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Agenda

● Background
– “Security” in the context of this presentation

– Why we need to change what we’re doing

– Just fixing bugs isn’t sufficient

● Kernel Self Protection Project
– Who we are

– What we’re doing

– How you can help

● Challenges



  

Kernel Security

● More than access control (e.g. SELinux)
● More than attack surface reduction (e.g. seccomp)
● More than bug fixing (e.g. CVEs)
● More than protecting userspace
● More than kernel integrity
● This is about Kernel Self Protection



  

Devices using Linux

● Servers, laptops, cars, phones, …
● >1,400,000,000 active Android devices in 2015
● Vast majority are running v3.4 (with v3.10 a distant second)
● Bug lifetimes are even longer than upstream
● “Not our problem”? None of this matters: even if upstream fixes 

every bug found, and the fixes are magically sent to devices, 
bug lifetimes are still huge.



  

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaws, and found that 
the average time between introduction and fix was about 5 
years.

● My analysis of Ubuntu CVE tracker for the kernel from 2011 
through 2016:
– Critical: 2 @ 3.3 years

– High: 34 @ 6.4 years

– Medium: 334 @ 5.2 years

– Low: 186 @ 5.0 years
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Upstream Bug Lifetime

● The risk is not theoretical. Attackers are watching commits, and 
they are better at finding bugs than we are:
– http://seclists.org/fulldisclosure/2010/Sep/268

● Most attackers are not publicly boasting about when they found 
their 0-day...

http://seclists.org/fulldisclosure/2010/Sep/268


  

Fighting Bugs

● We’re finding them
– Static checkers: compilers, smatch, coccinelle, coverity

– Dynamic checkers: kernel, trinity, KASan

● We’re fixing them
– Ask Greg KH how many patches land in -stable

● They’ll always be around
– We keep writing them

– They exist whether we’re aware of them or not

– Whack-a-mole is not a solution



  

Analogy: 1960s Car Industry

● @mricon’s presentation at 2015 Linux Security Summit
– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U

● We must handle failures (attacks) safely
– Userspace is becoming difficult to attack

– Containers paint a target on kernel

– Lives depend on Linux

http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U


  

Killing bugs is nice

● Some truth to security bugs being “just normal bugs”
● Your security bug may not be my security bug
● We have little idea which bugs attackers use
● Bug might be in out-of-tree code

– Un-upstreamed vendor drivers

– Not an excuse to claim “not our problem”



  

Killing bug classes is better

● If we can stop an entire kind of bug from happening, we 
absolutely should do so!

● Those bugs never happen again
● Not even out-of-tree code can hit them
● But we’ll never kill all bug classes



  

Killing exploitation is best

● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information leaks
● Eliminate anything that assists attackers
● Even if it makes development more difficult



  

Typical Exploit Chains

● Modern attacks tend to use more than one flaw
● Need to know where targets are
● Need to inject (or build) malicious code
● Need to locate malicious code
● Need to redirect execution to malicious code



  

What can we do?

● Many exploit mitigation technologies already exist (e.g. 
Grsecurity/PaX) or have been researched (e.g. academic 
whitepapers), but are not present in the upstream Linux kernel

● There is demand for kernel self-protection, and there is demand 
for it to exist in the upstream kernel

● http://www.washingtonpost.com/sf/business/2015/11/05/net-of-in
security-the-kernel-of-the-argument/

http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/
http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/


  

Kernel Self Protection Project

● http://www.openwall.com/lists/kernel-hardening/
– http://www.openwall.com/lists/kernel-hardening/2015/11/05/1

● http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
● People interested in coding, testing, documenting, and discussing 

kernel self protection technologies and related topics

http://www.openwall.com/lists/kernel-hardening/
http://www.openwall.com/lists/kernel-hardening/2015/11/05/1
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project


  

Kernel Self Protection Project

● There are other people working on excellent technologies that 
ultimately revolve around the kernel protecting userspace from 
attack (e.g. brute force detection, SROP mitigations, etc)

● KSPP focuses on the kernel protecting the kernel from attack
● Currently ~10 organizations and ~5 individuals working on 

about ~20 technologies
● Slow and steady



  

Developers under KSPP umbrella

● LF’s Core Infrastructure Initiative funded: Emese Revfy
● Self-funded: Andy Lutomirski, Russell King, Valdis Kletnieks, Jason Cooper, Jann Horn, Daniel 

Micay, David Windsor, Richard Weinberger 
● ARM: Catalin Marinas, Mark Rutland
● Cisco: Daniel Borkmann
● Google: Kees Cook, Thomas Garnier, Daniel Cashman, Jeff Vander Stoep
● HP Enterprise: Juerg Haefliger
● IBM: Michael Ellerman, Heiko Carstens, Christian Borntraeger
● Imagination Technologies: Matt Redfearn
● Intel: Elena Reshetova, Casey Schaufler, Michael Leibowitz, Dave Hansen
● Linaro: Ard Biesheuvel, David Brown
● Oracle: Quentin Casasnovas, Yinghai Lu
● RedHat: Laura Abbott, Rik van Riel, Jessica Yu, Baoquan He



  

Bug class: Stack overflow

Exploit example:
– https://jon.oberheide.org/files/half-nelson.c

● Mitigations:
– stack canaries, e.g. gcc's -fstack-protector (v2.6.30) and -fstack-

protector-strong (v3.14)

– guard pages (e.g. GRKERNSEC_KSTACKOVERFLOW)
● vmalloc stack, removal of thread_info (x86): Andy Lutomirski

– alloca checking (e.g. PAX_MEMORY_STACKLEAK)

– kernel stack location randomization

– shadow stacks

https://jon.oberheide.org/files/half-nelson.c


  

Bug class: Integer over/underflow

● Exploit examples:

– https://cyseclabs.com/page?n=02012016
– http://perception-point.io/2016/01/14/analysis-and-exploi

tation-of-a-linux-kernel-vulnerability-cve-2016-0728/
● Mitigations:

– check for refcount overflow (e.g. PAX_REFCOUNT)
● PAX_REFCOUNT port: David Windsor, Elena Reshetova

– compiler plugin to detect multiplication overflows at runtime (e.g. 
PAX_SIZE_OVERFLOW)

https://cyseclabs.com/page?n=02012016
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/


  

Bug class: Heap overflow

● Exploit example:
– http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014

-0196-pty-kernel-race-condition.html
● Mitigations:

– runtime validation of variable size vs copy_to_user / copy_from_user 
size (e.g. PAX_USERCOPY)

● CONFIG_HARDENED_USERCOPY: Kees Cook, Rik van Riel, Laura 
Abbott, Casey Schaufler

– guard pages

– metadata validation (e.g. glibc's heap protections) 
● CONFIG_DEBUG_LIST hardening: Kees Cook

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


  

Bug class: format string injection

● Exploit example:
– http://www.openwall.com/lists/oss-security/2013/06/06/13

● Mitigations:
– Drop %n entirely (v3.13)

– detect non-const format strings at compile time (e.g. gcc's -Wformat-
security, or better plugin)

– detect non-const format strings at run time (e.g. memory location 
checking done with glibc's -D_FORITY_SOURCE=2)

http://www.openwall.com/lists/oss-security/2013/06/06/13


  

Bug class: kernel pointer leak

● Exploit examples:
– examples are legion: /proc (e.g. kallsyms, modules, slabinfo, iomem), 

/sys, INET_DIAG (v4.1), etc

– http://vulnfactory.org/exploits/alpha-omega.c

● Mitigations:
– kptr_restrict sysctl (v2.6.38) too weak: requires dev opt-in

– remove visibility to kernel symbols (e.g. GRKERNSEC_HIDESYM)

– detect and block usage of %p or similar writes to seq_file or other 
user buffers (e.g. GRKERNSEC_HIDESYM + PAX_USERCOPY)

http://vulnfactory.org/exploits/alpha-omega.c


  

Bug class: uninitialized variables

● This is not just an information leak!
● Exploit example:

– https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

● Mitigations:
– clear kernel stack between system calls (e.g. 

PAX_MEMORY_STACKLEAK)

– instrument compiler to fully initialize all structures (e.g. 
PAX_MEMORY_STRUCTLEAK)

https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf


  

Bug class: use-after-free

● Exploit example:
– http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-k

ernel-vulnerability-cve-2016-0728/
● Mitigations:

– clearing memory on free can stop attacks where there is no reallocation 
control (e.g. PAX_MEMORY_SANITIZE)

● Zero poisoning (v4.6): Laura Abbott

– segregating memory used by the kernel and by userspace can stop 
attacks where this boundary is crossed (e.g. PAX_USERCOPY)

– randomizing heap allocations can frustrate the reallocation efforts the 
attack needs to perform (e.g. OpenBSD malloc)

● Freelist randomization (SLAB: v4.7, SLUB: v4.8): Thomas Garnier

http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/


  

Exploitation: finding the kernel

● Exploit examples:
– See “Kernel pointer leaks” above

– https://github.com/jonoberheide/ksymhunter

● Mitigations:
– hide symbols and kernel pointers (see “Kernel pointer leaks”)

– kernel ASLR
● text/modules base: x86 (v3.14), arm64 (v4.6): Ard Biesheuvel, MIPS (v4.7): Matt Redfearn
● memory (x86): Thomas Garnier

– runtime randomization of kernel functions

– executable-but-not-readable memory
● x86 (v4.6): Dave Hansen, arm64: Catalin Marinas

– per-build structure layout randomization (e.g. GRKERNSEC_RANDSTRUCT)
● RANDSTRUCT port: Michael Leibowitz

https://github.com/jonoberheide/ksymhunter


  

Exploitation: Direct kernel overwrite

● How is this still a problem in the 21st century?
● Exploit examples:

– Patch setuid to always succeed

– http://itszn.com/blog/?p=21  Overwrite vDSO

● Mitigations:
– Executable memory should not be writable (e.g CONFIG_DEBUG_RODATA)

● s390: forever ago
● x86: v3.18
● ARM: v3.19
● arm64: v4.0

http://itszn.com/blog/?p=21


  

Exploitation: function pointer overwrite

● Also includes things like vector tables, descriptor tables (which 
can also be info leaks)

● Exploit examples:
– https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-e

xploit/
– https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

● Mitigations:
– read-only function tables (e.g. PAX_CONSTIFY_PLUGIN)

– make sensitive targets that need one-time or occasional updates only 
writable during updates (e.g. PAX_KERNEXEC):

● __ro_after_init: (v4.6): Kees Cook, David Brown, Jessica Yu, Heiko Carstens

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve


  

Exploitation: userspace execution

● Exploit example:
– See almost all previous examples

● Mitigations:
– hardware segmentation: SMEP (x86), PXN (ARM, arm64)

– emulated memory segmentation via page table swap, PCID, etc (e.g. 
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3): Russell King
● TTBR0 (ARMv8.0): Catalin Marinas

– compiler instrumentation to set high bit on function calls



  

Exploitation: userspace data

● Exploit examples:
– https://github.com/geekben/towelroot/blob/master/towelroot.c

– http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-c
ve-2014-9322-linux-kernel-privilege-escalation/

● Mitigations:
– hardware segmentation: SMAP (x86), PAN (ARM, arm64)

– emulated memory segmentation via page table swap, PCID, etc (e.g. 
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3): Russell King
● TTBR0 (ARMv8.0): Catalin Marinas

https://github.com/geekben/towelroot/blob/master/towelroot.c
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/


  

Exploitation: Reused code chunks

● Also known as Return Oriented Programming (ROP), Jump 
Oriented Programming (JOP), etc

● Exploit example:
– http://vulnfactory.org/research/h2hc-remote.pdf

● Mitigations:
– JIT obfuscation (e.g. BPF_HARDEN):

● eBPF JIT hardening (v4.7): Daniel Borkmann, Elena Reshetova

– compiler instrumentation for Control Flow Integrity (CFI)

– Return Address Protection, Indirect Control Transfer Protection (e.g. RAP)
● https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf

http://vulnfactory.org/research/h2hc-remote.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf


  

Added in v4.3

● CONFIG_CPU_SW_DOMAIN_PAN (PAN Emulation on ARM)
● Ambient capabilities (notable userspace protection)
● Seccomp support on PowerPC (notable attack surface 

reduction)



  

Added in v4.4

● x86_64 vsyscall CONFIG option (notable attack surface 
reduction)



  

Added in v4.5

● ASLR entropy size sysctl (notable userspace protection)



  

Added in v4.6

● KASLR text and module base on arm64
● RODATA by default on ARMv7+, arm64
● RODATA mandatory on x86
● Zero-poisoning for heap memory
● __ro_after_init basic infrastructure
● execute-only memory on x86



  

Added in v4.7

● KASLR text/module base for MIPS
● SLAB freelist randomization
● eBPF JIT constant blinding



  

Expected in v4.8

● SLUB freelist randomization
● KASLR of full range of physical memory on x86_64
● KASLR of kernel memory base on x86_64
● gcc plugin infrastructure
● hardened usercopy
● ptrace before seccomp (notable attack surface reduction)



  

Crystal Ball predictions for v4.9

● latent_entropy gcc plugin
● vmalloc stack on x86
● list hardening
● PAN emulation for arm64



  

Challenge: Culture

● Conservatism
– 16 years to accept symlink restrictions upstream

● Responsibility
– Kernel developers must accept the need for these changes

● Sacrifice
– Kernel developers must accept the technical burden

● Patience
– Out-of-tree developers must understand how kernel is developed



  

Challenge: Technical

● Complexity
– Very few people are proficient at developing (much less debugging) 

these features

● Innovation
– We must adapt the many existing solutions

– We must create new technologies

● Collaboration
– Explain rationale for new technologies

– Make code understandable/maintainable by other developers and 
accessible across architectures



  

Challenge: Resources

● People
– Dedicated developers

● People
– Dedicated testers

● People
– Dedicated backporters



  

Thoughts?

Kees (“Case”) Cook
keescook@chromium.org

kees@outflux.net

https://outflux.net/slides/2016/lss/kspp.pdf
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