker cannot read any data sent from the server or modiry
cookie values, per the same-origin policy. This means that while an attacker can force a vicli

send any value he wants with a malicious CSRF request, the attacker will be unable to modify or
read the value stored in the cookie. Since the cookie value and the request parameter or form

value must be the same, the attacker will be unable to successfully force the submission of a
request with the random CSRF value.

“Cookie Fixation

The Open Web Application Security Project

e What if attacker can set the CSRF cookie..?

* Cookie fixation can be done through:
— Exploiting subdomains
— Man-in-the-middle HTTP connections

/——\
OWASP

The Open Web Application Security Project

Double-submit Defeat #1:

EXPLOITING SUBDOMAINS

Malicious Subdomain

\ The Open Web Application Security Project

e Attacker controls https://evil.example.com/
* Subdomain sets cookie for parent domain
* |Includes specific path

I Response from https:/fevil. example.com:443/submit?a [127.0.0.1]

[Forward J [Drop J'.Interceptis on | [Action J

_J Raw T Headers T Hex T HTML T Render]

HTTP/1.1 404 Mot Found

K-Powered-By: Fxpress

Set-cookie: csrf=submit path and parent domain: Domain=example.com; Path=/submit; HttpOnly: Secure
Cnntent-Secu?lty-PnLlcy:-HE?EﬁLt-E?c TSl T

¥-Content-Type-Options: nosniff

Content -Type: texts/html: charset=utf-&

Content-Length: 137

Date: Tue, 14 Mar 20017 1&:05:37 GMT
Connection: close

https://evil.example.com/

Malicious Subdomain

The Open Web Application Security Project

e Attacker now controls cookies sent to
https://www.example.com/submit

o Attacker’s CSRF cookie sent first due to
longer path

Lﬂ \ Request to https:/fwww example com:443 [127.0.0.1]

l Forward J l Drop J'.Interceptis on | Actian Comment this it

_[Raw T Params T Headers T Hex]

FOST /submit? csrf=a-GePpmiVVNIIZOLEUBEHh4tE-mj@ HTTR/1.1

Host: www.example.com

IConnection: close

Content-Length: 32

Cache-Control: max-age=0

Origin: http://localhost: 8000

Lpgrade-Insecure-Requests: 1

User-aAgent: Mozilla/5.0 (X11: Linux xB6_64] AppleWebkit/537.36 (KHTML, like Gecko) Ubuntu Chromium/56.0.2924.76 Chrome/56.0,2924,76 Safari/537.36
Content-Type: application/x-www-form-urlencoded

hccept: text/himl,applicationsxhtml+xml,applicationsxml;g=0.9,image / webp,*/*;q=0.8

Feferer: http://localhost:8000/CSRF2

Becept - Languages en GB en 1S 0=0 8 eng=0 5

Cookie:l csrf=submit path and parent dnmain;l csrf=zszDKijEFmdryNd?CNanE;IKSRF-TDKEH#92ho55H-_DrEndjh2--2hgvnPhOJzaGhsTn; name=undefined;
| csrf=parent_domain

favorite=Audi&name=maliciouslser

https://www.example.com/submit

Vuvlnérable Subdorﬁain
€) OWASP

The Open Web Application Security Project

* Controlling all subdomains doesn’t mean you’re
safe

e XSS in any subdomain can be exploited:

<script>document.cookie = “_csrf=a; _
Path=/submit; domain=example.com”;</script>

* So you’re using CSP?
— Cookies can still be set through meta-tags ©

<meta http-equiv="set-cookie"
content="_csrf=a; Path=/submit;
domain=example.com'>

/——\
OWASP

The Open Web Application Security Project

Double-submit Defeat #2:

MAN-IN-THE-MIDDLE ATTACKS

Manzin-the-Middle Attacks
7? OWASP

The Open Web Application Security Project

* HTTP origins can set cookies for HTTPS origins

* Even ‘secure’ cookies can be overwritten from
HTTP responses™

* Attacker who MiTM any HTTP connection
from victim can:
— Overwrite CSRF cookie
— Pre-empt CSRF cookie

*The new ‘Strict Secure Cookie’ specification will prevent this
(https://www.chromestatus.com/feature/4506322921848832)

https://www.chromestatus.com/feature/4506322921848832

Overwrite CSRF Cookie

OWASP

The Open Web Application Security Project

https://www.example.com Victim's browser MiTM Any Site (HTTP)

HTTP Request J
HTTP Response

s

Intercept response and
inject plain HTTP
request to www.example.com

Modified HTTP Response
4 ()
Al

Request image from http://www.example.com

Intercept HTTP request
and respond with
Set-Cookie header

Set-Cookie: _csrf=a; Path=/
+ CSRF attack payload

rF

Browser stores new
_csrf cookie and
sends CSRF payload

Jsubmit?_csrf=a-GePpmivVNII39L6UBSHN4t5-mj0
(Cookie: _csrf=a; session=abc...)

d
bl

tokens matches

Request accepted as csurf?

Submission Accepted

MIiTM attacker has successfully
issued CSRF request to
https://www.example.com

on behalf of victim

https://www.example.com Victim's browser MiTM Any Site (HTTP)

Pre-empt CSRF Cookie

OWASP

The Open Web Application Security Project

’ https://www.example.com ’ ‘ Victim's browser

MiTM ‘ ’ Any Site (HTTP) ‘

HTTP Request .J
HTTP Response

Itercept response and
Ingect piain HTTP
request o www.example.com

Maodified HTTP Response
lg ()
4

Request image from http://www examn&e.com"

[t
| Intercept HTTP request

and respond with
| Set-Cookie header to store
[Tong-lived _csef cookle

Set-Cookie: _csrfea; Pathw/,
Expires=Thu Dec 31 2020 00-00:00 GMT

‘ Browser persists _csif cookie
| for several years.
| At some point later In time, user logs in
While user logged in
attacker forces victim's browser
g to submit CSRF payload
4
fSubmit? _csrf=a-GePpmIVVNIIZSLEUBSHNLS-mj0
g (Cookie: csrf=3; session=abc,..)
4
a |
Request accepted as csurf |
token matches cookie
|
Submission Accepted N
13

Attacker has successfully
Issued CSRF request to
https://www.exampie.com
on behalf of victim

https://www.example.com Victim's browser MiTM Any Site (HTTP)

Bypassing CSRF Protection
£ OWASP

The Open Web Application Security Project

* After fixating CSRF cookie, attacker can create
successful CSRF payload

-

.. .

Attacker's CSRF cookie

Reques=———— @
x{:) Match -
Request accepted

Attacker includes known T
token in CSRF payload

+ Mitigations
7? OWASP

The Open Web Application Security Project

* Additional defenses to strengthen double-
submit cookie pattern:

— HTTP Strict Transport Security (HSTS)

— Cookie Prefixes (“__Host-" is the one you want)
— Sign cookie

— Bind cookie to user

— Use custom HTTP header to send request token

_———-'---____~\\\\
OWASP

The Open Web Application Security Project

This is not the token you’re looking for...

ANGULAR & CSURF

Angular]S CSRF Protection
OWASP

The Open Web Application Security Project

* Angular]S Shttp service has built-in support to
help prevent CSRF*

* Reads token from cookie (XSRF-TOKEN) and
sets custom HTTP header (X-XSRF-TOKEN)

e Server needs to implement token validation

e Can be used as double-submit cookie pattern
if server compares cookie value with HTTP
header

*https://blogs.synopsys.com/software-integrity/2017/02/24/angularjs-security-http-service/

https://blogs.synopsys.com/software-integrity/2017/02/24/angularjs-security-http-service/

Angular)S & csurf

e.) OWASP

The Open Web Application Security Project

\ .
' r

ise(csurf({cookie: {secure: true, httpOnly

get('/myForm', function (req, r

Kie('XSRF-TOKEN', req.csriToken() : true});
ile("myForm.html", {root:

OWASP

The Open Web Application Security Project

O csurf/index.js at master X

@param {IncomingMessage} reg

greturn {String}

function defaultValue (reg) {

& C | & GitHub, Inc. [US] | https://github.com/exp

return (req.body && req.body._csrf)

(reg.query &% reg.query. csrf) |

(req.headers['csrf-token']) |
(req.headers['xsrf-token']) |
(req.headers['x-csrf-token']) ||

(req.headers['x-xsrf-token'])

Default Value Function

ressjs/csurt/blob/master/index.js ﬁ

4

Body and query parameters checked first!

Exploit Default Value Function

OWASP

The Open Web Application Security Project

~ Response from hitps:/fevil. example.com:443/bogus [127.0.0.1]

| Forward || Drop | | Intercept is on | | Action |

_[Raw T Headers T Hex T HTML T Render]

HTTP/1.1 404 Mot Found
E e e e B AR ey e e
Set-cookie: csrf=a; Path=/submit: Domain=example.com; HttpOnly: Secure
Content Serprdtw_Deldews Aefonlt cpe- toa] £
¥-Content-Type-Options: nosniff A
Content -Type: text/html: charset=utf-&
Content-Length: 136

Date: Wed, 15 Mar 2017 13:14:22 GMT
Connection: close

xsrf_form2.html

xample.com

to win $100">

CSRF Defe;se Bypassed

Specify Custom Value Function

e.) OWASP

The Open Web Application Security Project

csurfjs

https

require('cookie-parser');
ire('csurf');

ABD eonFr)s
.,/dp,',:.;l.,rll) ;

f({cookie:

customValueFunction

et (' /myForm g
kie("'XSRF-TOKEN',

le("myForm.html"

LLOT

/\
OWASP

The Open Web Application Security Project

* Double-submit Cookie Pattern based on
partially incorrect assumptions

* |Integrity protection of cookies is very weak

* Attackers can often force cookies upon other
users

* Be careful which token you validate against

e Additional mitigations often required to
strengthen the defense

/——\
) OWASP

The Open Web Application Security Project

Questions?

@securitybits

