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A. Datasets
A.1. Dermatology

Dermatology dataset details. As in actual clinical settings, the distribution of different skin conditions is heavily skewed
in the Derm dataset, ranging from some skin conditions making up more than 10% of the training data like acne, eczema,
and psoriasis, to those making up less than 1% like lentigo, melanoma, and stasis dermatitis [6]. To ensure that there was
sufficient data to develop and evaluate the Dermatology skin condition classifier, we filtered the 419 conditions to the top 26
with the highest prevalence based on the training set. Specifically, this ensured that for each of these conditions, there were at
least 100 cases in the training dataset. The remaining conditions were aggregated into an “Other” category (which comprised
21% of the cases in test dataset). The 26 target skin conditions are as follow: Acne, Actinic keratosis, Allergic contact
dermatitis, Alopecia areata, Androgenetic alopecia, Basal cell carcinoma, Cyst, Eczema, Folliculitis, Hidradenitis, Lentigo,
Melanocytic nevus, Melanoma, Post inflammatory hyperpigmentation, Psoriasis, Squamous cell carcinoma/squamous cell
carcinoma insitu (SCC/SCCIS), Seborrheic keratosis, Scar condition, Seborrheic dermatitis, Skin tag, Stasis dermatitis,
Tinea, Tinea versicolor, Urticaria, Verruca vulgaris, Vitiligo.

Figure A.1 shows examples of images in the Derm dataset. Figure A.2 shows examples of images belonging to the same
patient which are taken from different viewpoints and/or from different body-parts under different lighting conditions. In the
Multi Instance Contrastive Learning (MICLe) method, when multiple images of a medical condition from a given patient are
available, we use two randomly selected images from all of the images that belong to this patient to directly create a positive
pair of examples for contrastive learning.

Figure A.1: Examples images from Derm dataset. Derm dataset includes 26 classes, ranging from skin conditions with greater than 10%
prevalence like acne, eczema, and psoriasis, to those with sub-1% prevalence like lentigo, melanoma, and stasis dermatitis.

∗Former intern at Google. Currently at Georgia Institute of Technology.
†{shekazizi, skornblith, iamtingchen, natviv, mnorouzi}@google.com

1



Figure A.2: Examples of images belong to the same patient which are taken from different viewpoints and/or from different body-parts
under different lighting conditions. Each category, marked with a dashed line, belongs to a single patient and represents a single medical
condition. In MICLe, when multiple images of a medical condition from the same patient are available, we use two randomly selected
images from the patient to directly create a positive pair of examples and later adopt the augmentation. When a single image of a medical
condition is available, we use standard data augmentation to generate two augmented views of the same image.

External dermatology dataset details. The dataset used for evaluating the out-of-distribution generalization performance
of the model on the dermatology task was collected by a chain of skin cancer clinics in Australia and New Zealand. When
compared to the in-distribution dermatology dataset, this dataset has a much higher prevalence of skin cancers such as
Melanoma, Basal Cell Carcinoma, and Actinic Keratosis. It includes 8,563 de-identified multi-image cases which we use for
the purpose of evaluating the generalization of the model under distribution shift.

A.2. CheXpert

Dataset split details. For CheXpert dataset [4] and the task of chest X-ray interpretation, we set up the learning task
to diagnose five different thoracic pathologies: atelectasis, cardiomegaly, consolidation, edema and pleural effusion. The
CheXpert dataset default split contains a training set of more than 200k images and a very small validation set that contains
only 200 images. This extreme size difference is mainly because the training set is constructed using an algorithmic labeler
based on the free text radiology reports while the validation set is manually labeled by board-certified radiologists. Similar
to Neyshabur et al. [7, 8] findings, we realized due to the small size of the validation set, and the discrepancy between the
label collection of the training set and the validation set, the high variance in studies is plausible. This variance implies
that high performance on subsets of the training set would not correlate well with performance on the validation set, and
consequently, complicating model selection from the hyper-parameter sweep. Following Neyshabur et al. [7] suggestion, in
order to facilitate a robust comparison of our method to standard approaches, we define a custom subset of the training data as
the validation set where we randomly re-split the full training set into 67,429 training images, 22,240 validation and 33,745
test images, respectively. This means the performances of our models are not compatible to those reported in [4] and the
corresponding competition leader-board1 for this specific dataset; nonetheless, we believe the relative performance of models
is representative, informative, and comparable with [7, 8]. Figure A.3 shows examples of images in the CheXpert dataset
which includes both frontal and lateral radiographs.

CheXpert data augmentation. Due to the less versatile nature of CheXpert dataset (see Fig. A.3), we used fairly strong
data augmentation in order to prevent overfitting and improve final performance. At training time, the following preprocess-
ing was applied: (1) random rotation by angle δ ∼ U(−20, 20) degree, (2) random crop to 224×224 pixels, (3) random
left-right flip with probability 50%, (4) linearly rescale value range from [0, 255] to [0, 1] followed by random addi-
tive brightness modulation and random multiplicative contrast modulation. Random additive brightness modulation adds
a δ ∼ U(−0.2, 0.2) to all channels. Random multiplicative contrast modulation multiplies per-channel standard deviation by
a factor s ∼ U(−0.2, 0.2). After these steps we re-clip values to the range of [0, 1].

1https://stanfordmlgroup.github.io/competitions/chexpert/
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Figure A.3: Examples images from CheXpert dataset. The chest x-rays images are less diverse in comparison to the ImageNet and Derm
dataset examples. The CheXpert task is to predict the probability of different observations from multi-view chest radiographs where we
are looking for small local variations in examples using frontal and lateral radiographs.

B. Additional Results and Experiments

B.1. Dermatology Classification

B.1.1 Evaluation Details and Statistical Significance Testing

To evaluate the dermatology condition classification model performance, we compared its predicted differential diagnosis
with the majority voted reference standard differential diagnosis (ground-truth label) using the top-k accuracy and the average
top-k sensitivity. The top-k accuracy measures how frequently the top k predictions match any of the primary diagnoses in
the ground truth. The top-k sensitivity measures this for each of the 26 conditions separately, whereas the final average top-k
sensitivity is the average across the 26 conditions. Averaging across the 26 conditions avoids biasing towards more common
conditions. We use both the top-1 and top-3 metrics in this paper.

In addition to our previous result comparing MICLe and SimCLR models against the supervised baselines, the non-
parametric bootstrap is used to estimate the variability around model performance and investigating any significant improve-
ment in the results using self-supervised pretrained models. Unlike the previous studies which uses confidence intervals
obtained by multiple separate runs, for statistical significance testing, we select the best fine-tuned models for each of the
architectures and compute the difference in top-1 and top-3 accuracies on bootstrap replicas of the test set. Given predictions
of two models, we generate 1,000 bootstrap replicates of the test set and computing the difference in the target performance
metric (top-k accuracy and AUCs) for both models after performing this randomization. This produces a distribution for each
model and we use the 95% bootstrap percentile intervals to assess significance at the p = 0.05 level.

Table B.1 shows the comparison of the best self-supervised models v.s. supervised pretraining on dermatology classifi-
cation. Our results suggest that, MICLe models can significantly (p < 0.05) outperform SimCLR counterpart and BiT [5]
supervised model with ResNet-101 (3×) architecture over top-1 and top-3 accuracies. BiT model contains additional ar-
chitectural tweaks included to boost transfer performance, and was trained on a significantly larger dataset of 14M images
labelled with one or more of 21k classes which provides us with a strong supervised baseline v.s. the 1M images in ImageNet.

Table B.1: Comparison of the best self-supervised models v.s. supervised pretraining on dermatology classification. For the significance
testing, we use bootstrapping to generate the confidence intervals. Our results show that the best MICLe model can significantly outperform
BiT [5] which is a very strong supervised pretraining baseline trained on ImageNet-21k.

Architecture Method Top-1 Accuracy Top-3 Accuracy

ResNet-152 (2×)
MICLe ImageNet→Derm (ours) 0.7037±0.0233 0.9273±0.0133
SimCLR ImageNet→Derm [2] 0.6970±0.0243 0.9266±0.0135

ResNet-50 (4×)
MICLe ImageNet→Derm (ours) 0.7019±0.0224 0.9247±0.0135
SimCLR ImageNet→Derm [2] 0.6975±0.0240 0.9271±0.0125

ResNet-101 (3×) BiT Supervised [5] 0.6845±0.0228 0.9143±0.0142
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Figure B.4: Performance of dermatology condition classification models measured by the top-1 accuracy across different architecture and
pretrained for 150,000 steps to 450,000 steps with a fixed batch size of 1024. Training longer provides more negative examples, improving
the performance. Also, the results suggest that ImageNet initialization facilitating convergence, however, the performance gap between
ImageNet initialized models and medical image only models are getting narrower.

B.1.2 Augmentation Selection for Multi-Instance Contrastive (MICLe) Method

To systematically study the impact of data augmentation in our multi-instance contrastive learning framework performance,
we consider two augmentation scenarios: (1) performing standard simCLR augmentation which includes random color aug-
mentation, crops with resize, Gaussian blur, and random flips, (2) performing a partial and lightweight augmentation based on
random cropping and relying only on pair selections steps to create positive pairs. To understand the importance of augmen-
tation composition in MICLe, we pretrain models under different augmentation and investigate the performance of fine-tuned
models for the dermatology classification task. As the results in Table B.2 suggest, MICLe under partial augmentation often
outperform the full augmentation, however, the difference is not significant. We leave comprehensive investigation of the
optimal augmentations to future work.

Table B.2: Comparison of dermatology classification performance fine-tuned on representation learned using different unlabeled dataset
with MICLe along with standard augmentation and partial augmentation. Our results suggest that MICLe under partial augmentation often
outperform the full augmentation.

Architecture Method Augmentation Top-1 Accuracy Top-1 Sensitivity AUC

ResNet-152 (2×)
MICLe Derm Full Augmentation 0.6697 0.5060 0.9562

Partial Augmentation 0.6761 0.5106 0.9562

MICLe ImageNet→Derm Full Augmentation 0.6928 0.5136 0.9634
Partial Augmentation 0.6889 0.5300 0.9620

ResNet-50 (4×)
MICLe Derm Full Augmentation 0.6803 0.5032 0.9608

Partial Augmentation 0.6808 0.5204 0.9601

MICLe ImageNet→Derm Full Augmentation 0.6916 0.5159 0.9618
Partial Augmentation 0.6938 0.5087 0.9629

B.1.3 Benefits of Longer Training

Figure B.4 shows the impact of longer training when models are pretrained for different numbers of epochs/steps. As sug-
gested by Chen et al. [1, 3] training longer also provides more negative examples, improving the results. In this study we
use a fixed batch size of 1024 and we find that with more training epochs/steps, the gaps between the performance of Ima-
geNet initialized models with medical image only models are getting narrow, suggesting ImageNet initialization facilitating
convergence where by taking fewer steps we can reach a given accuracy faster.

Furthermore, Fig. B.5 shows how the performance varies using the different available label fractions for dermatology
task for the models pretrained for 150K steps and 450,000 steps using SimCLR ImageNet→Derm dataset. These results
suggest that longer training yields proportionally larger gain for different label fractions. Also, this performance gain is more
pronounced in ResNet-152 (2×). In fact, for ResNet-152 (2×) longer self supervised pretraining enable the model to match
baseline using less than 20% of the training data v.s. 30% of the training data for 150,000 steps of pretraining.
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Figure B.5: Label efficiency progress over longer training for dermatology condition classification. The models are trained using
ImageNet→Derm SimCLR for 150K steps and 450K steps and fine-tuned with varied sizes of label fractions. The Supervised ImageNet
used as the baseline.

B.1.4 Detailed Performance Results

Table B.3 shows additional results for the performance of dermatology condition classification model measured by top-1
and top-3 accuracy, and area under the curve (AUC) across different architectures. Each model is fine-tuned using transfer
learning from pretrained model on ImageNet, only unlabeled medical data, or pretrained using medical data initialized from
ImageNet pretrained model. Again, we observe that bigger models yield better performance across accuracy, sensitivity and
AUC for this task.

As shown in Table B.3, we once again observe that self-supervised pretraining with both ImageNet and in-domain Derm
data is beneficial, outperforming self-supervised pretraining on ImageNet or Derm data alone. Moreover, comparing the
performance of self-supervised models with Random and Supervised pretraining baseline, we observe self-supervised models
significantly outperforms baselines (p < 0.05), even using smaller models such as ResNet-50 (1×).

Table B.4 shows additional dermatology condition classification performance for models fine-tuned on representations
learned using different unlabeled datasets, and with and without multi instance contrastive learning (MICLe). Our results
suggest that MICLe constantly improves the performance of skin condition classification over SimCLR [1, 3]. Using statisti-
cal significance test, we observe significant improvement for top-1 accuracy using MICLe for each dataset setting (p < 0.05).

Table B.3: Performance of dermatology condition classification models measured by top-1 and top-3 accuracy, and area under the curve
(AUC) across different architectures. Models are pretrained for 150K steps and each model is fine-tuned using transfer learning from
pretrained model on ImageNet, only unlabeled medical data, or pretrained using medical data initialized from ImageNet pretrained model.
We observe that bigger models yield better performance.

Architecture Method Top-1 Accuracy Top-3 Accuracy Top-1 Sensitivity Top-3 Sensitivity AUC

ResNet-50 (1×)

SimCLR ImageNet 0.6258±0.0080 0.8943±0.0041 0.4524±0.0142 0.7388±0.0095 0.9480±0.0014
SimCLR Derm 0.6249±0.0050 0.8967±0.0031 0.4402±0.0093 0.7370±0.0078 0.9485±0.0011
SimCLR ImageNet→Derm 0.6344±0.0124 0.8996±0.0080 0.4554±0.0229 0.7349±0.0234 0.9511±0.0035

Supervised ImageNet 0.5991±0.0174 0.8743±0.0094 0.4215±0.0267 0.7008±0.0225 0.9403±0.0044
Random Initialization 0.5170±0.0062 0.8136±0.0108 0.3155±0.0152 0.5783±0.0031 0.9147±0.0019

ResNet-50 (4×)

SimCLR ImageNet 0.6462±0.0062 0.9082±0.0018 0.4738±0.0055 0.7614±0.0093 0.9545±0.0006
SimCLR Derm 0.6693±0.0079 0.9173±0.0039 0.4954±0.0054 0.7822±0.0012 0.9576±0.0013
SimCLR ImageNet→Derm 0.6761±0.0025 0.9176±0.0015 0.5028±0.0091 0.7828±0.0075 0.9593±0.0003

Supervised ImageNet 0.6236±0.0032 0.8886±0.0024 0.4364±0.0096 0.7216±0.0070 0.9464±0.0005
Random Initialization 0.5210±0.0177 0.8279±0.0172 0.3330±0.0203 0.6228±0.0314 0.9186±0.0060

ResNet-152 (2×)

SimCLR ImageNet 0.6638±0.0002 0.9109±0.0023 0.4993±0.0107 0.7716±0.0039 0.9573±0.0016
SimCLR Derm 0.6643±0.0051 0.9126±0.0008 0.5035±0.0094 0.7808±0.0011 0.9558±0.0006
SimCLR ImageNet→Derm 0.6830±0.0018 0.9196±0.0023 0.5156±0.0061 0.7891±0.0058 0.9620±0.0006

Supervised ImageNet 0.6336±0.0012 0.8994±0.0022 0.4584±0.0162 0.7462±0.0076 0.9506±0.0015
Random Initialization 0.5248±0.0121 0.8304±0.0127 0.3400±0.0303 0.6310±0.0366 0.9202±0.0055



Table B.4: Dermatology condition classification performance measured by top-1 accuracy, top-3 accuracy, and AUC. Models are fine-
tuned on representations learned using different unlabeled datasets, and with and without multi instance contrastive learning (MICLe). Our
results suggest that MICLe constantly improves the accuracy of skin condition classification over SimCLR.

Architecture Method Top-1 Accuracy Top-3 Accuracy Top-1 Sensitivity Top-3 Sensitivity AUC

ResNet-152 (2×)

MICLe Derm 0.6716±0.0031 0.9132±0.0022 0.5140±0.0093 0.7825±0.0027 0.9577±0.0009
SimCLR Derm 0.6643±0.0051 0.9126±0.0008 0.5035±0.0094 0.7808±0.0011 0.9558±0.0006

MICLe ImageNet→Derm 0.6843±0.0029 0.9246±0.0020 0.5199±0.0108 0.7933±0.0042 0.9629±0.0007
SimCLR ImageNet→Derm 0.6830±0.0018 0.9196±0.0023 0.5156±0.0061 0.7891±0.0058 0.9620±0.0006

ResNet-50 (4×)

MICLe Derm 0.6755±0.0047 0.9152±0.0014 0.4900±0.0159 0.7603±0.0092 0.9583±0.0011
SimCLR Derm 0.6693±0.0079 0.9173±0.0039 0.4954±0.0054 0.7822±0.0012 0.9576±0.0013

MICLe ImageNet→Derm 0.6881±0.0036 0.9247±0.0011 0.5106±0.0076 0.7889±0.0091 0.9623±0.0005
SimCLR ImageNet→Derm 0.6761±0.0025 0.9176±0.0015 0.5028±0.0091 0.7828±0.0075 0.9593±0.0003
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Figure B.6: The top-1 accuracy, top-3 accuracy, and AUC for dermatology condition classification for MICLe, SimCLR, and supervised
models under different unlabeled pretraining dataset and varied sizes of label fractions. (top) ResNet-50 (4×), (bottom) ResNet-152 (2×).

B.1.5 Detailed Label Efficiency Results

Figure B.6 and Table B.5 provide additional performance results to investigate label-efficiency of the selected self-supervised
models in the dermatology task. These results, back-up our finding that the pretraining using self-supervised models can
significantly help with label efficiency for medical image classification, and in all of the fractions, self-supervised models
outperform the supervised baseline. Also, we observe that MICLe yields proportionally larger gains when fine-tuning with
fewer labeled examples and this is consistent across top-1 and top-3 accuracy and sensitivity, and AUCs for the dermatology
classification task.

B.1.6 Subgroup Analysis

In another experiment, we also investigated whether the performance gains when using pretrained representations from self-
supervised learning are evenly distributed across different subgroups of interest for the dermatology task; it is important
for deployment in clinical settings that model performance is similar across such subgroups. We specifically explore top-1
and top-3 accuracy across different skin types of white, beige, brown, and dark brown. Figure B.7 shows the distribution



Table B.5: Classification accuracy and sensitivity for dermatology condition classification task, obtained by fine-tuning the SimCLR and
MICLe on 10%, 50%, and 90% of the labeled data. As a reference, ResNet-50 (4×) fine-tuned the supervised ImageNet model and using
100% labels achieves 62.36% top-1 and 88.86% top-3 accuracy.

Performance Metric Top-1 Accuracy Top-3 Accuracy Top-1 Sensitivity Top-3 Sensitivity

Architecture Method 10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%

ResNet-152 (2×)

MICLe ImageNet→Derm 0.5802 0.6542 0.6631 0.8548 0.9037 0.9105 0.3839 0.4795 0.4947 0.6496 0.7567 0.7720
SimCLR ImageNet→Derm 0.5439 0.6260 0.6353 0.8339 0.8916 0.9081 0.3446 0.4491 0.4786 0.6243 0.7269 0.7792
SimCLR Derm 0.5313 0.6296 0.6522 0.8216 0.8953 0.9034 0.3201 0.4710 0.4906 0.6036 0.7373 0.7557

Supervised ImageNet 0.4728 0.5950 0.6191 0.7997 0.8597 0.8845 0.2495 0.4303 0.4677 0.5452 0.7015 0.7326

ResNet-50 (4×)

MICLe ImageNet→Derm 0.5884 0.6498 0.6712 0.8560 0.9076 0.9174 0.3841 0.4878 0.5120 0.6555 0.7554 0.7771
SimCLR ImageNet→Derm 0.5748 0.6358 0.6749 0.8523 0.9056 0.9174 0.3983 0.4889 0.5285 0.6585 0.7691 0.7902
SimCLR Derm 0.5574 0.6331 0.6483 0.8466 0.8995 0.9142 0.3307 0.4387 0.4675 0.6233 0.7412 0.7728

Supervised ImageNet 0.4760 0.5962 0.6174 0.7823 0.8680 0.8909 0.2529 0.4247 0.4677 0.5272 0.6925 0.7379
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Figure B.7: Performance of the different models across different skin type subgroups for the dermatology classification task. Models
pretrained using self-supervised learning perform much better on the rare skin type subgroups.

of performance across these subgroups. We observe that while the baseline supervised pretrained model performance drops
on the rarer skin types, using self-supervised pretraining, the model performance is more even across the different skin
types. This exploratory experiment suggests that the learnt representations are likely general and not picking up any spurious
correlations during pretraining.

B.2. Chest X-ray Classification

B.2.1 Detailed Performance Results

For the task of X-ray interpretation on the CheXpert dataset, we set up the learning task to detect 5 different pathologies:
atelectasis, cardiomegaly, consolidation, edema and pleural effusion. Table B.6 shows the AUC performance on the different
pathologies on the CheXpert dataset. We once again observe that self-supervised pretraining with both ImageNet and in-
domain medical data is beneficial, outperforming self-supervised pretraining on ImageNet or CheXpert alone. Also, the
distribution of AUC performance across different pathologies suggests transfer learning, using both self-supervised and
supervised models, provides mixed performance gains on this specific dataset. These observations are aligned with the
findings of [8]. Although less pronounced, once again we observe that bigger models yield better performance.
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Figure B.8: Mean AUC for chest X-ray classification using self-supervised, and supervised pretrained models over varied sizes of label
fractions for ResNet-50 (4×) and ResNet-152 (2×) architecture.
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Figure B.9: Performances of diagnosing different pathologies on the CheXpert dataset measured with AUC over varied sizes of label
fractions for ResNet-50 (4×).

Table B.6: Performances of diagnosing different pathologies on the CheXpert dataset measured with AUC. The distribution of AUC
performance across different pathologies suggests transfer learning, using both self-supervised and supervised models, provides mixed
performance gains on this specific dataset.

Architecture Method Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

ResNet-50 (1×)

SimCLR ImageNet→CheXpert 0.6561±0.0052 0.8237±0.0024 0.6516±0.0051 0.8462±0.0008 0.8614±0.0016
SimCLR CheXpert 0.6546±0.0030 0.8206±0.0025 0.6521±0.0027 0.8443±0.0012 0.8620±0.0005
SimCLR ImageNet 0.6516±0.0046 0.8190±0.0015 0.6456±0.0036 0.8431±0.0012 0.8610±0.0010

Supervised ImageNet 0.6555±0.0027 0.8188±0.0023 0.6517±0.0043 0.8429±0.0011 0.8607±0.0011

ResNet-50 (4×)

SimCLR ImageNet→CheXpert 0.6679±0.0022 0.8262±0.0026 0.6576±0.0039 0.8444±0.0012 0.8599±0.0018
SimCLR CheXpert 0.6620±0.0038 0.8244±0.0017 0.6491±0.0029 0.8438±0.0014 0.8592±0.0013
SimCLR ImageNet 0.6633±0.0025 0.8228±0.0014 0.6525±0.0028 0.8439±0.0015 0.8641±0.0013

Supervised ImageNet 0.6570±0.0051 0.8218±0.0017 0.6546±0.0040 0.8425±0.0008 0.8624±0.0013

ResNet-152 (2×)

SimCLR ImageNet→CheXpert 0.6666±0.0027 0.8290±0.0019 0.6516±0.0024 0.8461±0.0016 0.8584±0.0015
SimCLR CheXpert 0.6675±0.0040 0.8278±0.0015 0.6521±0.0030 0.8444±0.0013 0.8602±0.0016
SimCLR ImageNet 0.6621±0.0067 0.8239±0.0014 0.6495±0.0046 0.8439±0.0013 0.8637±0.0014

Supervised ImageNet 0.6496±0.0030 0.8224±0.0022 0.6498±0.0040 0.8408±0.0014 0.8615±0.0010

B.2.2 Detailed Label-efficiency Results

Figure B.8 and Fig. B.9 show how the performance changes when using different label fractions for the chest X-ray clas-
sification task. For architecture ResNet-50 (4×) self supervised models consistently outperform the supervised baseline,
however, this trend is less striking for ResNet-152 (2×) models. We also observe that performance improvement in label
efficiency is less pronounced for chest X-ray classification task in comparison to dermatology classification. We believe that
with additional in-domain unlabeled data (we only use the CheXpert dataset for pretraining), self-supervised pretraining for
chest X-ray classification improves.
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