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Figure 1: A selection of results from our deep network locating spikes (middle) and spikelets (bottom) on the ACID dataset

Abstract

Plant phenotyping has continued to pose a challenge to

computer vision for many years. There is a particular de-

mand to accurately quantify images of crops, and the natu-

ral variability and structure of these plants presents unique

difficulties. Recently, machine learning approaches have

shown impressive results in many areas of computer vision,

but these rely on large datasets that are at present not avail-

able for crops. We present a new dataset, called ACID, that

provides hundreds of accurately annotated images of wheat

spikes and spikelets, along with image level class annota-

tion. We then present a deep learning approach capable

of accurately localising wheat spikes and spikelets, despite

the varied nature of this dataset. As well as locating fea-

tures, our network offers near perfect counting accuracy

for spikes (95.91%) and spikelets (99.66%). We also ex-

tend the network to perform simultaneous classification of

images, demonstrating the power of multi-task deep archi-

tectures for plant phenotyping. We hope that our dataset

will be useful to researchers in continued improvement of

plant and crop phenotyping. With this in mind, alongside

the dataset we will make all code and trained models avail-

able online.

1. Introduction

Crop phenotyping performs a crucial role in the de-

velopment of higher-yielding plants, which in itself offers

one solution to the continuing challenge of global food

security. For cereal plants, yield is measured in terms

of grain, found within the spikes at the tip of the plant.

Therefore, counting both the number of spikes, and the

so-called spikelets within them (see Fig. 8) is an important

measure. In this work, we aim to further the state-of-the-art

in wheat phenotyping. We present a dataset, publicly

available, that can be used by researchers to improve their

wheat phenotyping ability via machine learning. Using this
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dataset, we apply a deep network architecture to perform

simultaneous localization of the spikes and spikelets, and

image classification. The result is a system capable of

counting and locating both spikes and spikelets, in the

presence of varied phenotypes, occlusion, clutter, and

arbitrary rotations. Example outputs of our approach can

be seen in Fig. 1. The dataset and all related code can be

found at http://plantimages.nottingham.ac.uk/.

Motivation. Biologically, the ability to phenotype spike

traits is of great importance, with uses in several different

research areas. For example, spikelet development and thus

yield can be affected by abiotic stresses such as high tem-

perature and drought [12, 26] or changes in sowing date

[1]. Other traits such as the presence of awns, a bristle or

hair like structure extending from the end of each floret (see

Fig. 2), have been linked with increased photosynthesis un-

der drought and greater harvestable yield [4, 19]. Intricacies

within the spike and features of the spikelets themselves

have been shown to be useful when predicting yield [14].

Locating and counting spikes, and particularly the

spikelets within, presents a demanding computer vision

challenge, as can be seen in Figs. 1, 2 and 9. Occlusion,

self similarity, variation in appearance, viewpoint sensitiv-

ity and lighting challenges weigh heavy on the ability of tra-

ditional image analysis to satisfactorily solve this task. But

these challenges are not unique to wheat spikes; rather they

are representative of general plant and crop phenotyping

challenges that present themselves when we start to move

from the lab to the field. Therefore, by addressing this spe-

cific, challenging task, we are harnessing deep learning to

solve a realistic phenotyping problem which if successful

bodes well for other phenotyping automation felt beyond

the reach of traditional analysis. This then is our acid test

of deep learning in the wild.

1.1. Contributions

We present a new dataset (which we call ACID: the An-

notated Crop Image Dataset) of accurately labeled wheat

images, and adapt an appropriate CNN architecture to ad-

dress the challenge of wheat spike phenotyping. Our net-

work performs multi-task learning, simultaneously locating

spike features, whilst also classifying the awned phenotype

of the wheat in each case. An overview of our network ar-

chitecture is shown in Fig. 3. In summary, our contributions

are:

• A new publically-available dataset containing 520 im-

ages of wheat plants exhibiting a wide range of canopy

and spike phenotypes. Each plant has been carefully

annotated by an expert, including the locations of each

spike, and individual spikelets. Each image has also

been classified as exhibiting, or not, an awned pheno-

type.

• A novel application of a deep CNN architecture for

multi-task learning in wheat phenotyping. We have ex-

tended a state-of-the-art CNN architecture to perform

simultaneous localisation of features and classification

of images. This network is trained end-to-end from

scratch on the ACID dataset, and we present detailed

discussions of our training process, along with results

on its performance.

• An adapted data augmentation approach to handle

views of multiple similar objects. Unlike many ex-

isting image sets, ACID contains many instances of

the same class of object, with extremely similar ap-

pearance. This presents a unique challenge to the tra-

ditional network training and data augmentation ap-

proaches seen previously. We present a spike-centric

data augmentation approach that varies the data be-

tween epochs as much as possible, leading to improved

results.

2. Related Work

Advances in image-based plant phenotyping helped

drive plant research for many years. Traditionally, low-

level image processing approaches were the norm, using

pixel-based techniques and hand crafted models to aid lo-

calization and measurement of plants (for example [8, 2]).

Recently machine-learning based approaches have seen in-

creased adoption, allowing systems to learn how to find and

segment plants, based often on a hand-crafted feature set

(for a thorough overview of machine learning approaches

in plant phenotyping see [22]). Most recently, deep learning

promises a step-change in the performance of many image-

based systems (e.g. [18], [23]), but adoption by the plant

phenotyping community is still in its infancy.

To date, most spikelet and ear counting is done by hand,

following a method similar to [14], which relates crop yield

to features in the spike and spikelets without using image

analysis. Some methods do exist for automatically detect-

ing heading and flowering in wheat - [21] uses a bag-of-

visual-words approach to identify growth stages in field-

grown wheat. Low level features are extracted using the

SIFT algorithm. Finally support vector machine classifi-

cation is used to classify growth stage. Accuracies for

stage classification range from 85% (flowering) to 99% (late

growth stage). Colour and texture have been used in a pre-

liminary study to count wheat ears [7], reporting accuracy

up to 85%, although, as the authors concede, this is across

a small and limited dataset, and relies on a bespoke image

processing pipeline.

Machine learning approaches have been applied recently

to a number of other plant phenotyping challenges. Some

cereal-specific examples include using expectation maxi-

mization to identify wheat streak mosaic virus[6]; Simplex
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Volume Maximisation to discover characteristic spectra in

hyperspectral data of barley diseases [25]; and a support

vector machine method to detect flowering rice in RGB im-

ages [11]. A support vector machine approach has also been

used [27] to learn from SIFT features and a codebook gen-

erated over 7,500 images to classify higher plant taxa from

images of leaves, achieving an accuracy of 72%.

Recently, a number of machine learning-focused ap-

proaches have taken part in the CVPPP challenge. One

such approach used regression (specifically support vec-

tor regression) to count leaves in overhead views of rosette

plants [10]. Leaf counting is again addressed in [17], which

also uses machine learning to assist with segmentation via

a Random Forest classifier. Other approaches have viewed

the CVPPP leaf segmentation data set as an instance seg-

mentation problem, segmenting each individual leaf in turn

in the image. The most prominent paper in this area is one

of the first applications of a recurrent neural network in this

domain [20]. A spatial memory-equipped network allows

the system to segment leaves one at a time and handle oc-

clusion.

This brings us to the application of deep learning to plant

phenotyping. Demonstrating the power of CNNs for classi-

fication, [3] develop a system, LeafNet, for taxon identifi-

cation from images of leaves. This system outperforms pre-

vious approaches on standard image classification datasets.

[18] use a CNN to classify a subset of plant features in small

image sections. Localisation is performed by scanning each

image and classifying overlapping sub windows. Conse-

quently this approach is relatively slow, and lacks context

due to the small cropped window sizes. Another approach

has used a CNN-LSTM framework to classify plants into

genotype[23]. The use of the LSTM is interesting, as it is

used to improve classification over time; the author’s hy-

pothesise is that growth rate is an important factor in de-

termining genotype. The LSTM component does improve

classification for the top-down rosette images used.

Of course, machine learning, and especially deep ma-

chine learning approaches are fuelled only by high quality,

annotated datasets [24, 15]. For learning to be effective and

efficient, the image data the computer is learning from must

be both accurately captured and well annotated. This is

our motivation for releasing our expertly-annotated dataset

alongside the specific algorithms we have developed.

3. Method

In this section, we describe the new ACID dataset. We

then discuss our network architecture that performs simul-

taneous feature localisation and classification, and our data

augmentation and training approach.

Figure 2: Representative images from the ACID dataset.

Note presence of awns (bristles) in the right-hand images.

Expert annotations are shown.

3.1. The ACID Dataset

A key contribution of this work is a new dataset, con-

taining images of wheat plants taken in glasshouse con-

ditions. A doubled haploid population of spring wheat

plants was obtained from the Nottingham/BBSRC Wheat

Research Centre and grown in 2l pots in a glasshouse. This

population was selected for its wide range in canopy and

spike phenotypes. Imaging was conducted using a con-

sumer grade 12MP camera fixed to custom-built imaging

system providing a consistent black background. Each im-

age contains multiple spikes at high resolution, with full an-

notation of the position of each spike, and further positions

of each spikelet. Fig. 2 shows representative images from

this dataset.

These images have been annotated by a single expert, at

their native resolution of 1956x1530. The dataset is avail-

able at full resolution, with no augmentation or cropping.

Each image is supplied with a JSON file containing co-

ordinates of the base and tip of each ear (occasionally ad-

ditional points should the ear be curved), and co-ordinates

of all visible spikelets. Occluded spikelets were not anno-

tated; however, partially occluded ears were left as contin-

uous polylines rather than split up. This is a multi-instance

dataset, in which each image contains multiple objects of

the same class. In total there are 520 images, containing a

total of 4,100 ears and 48,000 spikelets. Each image has

also been tagged with the presence of an awned phenotype,

(Fig. 2, right). Awned plants comprise about 1/3 of the

dataset.
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Figure 3: An overview of our CNN architecture containing 4 stacked hourglass networks.

3.2. Network Architecture

Each image presented to the network could conceiv-

ably contain hundreds of similar objects to be localised and

counted. Instead of predicting location directly, we perform

pixel-wise regression, identifying areas of high-likelihood

of each target. Detected features are then determined as

the maximum points of this likelihood. This heatmap re-

gression has been used successfully in, among other areas,

human pose estimation [5]. Our network is based upon a

stacked hourglass network [16], which itself is an evolution

of fully-connected networks [9] and residual networks [13].

An outline of the network we use is shown in Fig. 3.

The architecture of the network is based upon an encod-

ing/decoding structure, in which a series of convolutional

operations and spatial downsampling (red) begin by com-

puting a fixed-size feature representation of the image. This

feature space is then upsampled (blue) back to the origi-

nal resolution, while lower-level features are re-combined

in stages. Combining hierarchical features from multiple

scales preserves spatial resolution in the network output.

Each white block in Fig. 3 represents one or more resid-

ual blocks, combining convolution and batch normalisation

operations, and includes an additional skip layer that helps

avoid vanishing gradients, aiding training in very deep net-

works such as this one. All residual blocks in the net-

work output 256 features. The input to our network is

an RGB image of size 256x256. A set of initial residual

blocks (not shown in Fig. 3) reduces the spatial resolution

to 64x64. The hourglass network operates at this lower

resolution throughout. The output heatmaps are therefore

also 64x64 pixels, with one for each feature being detected.

We output two heatmaps in our network, trained on ear

tips and spikelets separately. The network contains four

stacked hourglasses, and includes intermediate supervision;

the heatmap output at the end of each hourglass is used to

calculate a loss, which guides training of the network.

The ACID dataset contains image-level labels specify-

ing whether the imaged plant has an awned phenotype. We

have extended our network to perform simultaneous classi-

fication by branching off the deep feature layer within the

final hourglass. At this point, prior to upsampling, the data

Figure 4: Data augmentation chooses an ear at random and

creates a randomly transformed crop at that location. Any

visible ground truth points are transformed in the same way.

represents a spatially-invariant feature representation of the

image. The branch contains two residual blocks, before a

final convolutional block performing classification.

3.3. Data Augmentation

Our task is to locate and count wheat spikes and spikelets

in the ACID dataset. Each image may contain a number of

spikes, each of which will contain numerous spikelets. Both

spikes and spikelets may appear very similar within a sin-

gle image, but exhibit a large amount of variability between

images, and lines. Due to hardware limitations, many deep

network architectures have strict limits on image input size.

This network has similar restrictions, where the input size

cannot be increased far beyond 256px before GPU memory

becomes the limiting factor. Many whole-image classifica-

tion approaches will scale the image to the correct size dur-

ing training or inference. In our case, each object of interest

is small with respect to the original image, making global

image scaling unwise. We wish to be able to accurately

classify each large image completely, but preserve higher-

resolution detail: each image must be split into regions.

Rather than splitting each image up prior to training,

creating a fixed-size training set, we randomly crop im-

ages during training, with crops centred on spike positions.

When an image is loaded, a random spike is chosen, and

a training image produced at that location. The input to

the network is 256x256; however, we have experimented

with varying initial crop sizes, 256, 384, or 512 pixels. A

larger initial crop that is eventually scaled to the correct in-

put size will represent a wider field of view, with the fea-

tures in the original image scaled down. This represents a

compromise between the network seeing wider image con-
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text, and higher-resolution features. This does affect results,

something we explore below. However, we use a default ini-

tial crop of 384 pixels, which represents a 2/3 scale of the

original image resolution.

Additional random cropping, scaling, rotation and hori-

zontal flipping is added to increase variability in the train-

ing set (Fig. 4). This means that when any given image

is loaded, only a small part of that image is used during

that training iteration. This means that a higher number of

training epochs are required to capture the variability of the

dataset, but that the eventual network should show increased

performance.

Heatmap output is produced by performing identical

transformations on the image labels, and then rendering

each visible point as a two-dimensional Gaussian. The out-

put heat maps are 64x64 pixels and we chose a standard de-

viation of 1.0 for spike tips, and 0.7 for the slightly smaller

spikelets. In practice, we found any reasonable standard de-

viation was effective.

3.4. Training

The ACID dataset of 520 images was split into 415 train-

ing images, and 105 testing images. This split was per-

formed at the image level, not the spike level, to ensure that

no spikes from the same image could be seen in both train-

ing and testing sets. During training, random augmentation

was applied as per Fig. 4 with random rotation and scaling

drawn from normal distributions with standard deviations

0.25 radians and 25% respectively. Half of all input images

were also horizontally flipped at random. No augmentation

was performed on the testing image set. The network was

trained end-to-end, from scratch, using RMSProp. We used

a mean squared error loss function with an initial learning

rate of 2.5x10-4, and reduced by a factor of 10 every 200

epochs. Training was run for 500 epochs, although perfor-

mance usually plateaued around 300 epochs (Fig. 5).

Results below are presented on the final trained model

after 500 epochs, not necessarily the best performing model

during the entire training run. The time taken to complete

each training run was approximately 3 hours. It is worth

reiterating that due to our image augmentation mechanism,

one epoch only represents a small view of the entire data,

even though each image has been used once. This goes

some way to explaining the large number of epochs required

in this case.

The classification branch is trained in parallel using

binary cross entropy. The classification branch loss is

weighted at 5x10-2 compared to the heatmap MSE loss, to

account for this BCE producing larger values in general,

and so to avoid driving the training of the network entirely

based on classification error.
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Figure 5: Ear accuracy over training and testing images

throughout the training process.

3.5. Feature Localisation

Spike and spikelet positions are calculated from each

output heatmap using non-maximal suppression (NMS).

For all output pixels, any pixel with higher intensity than

its four neighbours is classified as a feature. We have found

that after sufficient training the network reliably positions

local maxima at feature locations, with output distributions

approximating the Gaussians used for training. The number

of additional false positives generated by the NMS compo-

nent of our approach is negligible.

4. Results

4.1. Evaluation

We evaluate our approach by calculating both the preci-

sion and recall for each network on the training set, along

with the count accuracy for both spikes and spikelets. Pre-

cision represents the fraction of detections that are true pos-

itives. Recall represents the fraction of spikes and spikelets

that have been correctly detected. It is common to combine

these accuracy measures using the F1 score, as a general

measure of performance.

What remains is to distinguish true positives from false

positives, and determine which features have been correctly

detected. We apply a distance threshold for successful de-

tection, then vary this threshold to explore the efficacy of the

approach at different tolerances. This normalised distance

threshold is calculated relative to the size of the primary ear

visible in each image (which is present in the annotations),

see Fig. 8. A true positive for either a spike tip or spikelet is

any predicted location that lies within this normalised dis-

tance of a ground truth point. Similarly, a false negative

is any ground truth point that is not within the normalised

distance of a predicted feature.
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Figure 7: Precision and recall for the network as the nor-

malised distance threshold is adapted.

4.2. Numerical Results

Given the challenge of the problem, results achieved are

very encouraging. Spikes are located with an F1 of 0.83 @

0.1 and 0.89 @ 0.2, spikelets are located with an F1 of 0.88

@ 0.05 and 0.96 @ 0.1. For both features, we are confident

that these normalised distances represent fairly strict toler-

ance for error. For comparison, an example wheat spike tip

and spikelet marked with these normalised distances can be

seen in Fig. 8. Variation in precision/recall over normalised

distance can be seen in Fig. 7.

Qualitative Analysis. Figures 1 and 9 show representa-

tive output from the network. The spike tip detection can be

seen to work effectively in the presence of occlusion or large

amounts of clutter. Spikelet detection is generally more ac-

curate still, and is capable of distinguishing either dual rows

of spikelets, or single rows when the spike is viewed rotated

90 degrees (see Fig. 9, lower right for examples of both).

Detecting spike tips appears to be the harder problem. The

failure modes on spike tips offer some insights into the net-

work itself. While the network is quite capable of detect-

0.10

0.20

0.10

0.05

Figure 8: A visualisation of the normalised distances we

used to measure accuracy. Here you can also clearly see

individual spikelets within the spike

ing tips even when occluded (Fig. 9), some occlusions will

cause the detection to fail. We have also observed images

in which the tip has still been detected, but has been incor-

rectly positioned at the edge of occlusion, rather than the

true occluded location. This error will cause the recall and

F1 scores to reduce, but the counting accuracy to remain the

same.

Where the tips of two spikes are very close together, the

network will usually output two gaussian features very close

together, or a single feature which is more spread out than

usual on the heat map. In either case, this will adversely

affect the counting accuracy, but will not affect our F1 mea-

sure, which is a weakness of our NMS feature extraction

approach.

Spikelet detection may fail at the boundary between two

overlapping spikes, due to the increased ambiguity between

one and the other. This kind of overlap is not uncommon in

the ACID dataset, but this also means multiple instances of

this issue are included in the training set, offering the net-

work some ability to distinguish between touching spikes.

Effect of Awned Phenotypes. We compared the test-

ing F1 scores of all awned plants against all those that are

not awned. We saw a marginal improvement of 1.3% F1 in

testing accuracy for non-awned plants, suggesting awns are

slightly more challenging to phenotype, however this was

not a substantial difference, and may not be significant over

many more images.

Effect of Augmentation. We trained the same network

without data augmentation to measure the impact of a less

varied training set. As expected, there was a degradation in

performance for feature localisation on the testing set, par-

ticularly in spike tip detection. F1 reduced 7.5% for spikes,

and 0.1% for spikelets. With the addition of random rota-
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Figure 9: Some more challenging examples from the name

dataset, including occlusion, background clutter, ambiguity

and rotational asymmetry.

tion and scaling to the testing set, this reduction increases

to 8.1% for ears and 2.7% for spikelets. This suggests that

in a non lab environment where image capture is less con-

strained, data augmentation will become even more impor-

tant.

4.3. Input Image Resolution

Based on our own observation of the results, we believe

that detection of wheat tips requires a great deal more con-

text about the local image than individual spikelets. Intu-

itively, in a cluttered image containing multiple spikes, if

a spike is partially cropped out of the input image, it will

make accurate localisation of the tip harder. To confirm this

hypothesis, we varied the input resolution to the network.

As above, we initially crop a section of image for training

or inference, perform augmentation, then if necessary the

image is scaled to the size of the network input, 256x256.

Altering the initial crop size is equivalent to scaling the en-

tire image before it is used, and in essence changes the field

of view available to the network.

We trained two additional networks, with input crop
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Figure 10: The effect of varying input resolution during data

augmentation.

sizes of 256 and 512 pixels. The 256 crop input is native

source resolution, where no image scaling is performed be-

yond that required by scale augmentation. Fig. 10 shows the

results of this experiment, in which a smaller field of view

performs notably worse on spike tip detection. In particular

it is the recall ability of the network that is impaired, its abil-

ity to find tips, rather than too many false positives. Spikelet

detection appears marginally better with a small field of

view. This is perhaps also expected, spikelets are small

features, and a 256pixel crop with no scaling preserves

these at higher-resolution. However, it is also possible that

the smaller crop size benefits from the normalised distance

measure, with the size of an ear being larger with respect to

the output heatmap when a smaller view is used. Neverthe-

less, the benefit is marginal, and has effectively disappeared

when the normalised distance threshold reaches 0.1.

Given these results, it seems reasonable to recommend

an input window size of 384 or 512 pixels. We measured the

average length of spikes in the ACID dataset, and found this

to be 235 pixels, with a large standard deviation of 68 pixels.
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Table 1: Percentage error for spike tip and spikelet counting

at different input crop resolutions.

Resolution (px) Tip Error (%) Spikelet Error (%)

256x256 -14.46 0.0600

384x384 -5.13 3.81

512x512 -4.09 0.34

Thus, either of these two resolutions offers a complete view

of many spikes, improving tip localisation.

4.4. Counting Accuracy

To measure counting accuracy, we compared only the

number of predicted features against the number of ground

truth points and computed a percentage error, to simulate

a count-based phenotyping task. These results were com-

puted over 30 iterations of the testing set, to ensure that a

representative sample of image crops was obtained. The re-

sults can be seen in Table 1.

Given the lower recall performance on tips for the 256

pixel input size, the increased error is to be expected. It is

interesting, however, that the 512 pixel input size performs

well on both spike and spikelet counting, with very encour-

aging accuracy. This improvement over the smaller input

sizes could be due to fewer spikes being truncated at the

edges of the image, or a larger field of view adding context

that helps resolve ambiguity.

The negative values for spike tip error indicate that the

network tends to underestimate, rather than overestimate

the number of tips. This follows from the results presented

in Fig. 7, in which the precision of the network was higher

than recall. Similarly, spikelet detection can slightly over-

estimate, where the recall of the network is higher than the

precision

4.5. Classification

We have extended the network to perform simultaneous

classification of awned plants. We frame the classification

as the task of outputting a value close to one if the plant

is awned, and close to zero if not. During inference, we

threshold at 0.5 to convert the network branch output into a

firm prediction. The classification accuracy for awns at the

input resolutions we have examined are shown in Table 2.

As above, results were computed over 30 iterations of the

testing data.

Accuracy on heatmap generation of this network was un-

affected by the addition to the architecture. As we might ex-

pect intuitively, classification accuracy increases as the win-

dow seen by the network increases. Nevertheless, all three

resolutions offer extremely accurate classification of awned

plants. Recognising awns is one of the easier classification

challenges posed on wheat plants, compared with, for in-

Table 2: Awned classification accuracy at different input

resolutions.

Resolution (px) Accuracy (%)

256x256 98.39

384x384 98.49

512x512 99.00

stance, growth stage classification. However, this acts as

a demonstration that the hourglass design, if extended, can

perform additional tasks beyond feature localisation. Our

future work in this area will explore growth stage classifi-

cation, flowering, and senescence.

5. Conclusion

We have presented a new dataset, ACID, containing de-

tailed annotations of wheat spikes and spikelets, as well

as image level awn classification, on a varied phenotypic

set of wheat lines. We have extended a deep convolu-

tional neural network architecture to perform regression

of feature locations, as well as image-level classification.

We report very encouraging results on all aspects of the

dataset. Our future work will focus on additional image-

level classification, such as flowering plants, and retrain-

ing this network for field images, requiring additions to

the dataset and application of transfer learning. Individ-

ual classification of spikelets (following promising work

in [14]) will also be interesting to pursue, with a view

to predicting yield. All data and code can be found at

http://plantimages.nottingham.ac.uk/.

References

[1] I. Arduini, L. Ercoli, M. Mariotti, and A. Masoni. Sow-

ing date affect spikelet number and grain yield of durum

wheat. Cereal Research Communications, 37(3):469–478,

Sept. 2009.

[2] P. Armengaud, K. Zambaux, A. Hills, R. Sulpice, R. J. Pat-

tison, M. R. Blatt, and A. Amtmann. Ez-rhizo: integrated

software for the fast and accurate measurement of root sys-

tem architecture. The Plant Journal, 57(5):945–956, 2009.

[3] P. Barr, B. C. Stver, K. F. Mller, and V. Steinhage. Leafnet:

A computer vision system for automatic plant species iden-

tification. Ecological Informatics, 40:50 – 56, 2017.

[4] A. Blum. Photosynthesis and Transpiration in Leaves and

Ears of Wheat and Barley Varieties. Journal of Experimental

Botany, 36(3):432–440, Mar. 1985.

[5] A. Bulat and G. Tzimiropoulos. Human Pose Estimation

via Convolutional Part Heatmap Regression, pages 717–732.

Springer International Publishing, Cham, 2016.

[6] J. J. Casanova, S. A. O039;Shaughnessy, S. R. Evett, and

C. M. Rush. Development of a wireless computer vi-

sion instrument to detect biotic stress in wheat. Sensors,

14(9):17753–17769, 2014.

2062



[7] F. Cointault, D. Guerin, J. Guillemin, and B. Chopinet. In-

field triticum aestivum ear counting using colourtexture im-

age analysis. New Zealand Journal of Crop and Horticul-

tural Science, 36(2):117–130, 2008.

[8] A. French, S. Ubeda-Tomás, T. J. Holman, M. J. Bennett,

and T. Pridmore. High-throughput quantification of root

growth using a novel image-analysis tool. Plant Physiology,

150(4):1784–1795, 2009.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 580–587,

2014.

[10] M. V. Giuffrida, M. Minervini, and S. A. Tsaftaris. Learning

to count leaves in rosette plants. Proceedings of the Com-

puter Vision Problems in Plant Phenotyping (CVPPP), 2016.

[11] W. Guo, T. Fukatsu, and S. Ninomiya. Automated charac-

terization of flowering dynamics in rice using field-acquired

time-series rgb images. Plant Methods, 11(1):7, 2015.

[12] N. J. Halse and R. N. Weir. Effects of temperature on spikelet

number of wheat. Australian Journal of Agricultural Re-

search, 25(5):687–695, 1974.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016.

[14] Y. Li, Z. Cui, Y. Ni, M. Zheng, D. Yang, M. Jin, J. Chen,

Z. Wang, and Y. Yin. Plant density effect on grain number

and weight of two winter wheat cultivars at different spikelet

and grain positions. PLOS ONE, 11(5):1–15, 05 2016.

[15] G. Lobet. Image analysis in plant sciences: Publish then

perish. Trends in Plant Science, 2017.

[16] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In European Conference

on Computer Vision, pages 483–499. Springer, 2016.

[17] J.-M. Pape and C. Klukas. Utilizing machine learning ap-

proaches to improve the prediction of leaf counts and indi-

vidual leaf segmentation of rosette plant images. In H. S.

S. A. Tsaftaris and T. Pridmore, editors, Proceedings of the

Computer Vision Problems in Plant Phenotyping (CVPPP),

pages 3.1–3.12. BMVA Press, September 2015.

[18] M. P. Pound, A. J. Burgess, M. H. Wilson, J. A. Atkinson,

M. Griffiths, A. S. Jackson, A. Bulat, G. Tzimiropoulos,

D. M. Wells, E. H. Murchie, et al. Deep machine learning

provides state-of-the-art performance in image-based plant

phenotyping. bioRxiv, page 053033, 2016.

[19] G. J. Rebetzke, D. G. Bonnett, and M. P. Reynolds. Awns

reduce grain number to increase grain size and harvestable

yield in irrigated and rainfed spring wheat. Journal of Ex-

perimental Botany, 67(9):2573–2586, Apr. 2016.

[20] B. Romera-Paredes and P. H. S. Torr. Recurrent instance

segmentation. CoRR, abs/1511.08250, 2015.

[21] P. Sadeghi-Tehran, K. Sabermanesh, N. Virlet, and M. J.

Hawkesford. Automated method to determine two critical

growth stages of wheat: Heading and flowering. Frontiers in

Plant Science, 8:252, 2017.

[22] A. Singh, B. Ganapathysubramanian, A. K. Singh, and

S. Sarkar. Machine learning for high-throughput stress phe-

notyping in plants. Trends in plant science, 21(2):110–124,

2016.

[23] S. Taghavi Namin, M. Esmaeilzadeh, M. Najafi, T. B.

Brown, and J. O. Borevitz. Deep phenotyping: Deep learn-

ing for temporal phenotype/genotype classification. bioRxiv,

2017.

[24] S. A. Tsaftaris, M. Minervini, and H. Scharr. Machine learn-

ing for plant phenotyping needs image processing. Trends in

plant science, 21(12):989–991, 2016.

[25] M. Wahabzada, A.-K. Mahlein, C. Bauckhage, U. Steiner,

E.-C. Oerke, and K. Kersting. Metro maps of plant disease

dynamicsautomated mining of differences using hyperspec-

tral images. 10(1):e0116902.

[26] I. F. Wardlaw. Interaction between drought and chronic high

temperature during kernel filling in wheat in a controlled en-

vironment. Annals of Botany, 90(4):469–476, Oct. 2002.

[27] P. Wilf, S. Zhang, S. Chikkerur, S. A. Little, S. L. Wing, and

T. Serre. Computer vision cracks the leaf code. Proceedings

of the National Academy of Sciences, 113(12):3305–3310,

2016.

2063


