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Abstract

Transformer-based architectures represent the state of

the art in sequence modeling tasks like machine transla-

tion and language understanding. Their applicability to

multi-modal contexts like image captioning, however, is

still largely under-explored. With the aim of filling this

gap, we present M2 – a Meshed Transformer with Mem-

ory for Image Captioning. The architecture improves both

the image encoding and the language generation steps: it

learns a multi-level representation of the relationships be-

tween image regions integrating learned a priori knowl-

edge, and uses a mesh-like connectivity at decoding stage

to exploit low- and high-level features. Experimentally, we

investigate the performance of the M2 Transformer and

different fully-attentive models in comparison with recur-

rent ones. When tested on COCO, our proposal achieves

a new state of the art in single-model and ensemble con-

figurations on the “Karpathy” test split and on the on-

line test server. We also assess its performances when de-

scribing objects unseen in the training set. Trained mod-

els and code for reproducing the experiments are publicly

available at: https://github.com/aimagelab/

meshed-memory-transformer.

1. Introduction

Image captioning is the task of describing the visual con-

tent of an image in natural language. As such, it requires

an algorithm to understand and model the relationships be-

tween visual and textual elements, and to generate a se-

quence of output words. This has usually been tackled via

Recurrent Neural Network models [40, 15, 43, 42, 7], in

which the sequential nature of language is modeled with

the recurrent relations of either RNNs or LSTMs. Additive

attention or graph-like structures [46] are often added to the

recurrence [43, 12] in order to model the relationships be-

tween image regions, words, and eventually tags [20].

This schema has remained the dominant approach in
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Figure 1: Our image captioning approach encodes rela-

tionships between image regions exploiting learned a pri-

ori knowledge. Multi-level encodings of image regions are

connected to a language decoder through a meshed and

learnable connectivity.

the last few years, with the exception of the investigation

of Convolutional language models [5], which however did

not become a leading choice. The recent advent of fully-

attentive models, in which the recurrent relation is aban-

doned in favour of the use of self-attention, offers unique

opportunities in terms of set and sequence modeling perfor-

mances, as testified by the Transformer [37] and BERT [8]

models and their applications to retrieval [33] and video un-

derstanding [35]. Also, this setting offers novel architec-

tural modeling capabilities, as for the first time the atten-

tion operator is used in a multi-layer and extensible fashion.

Nevertheless, the multi-modal nature of image captioning

demands for specific architectures, different from those em-

ployed for the understanding of a single modality.

Following this premise, we investigate the design of

a novel fully-attentive approach for image captioning.

Our architecture takes inspiration from the Transformer

model [37] for machine translation and incorporates two

key novelties with respect to all previous image caption-

ing algorithms: (i) image regions and their relationships are
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encoded in a multi-level fashion, in which low-level and

high-level relations are taken into account. When modeling

these relationships, our model can learn and encode a pri-

ori knowledge by using persistent memory vectors. (ii) The

generation of the sentence, done with a multi-layer architec-

ture, exploits both low- and high-level visual relationships

instead of having just a single input from the visual modal-

ity. This is achieved through a learned gating mechanism,

which weights multi-level contributions at each stage. As

this creates a mesh connectivity schema between encoder

and decoder layers, we name our model Meshed-Memory

Transformer – M2 Transformer for short. Figure 1 depicts

a schema of the architecture.

Experimentally, we explore different fully-attentive

baselines and recent proposals, gaining insights on the per-

formance of fully-attentive models in image captioning.

Our M2 Transformer, when tested on the COCO bench-

mark, achieves a new state of the art on the “Karpathy”

test set, on both single-model and ensemble configurations.

Most importantly, it surpasses existing proposals on the on-

line test server, ranking first among published algorithms.

Contributions. To sum up, our contributions are as follows:

• We propose a novel fully-attentive image captioning

algorithm. Our model encapsulates a multi-layer en-

coder for image regions and a multi-layer decoder

which generates the output sentence. To exploit both

low-level and high-level contributions, encoding and

decoding layers are connected in a mesh-like structure,

weighted through a learnable gating mechanism;

• In our visual encoder, relationships between image re-

gions are encoded in a multi-level fashion exploiting

learned a priori knowledge, which is modeled via per-

sistent memory vectors;

• We show that the M2 Transformer surpasses all pre-

vious proposals for image captioning, achieving a new

state of the art on the online COCO evaluation server;

• As a complementary contribution, we conduct experi-

ments to compare different fully-attentive architectures

on image captioning and validate the performance of

our model on novel object captioning, using the re-

cently proposed nocaps dataset. Finally, to improve

reproducibility and foster new research in the field, we

will publicly release the source code and trained mod-

els of all experiments.

2. Related work

A broad collection of methods have been proposed in the

field of image captioning in the last few years. Earlier cap-

tioning approaches were based on the generation of simple

templates, filled by the output of an object detector or at-

tribute predictor [32, 45]. With the advent of Deep Neu-

ral Networks, most captioning techniques have employed

RNNs as language models and used the output of one or

more layers of a CNN to encode visual information and con-

dition language generation [41, 31, 9, 14]. On the training

side, while initial methods were based on a time-wise cross-

entropy training, a notable achievement has been made with

the introduction of Reinforcement Learning, which enabled

the use of non-differentiable caption metrics as optimization

objectives [31, 29, 23]. On the image encoding side, in-

stead, single-layer attention mechanisms have been adopted

to incorporate spatial knowledge, initially from a grid of

CNN features [43, 24, 48], and then using image regions

extracted with an object detector [4, 27, 25]. To further im-

prove the encoding of objects and their relationships, Yao et

al. [46] have proposed to use a graph convolution neural

network in the image encoding phase to integrate semantic

and spatial relationships between objects. On the same line,

Yang et al. [44] used a multi-modal graph convolution net-

work to modulate scene graphs into visual representations.

Despite their wide adoption, RNN-based models suffer

from their limited representation power and sequential na-

ture. After the emergence of Convolutional language mod-

els, which have been explored for captioning as well [5],

new fully-attentive paradigms [37, 8, 34] have been pro-

posed and achieved state-of-the-art results in machine trans-

lation and language understanding tasks. Likewise, some

recent approaches have investigated the application of the

Transformer model [37] to the image captioning task.

In a nutshell, the Transformer comprises an encoder

made of a stack of self-attention and feed-forward layers,

and a decoder which uses self-attention on words and cross-

attention over the output of the last encoder layer. Her-

dade et al. [11] used the Transformer architecture for image

captioning and incorporated geometric relations between

detected input objects. In particular, they computed an addi-

tional geometric weight between object pairs which is used

to scale attention weights. Li et al. [20] used the Trans-

former in a model that exploits visual information and addi-

tional semantic knowledge given by an external tagger. On a

related line, Huang et al. [12] introduced an extension of the

attention operator in which the final attended information is

weighted by a gate guided by the context. In their approach,

a Transformer-like encoder was paired with an LSTM de-

coder. While the aforementioned approaches have exploited

the original Transformer architecture, in this paper we de-

vise a novel fully-attentive model that improves the design

of both the image encoder and the language decoder, intro-

ducing two novel attention operators and a different design

of the connectivity between encoder and decoder.

3. Meshed-Memory Transformer

Our model can be conceptually divided into an encoder

and a decoder module, both made of stacks of attentive lay-

ers. While the encoder is in charge of processing regions

from the input image and devising relationships between
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Figure 2: Architecture of the M2 Transformer. Our model is composed of a stack of memory-augmented encoding layers,

which encodes multi-level visual relationships with a priori knowledge, and a stack of decoder layers, in charge of generating

textual tokens. For the sake of clarity, AddNorm operations are not shown. Best seen in color.

them, the decoder reads from the output of each encoding

layer to generate the output caption word by word. All intra-

modality and cross-modality interactions between word and

image-level features are modeled via scaled dot-product at-

tention, without using recurrence. Attention operates on

three sets of vectors, namely a set of queries Q, keys K

and values V , and takes a weighted sum of value vectors

according to a similarity distribution between query and key

vectors. In the case of scaled dot-product attention, the op-

erator can be formally defined as

Attention(Q,K,V ) = softmax

(

QKT

√
d

)

V , (1)

where Q is a matrix of nq query vectors, K and V both

contain nk keys and values, all with the same dimensional-

ity, and d is a scaling factor.

3.1. Memory­Augmented Encoder

Given a set of image regions X extracted from an in-

put image, attention can be used to obtain a permutation in-

variant encoding of X through the self-attention operations

used in the Transformer [37]. In this case, queries, keys, and

values are obtained by linearly projecting the input features,

and the operator can be defined as

S(X) = Attention(WqX,WkX,WvX), (2)

where Wq,Wk,Wv are matrices of learnable weights. The

output of the self-attention operator is a new set of elements

S(X), with the same cardinality as X , in which each ele-

ment of X is replaced with a weighted sum of the values,

i.e. of linear projections of the input (Eq. 1).

Noticeably, attentive weights depend solely on the pair-

wise similarities between linear projections of the input set

itself. Therefore, the self-attention operator can be seen as

a way of encoding pairwise relationships inside the input

set. When using image regions (or features derived from

image regions) as the input set, S(·) can naturally encode

the pairwise relationships between regions that are needed

to understand the input image before describing it1.

This peculiarity in the definition of self-attention has,

however, a significant limitation. Because everything de-

pends solely on pairwise similarities, self-attention cannot

model a priori knowledge on relationships between image

regions. For example, given one region encoding a man and

a region encoding a basketball ball, it would be difficult to

infer the concept of player or game without any a priori

knowledge. Again, given regions encoding eggs and toasts,

the knowledge that the picture depicts a breakfast could be

easily inferred using a priori knowledge on relationships.

Memory-Augmented Attention. To overcome this limita-

tion of self-attention, we propose a memory-augmented at-

tention operator. In our proposal, the set of keys and values

used for self-attention is extended with additional “slots”

which can encode a priori information. To stress that a pri-

ori information should not depend on the input set X , the

additional keys and values are implemented as plain learn-

able vectors which can be directly updated via SGD. For-

mally, the operator is defined as:

Mmem(X) = Attention(WqX,K,V )

K = [WkX,Mk]

V = [WvX,Mv] , (3)

where Mk and Mv are learnable matrices with nm rows,

and [·, ·] indicates concatenation. Intuitively, by adding

1Taking another perspective, self-attention is also conceptually equiva-

lent to an attentive encoding of graph nodes [39].
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learnable keys and values, through attention it will be possi-

ble to retrieve learned knowledge which is not already em-

bedded in X . At the same time, our formulation leaves the

set of queries unaltered.

Just like the self-attention operator, our memory-

augmented attention can be applied in a multi-head fash-

ion. In this case, the memory-augmented attention opera-

tion is repeated h times, using different projection matrices

Wq,Wk,Wv and different learnable memory slots Mk,Mv

for each head. Then, we concatenate the results from differ-

ent heads and apply a linear projection.

Encoding layer. We embed our memory-augmented opera-

tor into a Transformer-like layer: the output of the memory-

augmented attention is applied to a position-wise feed-

forward layer composed of two affine transformations with

a single non-linearity, which are independently applied to

each element of the set. Formally,

F(X)i = Uσ(VXi + b) + c, (4)

where Xi indicates the i-th vector of the input set, and

F(X)i the i-th vector of the output. Also, σ(·) is the ReLU

activation function, V and U are learnable weight matrices,

b and c are bias terms.

Each of these sub-components (memory-augmented at-

tention and position-wise feed-forward) is then encapsu-

lated within a residual connection and a layer norm oper-

ation. The complete definition of an encoding layer can be

finally written as:

Z = AddNorm(Mmem(X))

X̃ = AddNorm(F(Z)), (5)

where AddNorm indicates the composition of a residual

connection and of a layer normalization.

Full encoder. Given the aforementioned structure, multi-

ple encoding layers are stacked in sequence, so that the i-
th layer consumes the output set computed by layer i − 1.

This amounts to creating multi-level encodings of the rela-

tionships between image regions, in which higher encoding

layers can exploit and refine relationships already identified

by previous layers, eventually using a priori knowledge. A

stack of N encoding layers will therefore produce a multi-

level output X̃ = (X̃1, ..., X̃N ), obtained from the outputs

of each encoding layer.

3.2. Meshed Decoder

Our decoder is conditioned on both previously generated

words and region encodings, and is in charge of generat-

ing the next tokens of the output caption. Here, we exploit

the aforementioned multi-level representation of the input

image while still building a multi-layer structure. To this

aim, we devise a meshed attention operator which, unlike

the cross-attention operator of the Transformer, can take ad-

vantage of all encoding layers during the generation of the

sentence.

Meshed Cross-Attention. Given an input sequence of vec-

tors Y , and outputs from all encoding layers X̃ , the Meshed

Attention operator connects Y to all elements in X̃ through

gated cross-attentions. Instead of attending only the last en-

coding layer, we perform a cross-attention with all encoding

layers. These multi-level contributions are then summed to-

gether after being modulated. Formally, our meshed atten-

tion operator is defined as

Mmesh(X̃ ,Y ) =

N
∑

i=1

αi ⊙ C(X̃i,Y ), (6)

where C(·, ·) stands for the encoder-decoder cross-attention,

computed using queries from the decoder and keys and val-

ues from the encoder:

C(X̃i,Y ) = Attention(WqY ,WkX̃
i,WvX̃

i), (7)

and αi is a matrix of weights having the same size as the

cross-attention results. Weights in αi modulate both the

single contribution of each encoding layer, and the relative

importance between different layers. These are computed

by measuring the relevance between the result of the cross-

attention computed with each encoding layer and the input

query, as follows:

αi = σ
(

Wi

[

Y , C(X̃i,Y )
]

+ bi

)

, (8)

where [·, ·] indicates concatenation, σ is the sigmoid activa-

tion, Wi is a 2d×d weight matrix, and bi is a learnable bias

vector.

Architecture of decoding layers. As for encoding layers,

we apply our meshed attention in a multi-head fashion. As

the prediction of a word should only depend on previously

predicted words, the decoder layer comprises a masked self-

attention operation which connects queries derived from the

t-th element of its input sequence Y with keys and values

obtained from the left-hand subsequence, i.e. Y≤t. Also, the

decoder layer contains a position-wise feed-forward layer

(as in Eq. 4), and all components are encapsulated within

AddNorm operations. The final structure of the decoder

layer can be written as:

Z = AddNorm(Mmesh(X̃ ,AddNorm(Smask(Y )))

Ỹ = AddNorm(F(Z)), (9)

where Y is the input sequence of vectors and Smask indi-

cates a masked self-attention over time. Finally, our decoder

stacks together multiple decoder layers, helping to refine

both the understanding of the textual input and the genera-

tion of next tokens. Overall, the decoder takes as input word
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vectors, and the t-th element of its output sequence encodes

the prediction of a word at time t+ 1, conditioned on Y≤t.

After taking a linear projection and a softmax operation, this

encodes a probability over words in the dictionary.

3.3. Training details

Following a standard practice in image captioning [29,

31, 4], we pre-train our model with a word-level cross-

entropy loss (XE) and finetune the sequence generation us-

ing reinforcement learning. When training with XE, the

model is trained to predict the next token given previous

ground-truth words; in this case, the input sequence for the

decoder is immediately available and the computation of the

entire output sequence can be done in a single pass, paral-

lelizing all operations over time.

When training with reinforcement learning, we employ

a variant of the self-critical sequence training approach [31]

on sequences sampled using beam search [4]: to decode,

we sample the top-k words from the decoder probability

distribution at each timestep, and always maintain the top-k
sequences with highest probability. As sequence decoding

is iterative in this step, the aforementioned parallelism over

time cannot be exploited. However, intermediate keys and

values used to compute the output token at time t can be

reused in the next iterations.

Following previous works [4], we use the CIDEr-D score

as reward, as it well correlates with human judgment [38].

We baseline the reward using the mean of the rewards rather

than greedy decoding as done in previous methods [31, 4],

as we found it to slightly improve the final performance.

The final gradient expression for one sample is thus:

∇θL(θ) = −1

k

k
∑

i=1

(

(r(wi)− b)∇θ log p(w
i)
)

(10)

where wi is the i-th sentence in the beam, r(·) is the reward

function, and b =
(
∑

i r(w
i)
)

/k is the baseline, computed

as the mean of the rewards obtained by the sampled se-

quences. At prediction time, we decode again using beam

search, and keep the sequence with highest predicted prob-

ability among those in the last beam.

4. Experiments

4.1. Datasets

We first evaluate our model on the COCO dataset [22],

which is the most commonly used test-bed for image cap-

tioning. Then, we assess the captioning of novel objects by

testing on the recently proposed nocaps dataset [1].

COCO. The dataset contains more than 120 000 images,

each of them annotated with 5 different captions. We fol-

low the splits provided by Karpathy et al. [15], where 5 000
images are used for validation, 5 000 for testing and the rest

for training. We also evaluate the model on the COCO on-

line test server, composed of 40 775 images for which an-

notations are not made publicly available.

nocaps. The dataset consists of 15 100 images taken

from the Open Images [19] validation and test sets, each

annotated with 11 human-generated captions. Images are

divided into validation and test splits, respectively com-

posed of 4 500 and 10 600 elements. Images can be fur-

ther grouped into three subsets depending on the nearness

to COCO, namely in-domain, near-domain, and out-of-

domain images. Under this setting, we use COCO as train-

ing data and evaluate our results on the nocaps test server.

4.2. Experimental settings

Metrics. Following the standard evaluation protocol, we

employ the full set of captioning metrics: BLEU [26], ME-

TEOR [6], ROUGE [21], CIDEr [38], and SPICE [2].

Implementation details. To represent image regions, we

use Faster R-CNN [30] with ResNet-101 [10] finetuned on

the Visual Genome dataset [18, 4], thus obtaining a 2048-

dimensional feature vector for each region. To represent

words, we use one-hot vectors and linearly project them to

the input dimensionality of the model d. We also employ

sinusoidal positional encodings [37] to represent word po-

sitions inside the sequence and sum the two embeddings

before the first decoding layer.

In our model, we set the dimensionality d of each layer to

512, the number of heads to 8, and the number of memory

vectors to 40. We employ dropout with keep probability 0.9
after each attention and feed-forward layer. In our meshed

attention operator (Eq. 6), we normalize the output with a

scaling factor of
√
N . Pre-training with XE is done fol-

lowing the learning rate scheduling strategy of [37] with a

warmup equal to 10 000 iterations. Then, during CIDEr-D

optimization, we use a fixed learning rate of 5 × 10−6. We

train all models using the Adam optimizer [17], a batch size

of 50, and a beam size equal to 5.

Novel object captioning. To train the model on the no-

caps dataset, instead of using one-hot vectors, we repre-

sent words with GloVe word embeddings [28]. Two fully-

connected layers are added to convert between the GloVe

dimensionality and d before the first decoding layer and af-

ter the last decoding layer. Before the final softmax, we

multiply with the transpose of the word embeddings. All

other implementation details are kept unchanged.

Additional details on model architecture and training can be

found in the supplementary material.

4.3. Ablation study

Performance of the Transformer. In previous works, the

Transformer model has been applied to captioning only in

its original configuration with six layers, with the structure

of connections that has been successful for uni-modal sce-
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B-1 B-4 M R C S

Transformer (w/ 6 layers as in [37]) 79.1 36.2 27.7 56.9 121.8 20.9

Transformer (w/ 3 layers) 79.6 36.5 27.8 57.0 123.6 21.1

Transformer (w/ AoA [12]) 80.3 38.8 29.0 58.4 129.1 22.7

M2 Transformer1-to-1 (w/o mem.) 80.5 38.2 28.9 58.2 128.4 22.2

M2 Transformer1-to-1 80.3 38.2 28.9 58.2 129.2 22.5

M2 Transformer (w/o mem.) 80.4 38.3 29.0 58.2 129.4 22.6

M2 Transformer (w/ softmax) 80.3 38.4 29.1 58.3 130.3 22.5

M2 Transformer 80.8 39.1 29.2 58.6 131.2 22.6

Table 1: Ablation study and comparison with Transformer-

based alternatives. All results are reported after the REIN-

FORCE optimization stage.

narios like machine translation. As we speculate that cap-

tioning requires specific architectures, we compare varia-

tions of the original Transformer with our approach.

Firstly, we investigate the impact of the number of en-

coding and decoding layers on captioning performance. As

it can be seen in Table 1, the original Transformer (six

layers) achieves 121.8 CIDEr, slightly superior to the Up-

Down approach [4] which uses a two-layer recurrent lan-

guage model with additive attention and includes a global

feature vector (120.1 CIDEr). Varying the number of layers,

we observe a significant increase in performance when us-

ing three encoding and three decoding layers, which leads to

123.6 CIDEr. We hypothesize that this is due to the reduced

training set size and to the lower semantic complexities of

sentences in captioning with respect to those of language

understanding tasks. Following this finding, all subsequent

experiments will use three layers.

Attention on Attention baseline. We also evaluate a re-

cent proposal that can be straightforwardly applied to the

Transformer as an alternative to standard dot-product atten-

tion. Specifically, we evaluate the addition of the “Attention

on Attention” (AoA) approach [12] to the attentive layers,

both in the encoder and in the decoder. Noticeably, in [12]

this has been done with a Recurrent language model with

attention, but the approach is sufficiently general to be ap-

plied to any attention stage. In this case, the result of dot-

product attention is concatenated with the initial query and

fed to two fully connected layers to obtain an information

vector and a sigmoidal attention gate, then the two vectors

are multiplied together. The final result is used as an alter-

native to the standard dot-product attention. This addition

to a standard Transformer with three layers leads to 129.1
CIDEr (Table 1), thus underlying the usefulness of the ap-

proach also in Transformer-based models.

Meshed Connectivity. We then evaluate the role of the

meshed connections between encoder and decoder layers.

In Table 1, we firstly introduce a reduced version of our ap-

proach in which the i-th decoder layer is only connected to

the corresponding i-th encoder layer (1-to-1), instead of be-

ing connected to all encoders. Using this 1-to-1 connectiv-

B-1 B-4 M R C S

SCST [31] - 34.2 26.7 55.7 114.0 -

Up-Down [4] 79.8 36.3 27.7 56.9 120.1 21.4

RFNet [13] 79.1 36.5 27.7 57.3 121.9 21.2

Up-Down+HIP [47] - 38.2 28.4 58.3 127.2 21.9

GCN-LSTM [46] 80.5 38.2 28.5 58.3 127.6 22.0

SGAE [44] 80.8 38.4 28.4 58.6 127.8 22.1

ORT [11] 80.5 38.6 28.7 58.4 128.3 22.6

AoANet [12] 80.2 38.9 29.2 58.8 129.8 22.4

M2 Transformer 80.8 39.1 29.2 58.6 131.2 22.6

Table 2: Comparison with the state of the art on the “Karpa-

thy” test split, in single-model setting.

B-1 B-4 M R C S

Ensemble/Fusion of 2 models

GCN-LSTM [46] 80.9 38.3 28.6 58.5 128.7 22.1

SGAE [44] 81.0 39.0 28.4 58.9 129.1 22.2

ETA [20] 81.5 39.9 28.9 59.0 127.6 22.6

GCN-LSTM+HIP [47] - 39.1 28.9 59.2 130.6 22.3

M2 Transformer 81.6 39.8 29.5 59.2 133.2 23.1

Ensemble/Fusion of 4 models

SCST [31] - 35.4 27.1 56.6 117.5 -

RFNet [13] 80.4 37.9 28.3 58.3 125.7 21.7

AoANet [12] 81.6 40.2 29.3 59.4 132.0 22.8

M2 Transformer 82.0 40.5 29.7 59.5 134.5 23.5

Table 3: Comparison with the state of the art on the “Karpa-

thy” test split, using an ensemble of models.

ity schema already brings an improvement with respect to

using the output of the last encoder layer as in the standard

Transformer (123.6 CIDEr vs 129.2 CIDEr), thus confirm-

ing that exploiting a multi-level encoding of image regions

is beneficial. When we instead use our meshed connectiv-

ity schema, that exploits relationships encoded at all levels

and weights them with a sigmoid gating, we observe a fur-

ther performance improvement, from 129.2 CIDEr to 131.2
CIDEr. This amounts to a total improvement of 7.6 points

with respect to the standard Transformer. Also, the result of

our full model is superior to that obtained using the AoA.

As an alternative to the sigmoid gating approach for

weighting the contributions from different encoder layers

(Eq. 6), we also test with a softmax gating schema. In this

case, the element-wise sigmoid applied to each encoder is

replaced with a softmax operation over the rows of αi. Us-

ing this alternative brings to a reduction of around 1 CIDEr

point, underlying that it is beneficial to exploit the full po-

tentiality of a weighted sum of the contributions from all

encoding layers, rather than forcing a peaky distribution in

which one layer is given more importance than the others.

Role of persistent memory. We evaluate the role of mem-

ory vectors in both the 1-to-1 configuration and in the fi-
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST [31] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

Up-Down [4] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

RDN [16] 80.2 95.3 - - - - 37.3 69.5 28.1 37.8 57.4 73.3 121.2 125.2

RFNet [13] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1

GCN-LSTM [46] 80.8 95.9 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

SGAE [44] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5

ETA [20] 81.2 95.0 65.5 89.0 50.9 80.4 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4

AoANet [12] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6

GCN-LSTM+HIP [47] 81.6 95.9 66.2 90.4 51.5 81.6 39.3 71.0 28.8 38.1 59.0 74.1 127.9 130.2

M2 Transformer 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1

Table 4: Leaderboard of various methods on the online MS-COCO test server.

nal configuration with meshed connections. As it can be

seen from Table 1, removing memory vectors brings to a

reduction in performance of around 1 CIDEr point in both

connectivity settings, thus confirming the usefulness of ex-

ploiting a priori learned knowledge when encoding image

regions. Further experiments on the number of memory

vectors can be found in the supplementary material.

4.4. Comparison with state of the art

We compare the performances of our approach with

those of several recent proposals for image captioning.

The models we compare to include SCST [31] and Up-

Down [4], which respectively use attention over the grid

of features and attention over regions. Also, we com-

pare to RFNet [13], which uses a recurrent fusion net-

work to merge different CNN features; GCN-LSTM [46],

which exploits pairwise relationships between image re-

gions through a Graph CNN; SGAE [44], which instead

uses auto-encoding scene graphs. Further, we compare with

the original AoANet [12] approach, which uses attention

on attention for encoding image regions and an LSTM lan-

guage model. Finally, we compare with ORT [11], which

uses a plain Transformer and weights attention scores in the

region encoder with pairwise distances between detections.

We evaluate our approach on the COCO “Karpathy” test

split, using both single model and ensemble configurations,

and on the online COCO evaluation server.

Single model. In Table 2 we report the performance of our

method in comparison with the aforementioned competi-

tors, using captions predicted from a single model and opti-

mization on the CIDEr-D score. As it can be observed, our

method surpasses all other approaches in terms of BLEU-4,

METEOR and CIDEr, while being competitive on BLEU-

1 and SPICE with the best performer, and slightly worse

on ROUGE with respect to AoANet [12]. In particular, it

advances the current state of the art on CIDEr by 1.4 points.

Ensemble model. Following the common practice [31, 12]

of building an ensemble of models, we also report the per-

formances of our approach when averaging the output prob-

GT: A cat looking at his reflection in the mirror.

Transformer: A cat sitting in a window sill look-

ing out.

M2 Transformer: A cat looking at its reflection

in a mirror.

GT: A plate of food including eggs and toast on a

table next to a stone railing.

Transformer: A group of food on a plate.

M2 Transformer: A plate of breakfast food with

eggs and toast.

GT: A truck parked near a tall pile of hay.

Transformer: A truck is parked in the grass in a

field.

M2 Transformer: A green truck parked next to a

pile of hay.

Figure 3: Examples of captions generated by our approach

and the original Transformer model, as well as the corre-

sponding ground-truths.

ability distributions of multiple and independently trained

instances of our model. In Table 3, we use ensembles of

two and four models, trained from different random seeds.

Noticeably, when using four models our approach achieves

the best performance according to all metrics, with an in-

crease of 2.5 CIDEr points with respect to the current state

of the art [12].

Online Evaluation. Finally, we also report the performance

of our method on the online COCO test server2. In this case,

we use the ensemble of four models previously described,

trained on the “Karpathy” training split. The evaluation is

done on the COCO test split, for which ground-truth anno-

tations are not publicly available. Results are reported in Ta-

ble 4, in comparison with the top-performing approaches of

the leaderboard. For fairness of comparison, they also used

an ensemble configuration. As it can be seen, our method

surpasses the current state of the art on all metrics, achiev-

ing an advancement of 1.4 CIDEr points with respect to the

best performer.

2https://competitions.codalab.org/competitions/3221
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Figure 4: Visualization of attention states for three sample captions. For each generated word, we show the attended image

regions, outlining the region with the maximum output attribution in red.

In-Domain Out-of-Domain Overall

CIDEr SPICE CIDEr SPICE CIDEr SPICE

NBT + CBS [1] 62.1 10.1 62.4 8.9 60.2 9.5

Up-Down + CBS [1] 80.0 12.0 66.4 9.7 73.1 11.1

Transformer 78.0 11.0 29.7 7.8 54.7 9.8

M2 Transformer 85.7 12.1 38.9 8.9 64.5 11.1

Transformer + CBS 74.3 11.0 62.5 9.2 66.9 10.3

M2 Transformer + CBS 81.2 12.0 69.4 10.0 75.0 11.4

Table 5: Performances on nocaps validation set, for in-

domain and out-of-domain captioning.

4.5. Describing novel objects

We also assess the performance of our approach when

dealing with images containing object categories that are

not seen in the training set. We compare with Up-Down [4]

and Neural Baby Talk [25], when using GloVe word embed-

dings and Constrained Beam Search (CBS) [3] to address

the generation of out-of-vocabulary words and constrain the

presence of categories detected by an object detector. To

compare with our model, we use a simplified implementa-

tion of the procedure described in [1] to extract constraints,

without using word phrases. Results are shown in Table 5:

as it can be seen, the original Transformer is significantly

less performing than Up-Down on both in-domain and out-

of-domain categories, while our approach can properly deal

with novel categories, surpassing the Up-Down baseline in

both in-domain and out-of-domain images. As expected,

the use of CBS significantly enhances the performances, in

particular on out-of-domain captioning.

4.6. Qualitative results and visualization

Figure 3 proposes qualitative results generated by our

model and the original Transformer. On average, our model

is able to generate more accurate and descriptive captions,

integrating fine-grained details and object relations.

Finally, to better understand the effectiveness of our M2

Transformer, we investigate the contribution of detected re-

gions to the model output. Differently from recurrent-based

captioning models, in which attention weights over regions

can be easily extracted, in our model the contribution of one

region with respect to the output is given by more complex

non-linear dependencies. Therefore, we revert to attribution

methods: specifically, we employ the Integrated Gradients

approach [36], which approximates the integral of gradi-

ents with respect to the given input. Results are presented

in Figure 4, where we observe that our approach correctly

grounds image regions to words, also in presence of ob-

ject details and small detections. More visualizations are

included in the supplementary material.

5. Conclusion

We presented M2 Transformer, a novel Transformer-

based architecture for image captioning. Our model incor-

porates a region encoding approach that exploits a priori

knowledge through memory vectors and a meshed connec-

tivity between encoding and decoding modules. Noticeably,

this connectivity pattern is unprecedented for other fully-

attentive architectures. Experimental results demonstrated

that our approach achieves a new state of the art on COCO,

ranking first in the on-line leaderboard. Finally, we vali-

dated the components of our model through ablation stud-

ies, and its performances when describing novel objects.
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