

Status of the Kernel Self Protection Project

Linux Security Summit 2016
Aug 25-26, Toronto

Kees (“Case”) Cook
keescook@chromium.org

https://outflux.net/slides/2016/lss/kspp.pdf

mailto:keescook@chromium.org
https://outflux.net/slides/2016/lss/kspp.pdf

Agenda

● Background
– “Security” in the context of this presentation

– Why we need to change what we’re doing

– Just fixing bugs isn’t sufficient

● Kernel Self Protection Project
– Who we are

– What we’re doing

– How you can help

● Challenges

Kernel Security

● More than access control (e.g. SELinux)
● More than attack surface reduction (e.g. seccomp)
● More than bug fixing (e.g. CVEs)
● More than protecting userspace
● More than kernel integrity
● This is about Kernel Self Protection

Devices using Linux

● Servers, laptops, cars, phones, …
● >1,400,000,000 active Android devices in 2015
● Vast majority are running v3.4 (with v3.10 a distant second)
● Bug lifetimes are even longer than upstream
● “Not our problem”? None of this matters: even if upstream fixes

every bug found, and the fixes are magically sent to devices,
bug lifetimes are still huge.

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaws, and found that
the average time between introduction and fix was about 5
years.

● My analysis of Ubuntu CVE tracker for the kernel from 2011
through 2016:
– Critical: 2 @ 3.3 years

– High: 34 @ 6.4 years

– Medium: 334 @ 5.2 years

– Low: 186 @ 5.0 years

Upstream Bug Lifetime

Upstream Bug Lifetime

Upstream Bug Lifetime

● The risk is not theoretical. Attackers are watching commits, and
they are better at finding bugs than we are:
– http://seclists.org/fulldisclosure/2010/Sep/268

● Most attackers are not publicly boasting about when they found
their 0-day...

http://seclists.org/fulldisclosure/2010/Sep/268

Fighting Bugs

● We’re finding them
– Static checkers: compilers, smatch, coccinelle, coverity

– Dynamic checkers: kernel, trinity, KASan

● We’re fixing them
– Ask Greg KH how many patches land in -stable

● They’ll always be around
– We keep writing them

– They exist whether we’re aware of them or not

– Whack-a-mole is not a solution

Analogy: 1960s Car Industry

● @mricon’s presentation at 2015 Linux Security Summit
– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U

● We must handle failures (attacks) safely
– Userspace is becoming difficult to attack

– Containers paint a target on kernel

– Lives depend on Linux

http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U

Killing bugs is nice

● Some truth to security bugs being “just normal bugs”
● Your security bug may not be my security bug
● We have little idea which bugs attackers use
● Bug might be in out-of-tree code

– Un-upstreamed vendor drivers

– Not an excuse to claim “not our problem”

Killing bug classes is better

● If we can stop an entire kind of bug from happening, we
absolutely should do so!

● Those bugs never happen again
● Not even out-of-tree code can hit them
● But we’ll never kill all bug classes

Killing exploitation is best

● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information leaks
● Eliminate anything that assists attackers
● Even if it makes development more difficult

Typical Exploit Chains

● Modern attacks tend to use more than one flaw
● Need to know where targets are
● Need to inject (or build) malicious code
● Need to locate malicious code
● Need to redirect execution to malicious code

What can we do?

● Many exploit mitigation technologies already exist (e.g.
Grsecurity/PaX) or have been researched (e.g. academic
whitepapers), but are not present in the upstream Linux kernel

● There is demand for kernel self-protection, and there is demand
for it to exist in the upstream kernel

● http://www.washingtonpost.com/sf/business/2015/11/05/net-of-in
security-the-kernel-of-the-argument/

http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/
http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/

Kernel Self Protection Project

● http://www.openwall.com/lists/kernel-hardening/
– http://www.openwall.com/lists/kernel-hardening/2015/11/05/1

● http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
● People interested in coding, testing, documenting, and discussing

kernel self protection technologies and related topics

http://www.openwall.com/lists/kernel-hardening/
http://www.openwall.com/lists/kernel-hardening/2015/11/05/1
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

Kernel Self Protection Project

● There are other people working on excellent technologies that
ultimately revolve around the kernel protecting userspace from
attack (e.g. brute force detection, SROP mitigations, etc)

● KSPP focuses on the kernel protecting the kernel from attack
● Currently ~10 organizations and ~5 individuals working on

about ~20 technologies
● Slow and steady

Developers under KSPP umbrella

● LF’s Core Infrastructure Initiative funded: Emese Revfy
● Self-funded: Andy Lutomirski, Russell King, Valdis Kletnieks, Jason Cooper, Jann Horn, Daniel

Micay, David Windsor, Richard Weinberger
● ARM: Catalin Marinas, Mark Rutland
● Cisco: Daniel Borkmann
● Google: Kees Cook, Thomas Garnier, Daniel Cashman, Jeff Vander Stoep
● HP Enterprise: Juerg Haefliger
● IBM: Michael Ellerman, Heiko Carstens, Christian Borntraeger
● Imagination Technologies: Matt Redfearn
● Intel: Elena Reshetova, Casey Schaufler, Michael Leibowitz, Dave Hansen
● Linaro: Ard Biesheuvel, David Brown
● Oracle: Quentin Casasnovas, Yinghai Lu
● RedHat: Laura Abbott, Rik van Riel, Jessica Yu, Baoquan He

Bug class: Stack overflow

Exploit example:
– https://jon.oberheide.org/files/half-nelson.c

● Mitigations:
– stack canaries, e.g. gcc's -fstack-protector (v2.6.30) and -fstack-

protector-strong (v3.14)

– guard pages (e.g. GRKERNSEC_KSTACKOVERFLOW)
● vmalloc stack, removal of thread_info (x86): Andy Lutomirski

– alloca checking (e.g. PAX_MEMORY_STACKLEAK)

– kernel stack location randomization

– shadow stacks

https://jon.oberheide.org/files/half-nelson.c

Bug class: Integer over/underflow

● Exploit examples:

– https://cyseclabs.com/page?n=02012016
– http://perception-point.io/2016/01/14/analysis-and-exploi

tation-of-a-linux-kernel-vulnerability-cve-2016-0728/
● Mitigations:

– check for refcount overflow (e.g. PAX_REFCOUNT)
● PAX_REFCOUNT port: David Windsor, Elena Reshetova

– compiler plugin to detect multiplication overflows at runtime (e.g.
PAX_SIZE_OVERFLOW)

https://cyseclabs.com/page?n=02012016
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/

Bug class: Heap overflow

● Exploit example:
– http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014

-0196-pty-kernel-race-condition.html
● Mitigations:

– runtime validation of variable size vs copy_to_user / copy_from_user
size (e.g. PAX_USERCOPY)

● CONFIG_HARDENED_USERCOPY: Kees Cook, Rik van Riel, Laura
Abbott, Casey Schaufler

– guard pages

– metadata validation (e.g. glibc's heap protections)
● CONFIG_DEBUG_LIST hardening: Kees Cook

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html

Bug class: format string injection

● Exploit example:
– http://www.openwall.com/lists/oss-security/2013/06/06/13

● Mitigations:
– Drop %n entirely (v3.13)

– detect non-const format strings at compile time (e.g. gcc's -Wformat-
security, or better plugin)

– detect non-const format strings at run time (e.g. memory location
checking done with glibc's -D_FORITY_SOURCE=2)

http://www.openwall.com/lists/oss-security/2013/06/06/13

Bug class: kernel pointer leak

● Exploit examples:
– examples are legion: /proc (e.g. kallsyms, modules, slabinfo, iomem),

/sys, INET_DIAG (v4.1), etc

– http://vulnfactory.org/exploits/alpha-omega.c

● Mitigations:
– kptr_restrict sysctl (v2.6.38) too weak: requires dev opt-in

– remove visibility to kernel symbols (e.g. GRKERNSEC_HIDESYM)

– detect and block usage of %p or similar writes to seq_file or other
user buffers (e.g. GRKERNSEC_HIDESYM + PAX_USERCOPY)

http://vulnfactory.org/exploits/alpha-omega.c

Bug class: uninitialized variables

● This is not just an information leak!
● Exploit example:

– https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

● Mitigations:
– clear kernel stack between system calls (e.g.

PAX_MEMORY_STACKLEAK)

– instrument compiler to fully initialize all structures (e.g.
PAX_MEMORY_STRUCTLEAK)

https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

Bug class: use-after-free

● Exploit example:
– http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-k

ernel-vulnerability-cve-2016-0728/
● Mitigations:

– clearing memory on free can stop attacks where there is no reallocation
control (e.g. PAX_MEMORY_SANITIZE)

● Zero poisoning (v4.6): Laura Abbott

– segregating memory used by the kernel and by userspace can stop
attacks where this boundary is crossed (e.g. PAX_USERCOPY)

– randomizing heap allocations can frustrate the reallocation efforts the
attack needs to perform (e.g. OpenBSD malloc)

● Freelist randomization (SLAB: v4.7, SLUB: v4.8): Thomas Garnier

http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/

Exploitation: finding the kernel

● Exploit examples:
– See “Kernel pointer leaks” above

– https://github.com/jonoberheide/ksymhunter

● Mitigations:
– hide symbols and kernel pointers (see “Kernel pointer leaks”)

– kernel ASLR
● text/modules base: x86 (v3.14), arm64 (v4.6): Ard Biesheuvel, MIPS (v4.7): Matt Redfearn
● memory (x86): Thomas Garnier

– runtime randomization of kernel functions

– executable-but-not-readable memory
● x86 (v4.6): Dave Hansen, arm64: Catalin Marinas

– per-build structure layout randomization (e.g. GRKERNSEC_RANDSTRUCT)
● RANDSTRUCT port: Michael Leibowitz

https://github.com/jonoberheide/ksymhunter

Exploitation: Direct kernel overwrite

● How is this still a problem in the 21st century?
● Exploit examples:

– Patch setuid to always succeed

– http://itszn.com/blog/?p=21 Overwrite vDSO

● Mitigations:
– Executable memory should not be writable (e.g CONFIG_DEBUG_RODATA)

● s390: forever ago
● x86: v3.18
● ARM: v3.19
● arm64: v4.0

http://itszn.com/blog/?p=21

Exploitation: function pointer overwrite

● Also includes things like vector tables, descriptor tables (which
can also be info leaks)

● Exploit examples:
– https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-e

xploit/
– https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

● Mitigations:
– read-only function tables (e.g. PAX_CONSTIFY_PLUGIN)

– make sensitive targets that need one-time or occasional updates only
writable during updates (e.g. PAX_KERNEXEC):

● __ro_after_init: (v4.6): Kees Cook, David Brown, Jessica Yu, Heiko Carstens

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

Exploitation: userspace execution

● Exploit example:
– See almost all previous examples

● Mitigations:
– hardware segmentation: SMEP (x86), PXN (ARM, arm64)

– emulated memory segmentation via page table swap, PCID, etc (e.g.
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3): Russell King
● TTBR0 (ARMv8.0): Catalin Marinas

– compiler instrumentation to set high bit on function calls

Exploitation: userspace data

● Exploit examples:
– https://github.com/geekben/towelroot/blob/master/towelroot.c

– http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-c
ve-2014-9322-linux-kernel-privilege-escalation/

● Mitigations:
– hardware segmentation: SMAP (x86), PAN (ARM, arm64)

– emulated memory segmentation via page table swap, PCID, etc (e.g.
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3): Russell King
● TTBR0 (ARMv8.0): Catalin Marinas

https://github.com/geekben/towelroot/blob/master/towelroot.c
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/

Exploitation: Reused code chunks

● Also known as Return Oriented Programming (ROP), Jump
Oriented Programming (JOP), etc

● Exploit example:
– http://vulnfactory.org/research/h2hc-remote.pdf

● Mitigations:
– JIT obfuscation (e.g. BPF_HARDEN):

● eBPF JIT hardening (v4.7): Daniel Borkmann, Elena Reshetova

– compiler instrumentation for Control Flow Integrity (CFI)

– Return Address Protection, Indirect Control Transfer Protection (e.g. RAP)
● https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf

http://vulnfactory.org/research/h2hc-remote.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf

Added in v4.3

● CONFIG_CPU_SW_DOMAIN_PAN (PAN Emulation on ARM)
● Ambient capabilities (notable userspace protection)
● Seccomp support on PowerPC (notable attack surface

reduction)

Added in v4.4

● x86_64 vsyscall CONFIG option (notable attack surface
reduction)

Added in v4.5

● ASLR entropy size sysctl (notable userspace protection)

Added in v4.6

● KASLR text and module base on arm64
● RODATA by default on ARMv7+, arm64
● RODATA mandatory on x86
● Zero-poisoning for heap memory
● __ro_after_init basic infrastructure
● execute-only memory on x86

Added in v4.7

● KASLR text/module base for MIPS
● SLAB freelist randomization
● eBPF JIT constant blinding

Expected in v4.8

● SLUB freelist randomization
● KASLR of full range of physical memory on x86_64
● KASLR of kernel memory base on x86_64
● gcc plugin infrastructure
● hardened usercopy
● ptrace before seccomp (notable attack surface reduction)

Crystal Ball predictions for v4.9

● latent_entropy gcc plugin
● vmalloc stack on x86
● list hardening
● PAN emulation for arm64

Challenge: Culture

● Conservatism
– 16 years to accept symlink restrictions upstream

● Responsibility
– Kernel developers must accept the need for these changes

● Sacrifice
– Kernel developers must accept the technical burden

● Patience
– Out-of-tree developers must understand how kernel is developed

Challenge: Technical

● Complexity
– Very few people are proficient at developing (much less debugging)

these features

● Innovation
– We must adapt the many existing solutions

– We must create new technologies

● Collaboration
– Explain rationale for new technologies

– Make code understandable/maintainable by other developers and
accessible across architectures

Challenge: Resources

● People
– Dedicated developers

● People
– Dedicated testers

● People
– Dedicated backporters

Thoughts?

Kees (“Case”) Cook
keescook@chromium.org

kees@outflux.net

https://outflux.net/slides/2016/lss/kspp.pdf

http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

mailto:keescook@chromium.org
mailto:kees@outflux.net
https://outflux.net/slides/2016/lss/kspp.pdf
http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

