
 

NIST Special Publication 800-208 
 

Recommendation for Stateful  
Hash-Based Signature Schemes 

 

David A. Cooper 
Daniel C. Apon 
Quynh H. Dang 

Michael S. Davidson 
Morris J. Dworkin 

Carl A. Miller 
 

 

 
This publication is available free of charge from: 

https://doi.org/10.6028/NIST.SP.800-208 
 

 

 



  

NIST Special Publication 800-208 
 

Recommendation for Stateful  
Hash-Based Signature Schemes 

 

David A. Cooper 
Daniel C. Apon 
Quynh H. Dang 

Michael S. Davidson 
Morris J. Dworkin 

Carl A. Miller 
Computer Security Division 

Information Technology Laboratory 
 
 
 
 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800-208 

 
 

October 2020 
 
 

 
 
 

U.S. Department of Commerce 
Wilbur L. Ross, Jr., Secretary 

 
National Institute of Standards and Technology 

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 



 

  

Authority 

This publication has been developed by NIST in accordance with its statutory responsibilities under the 
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 
minimum requirements for federal information systems, but such standards and guidelines shall not apply 
to national security systems without the express approval of appropriate federal officials exercising policy 
authority over such systems. This guideline is consistent with the requirements of the Office of Management 
and Budget (OMB) Circular A-130. 

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 
Director of the OMB, or any other federal official.  This publication may be used by nongovernmental 
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 
however, be appreciated by NIST. 

National Institute of Standards and Technology Special Publication 800-208 
Natl. Inst. Stand. Technol. Spec. Publ. 800-208, 59 pages (October 2020) 

CODEN: NSPUE2 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800-208 

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 
available for the purpose. 

There may be references in this publication to other publications currently under development by NIST in accordance 
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 
may be used by federal agencies even before the completion of such companion publications. Thus, until each 
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 
planning and transition purposes, federal agencies may wish to closely follow the development of these new 
publications by NIST. 

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 
https://csrc.nist.gov/publications. 

 
Comments on this publication may be submitted to: 

National Institute of Standards and Technology 
Attn: Computer Security Division, Information Technology Laboratory 

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 
Email: pqc-comments@nist.gov  

All comments are subject to release under the Freedom of Information Act (FOIA).  

https://csrc.nist.gov/publications
mailto:pqc-comments@nist.gov


NIST SP 800-208  RECOMMENDATION FOR STATEFUL 
  HASH-BASED SIGNATURE SCHEMES 

ii 

 
 

 
 

 
 

 
 

 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance the 
development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in federal 
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 
outreach efforts in information system security, and its collaborative activities with industry, 
government, and academic organizations. 

Abstract 

This recommendation specifies two algorithms that can be used to generate a digital signature, 
both of which are stateful hash-based signature schemes: the Leighton-Micali Signature (LMS) 
system and the eXtended Merkle Signature Scheme (XMSS), along with their multi-tree variants, 
the Hierarchical Signature System (HSS) and multi-tree XMSS (XMSSMT). 
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Document Conventions 

The terms “shall” and “shall not” indicate requirements to be followed strictly in order to 
conform to the publication and from which no deviation is permitted. 

The terms “should” and “should not” indicate that, among several possibilities, one is 
recommended as particularly suitable without mentioning or excluding others, that a certain 
course of action is preferred but not necessarily required, or that (in the negative form) a certain 
possibility or course of action is discouraged but not prohibited. 

The terms “may” and “need not” indicate a course of action permissible within the limits of the 
publication. 

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or 
causal. 

Conformance Testing 

Conformance testing for implementations of the functions that are specified in this publication 
will be conducted within the framework of the Cryptographic Algorithm Validation Program 
(CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements that 
apply to these implementations are indicated by the word “shall.” Some of these requirements 
may be out-of-scope for CAVP or CMVP validation testing and, thus, are the responsibility of 
entities using, implementing, installing, or configuring applications that incorporate this 
Recommendation.  
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1 Introduction 

This publication supplements FIPS 186 [4] by specifying two additional digital signature 
schemes, both of which are stateful hash-based signature (HBS) schemes: the Leighton-Micali 
Signature (LMS) system [2] and the eXtended Merkle Signature Scheme (XMSS) [1], along with 
their multi-tree variants, the Hierarchical Signature System (HSS) and multi-tree XMSS 
(XMSSMT). All of the digital signature schemes specified in FIPS 186 will be broken if large-
scale quantum computers are ever built. The security of the stateful HBS schemes in this 
publication depends only on the security of the underlying hash functions—in particular, the 
infeasibility of finding a preimage or a second preimage—and it is believed that the security of 
hash functions will not be broken by the development of large-scale quantum computers [20]. 

This recommendation specifies profiles of LMS, HSS, XMSS, and XMSSMT that are appropriate 
for use by the U.S. Federal Government. This publication approves the use of some but not all of 
the parameter sets defined in [1] and [2] and also defines some new parameter sets. The 
approved parameter sets use 192- or 256-bit outputs with either SHA-256 [3] or SHAKE256 [5]. 
This recommendation requires that key and signature generation be performed in hardware 
cryptographic modules that do not allow secret keying material to be exported, even in encrypted 
form. 

1.1 Intended Applications for Stateful HBS Schemes 

NIST is in the process of developing standards for post-quantum secure digital signature 
schemes [7] that can be used as replacements for the schemes that are specified in [4]. Stateful 
HBS schemes are not suitable for general use because they require careful state management that 
is often difficult to assure, as summarized in Section 1.2 and described in detail in [8]. 

Instead, stateful HBS schemes are primarily intended for applications with the following 
characteristics: 1) it is necessary to implement a digital signature scheme in the near future; 2) 
the implementation will have a long lifetime; and 3) it would not be practical to transition to a 
different digital signature scheme once the implementation has been deployed.  

An application that may fit this profile is the authentication of firmware updates for constrained 
devices. Some constrained devices that will be deployed in the near future will be in use for 
decades. These devices will need to have a secure mechanism for receiving firmware updates, 
and it may not be practical to change the code for verifying signatures on updates once the 
devices have been deployed. 

1.2 The Importance of the Proper Maintenance of State 

In a stateful HBS scheme, an HBS private key consists of a large set of one-time signature (OTS) 
private keys. The signer needs to ensure that no individual OTS key is ever used to sign more 
than one message. If an attacker were able to obtain digital signatures for two different messages 
that were created using the same OTS key, then it would become computationally feasible for 
that attacker to forge signatures on arbitrary messages [13]. Therefore, as described in [8], when 
a stateful HBS scheme is implemented, extreme care needs to be taken in order to ensure that no 
OTS key is ever reused. 
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In order to obtain assurance that OTS keys are not reused, the signing process should be 
performed in a highly controlled environment. As described in [8], there are many ways in which 
seemingly routine operations could lead to the risk of one-time key reuse. The conformance 
requirements imposed in Section 8.1 on cryptographic modules that implement stateful HBS 
schemes are intended to help prevent one-time key reuse. 

1.3 Outline of Text 

The remainder of this document is divided into the following sections and appendices: 

• Section 2, Glossary of Terms, Acronyms, and Mathematical Symbols, defines the terms, 
acronyms, and mathematical symbols used in this document. This section is informative. 

• Section 3, General Discussion, gives a conceptual explanation of the elements used in 
stateful hash-based signature schemes (including hash chains, Merkle trees, and hash 
prefixes). This section may be used as either a high-level overview of stateful hash-based 
signature schemes or as an introduction to the detailed descriptions of LMS and XMSS 
provided in [1] and [2]. This section is informative. 

• Section 4, Leighton-Micali Signatures (LMS) Parameter Sets, describes the parameter 
sets that are approved for use by this Special Publication with LMS and HSS. 

• Section 5, eXtended Merkle Signature Scheme (XMSS) Parameter Sets, describes the 
parameter sets that are approved for use by this Special Publication with XMSS and 
XMSSMT. 

• Section 6, Random Number Generation for Keys and Signatures, states how the random 
data used in XMSS and LMS must be generated. 

• Section 7, Distributed Multi-Tree Hash-Based Signatures, provides recommendations for 
distributing the implementation of a single HSS or XMSSMT instance over multiple 
cryptographic modules. 

• Section 8, Conformance, specifies requirements for cryptographic algorithm and module 
validation that are specific to modules that implement the algorithms in this document. 

• Section 9, Security Considerations, enumerates security risks in various scenarios for 
stateful HBS schemes (with a focus on the problem of key reuse) and describes steps that 
should be taken to maximize the security of an implementation. This section is 
informative. 

• Appendix A, LMS XDR Syntax Additions, describes additions that are required for the 
External Data Representation (XDR) syntax for LMS in order to support the new 
parameter sets specified in this document. 

• Appendix B, XMSS XDR Syntax Additions, describes additions that are required for the 
XDR syntax for XMSS and XMSSMT in order to support the new parameter sets specified 
in this document. 
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• Appendix C, Provable Security Analysis, provides information about the security proofs 
that are available for LMS and XMSS. This section is informative.  
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2 Glossary of Terms, Acronyms, and Mathematical Symbols 

2.1 Terms and Definitions 

approved FIPS-approved or NIST-recommended. An algorithm or technique 
that is either 1) specified in a FIPS or NIST Recommendation or 2) 
adopted in a FIPS or NIST Recommendation and specified either (a) 
in an appendix to the FIPS or NIST Recommendation or (b) in a 
document referenced by the FIPS or NIST Recommendation. 

 
2.2 Acronyms 

Selected acronyms and abbreviations used in this publication are defined below. 

EEPROM Electronically erasable programmable read-only memory 

EUF-CMA Existential unforgeability under adaptive chosen message attacks 

FIPS Federal Information Processing Standard 

HBS Hash-based signature 

HSS Hierarchical Signature Scheme 

IRTF Internet Research Task Force 

LM-OTS Leighton-Micali One-Time Signature 

LMS Leighton-Micali signature 

NIST National Institute of Standards and Technology 

OTS One-time signature 

QROM Quantum random oracle model 

RAM Random access memory 

RFC Request for Comments 

ROM Random oracle model 

SHA Secure Hash Algorithm 

SHAKE Secure Hash Algorithm KECCAK 

SP Special Publication 
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VM Virtual machine 

WOTS+ Winternitz One-Time Signature Plus 

XDR External Data Representation 

XMSS eXtended Merkle Signature Scheme 

XMSSMT Multi-tree XMSS 
 
2.3 Mathematical Symbols 

SHA-256(M) SHA-256 hash function as specified in [3]. 

SHA-256/192(M) T192(SHA-256(M)), the most significant (i.e., leftmost) 192 bits of the 
SHA-256 hash of M. 

SHAKE256/256(M) SHAKE256(M, 256), where SHAKE256 is specified in Section 6.2 of 
[5]. The output length is 256 bits. 

SHAKE256/192(M) SHAKE256(M, 192), where SHAKE256 is specified in Section 6.2 of 
[5]. The output length is 192 bits. 

T192(X) A truncation function that outputs the most significant (i.e., leftmost) 
192 bits of the input bit string X. 

n The number of bytes in the output of a hash function. 

m In LMS, the number of bytes associated with each node of a Merkle 
tree. 

w 1.  In XMSS, the length of a Winternitz chain. A single Winternitz chain 
uses log2(w) bits from the hash or checksum. 

2.  In LMS, the number of bits from the hash or checksum used in a 
single Winternitz chain. The length of a Winternitz chain is 2w. (Note 
that using a Winternitz parameter of w = 4 in LMS would be 
comparable to using a parameter of w = 16 in XMSS.) 

p The number of n-byte string elements in an LM-OTS private key, public 
key, and signature. 

Len The number of n-byte string elements in a WOTS+ private key, public 
key, and signature. 

H In LMS and XMSS, the height of the tree. In XMSSMT, the total height 
of the multi-tree (the trees at each level have a height of H/D). 
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D The number of levels of trees in XMSSMT. 

L The number of levels of trees in HSS. 

I A 16-byte string used in LMS as a key pair identifier. 

C In LMS, the n-byte randomizer used for randomized message hashing. 

R In XMSS, the n-byte randomizer used for randomized message hashing. 

SK_PRF An n-byte key used to pseudorandomly generate the randomizer r. 

S_XMSS A secret random value used for pseudorandom key generation in 
XMSS. 

ADRS A 32-byte data structure used in XMSS when generating prefixes (keys) 
and bitmasks. 

SEED 1. In XMSS, the public, random, unique identifier for the long-term key. 

2. In LMS, a secret random value used for pseudorandom key 
generation. 
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3 General Discussion 

At a high level, XMSS and LMS are very similar. They each consist of two components—a one-
time signature (OTS) scheme and a method for creating a single, long-term public key from a 
large set of OTS public keys. A brief explanation of OTS schemes and the method for creating a 
long-term public key from a large set of OTS public keys can be found in Sections 3 and 4 of 
[14]. 

3.1 One-Time Signature Systems 

Both LMS and XMSS make use of variants of the Winternitz signature scheme. In the Winternitz 
signature scheme, the message to be signed is hashed to create a digest; the digest is encoded as a 
base b number;1 and then each digit of the digest is signed using a hash chain, as follows. 

A hash chain is created by first randomly generating a secret value, x, which is the private key. 
The size of x should generally correspond to the targeted security strength of the scheme. So, for 
the parameter sets approved by this recommendation, x will be either 192 or 256 bits in length. 
The public key, pub, is then created by applying the hash function, H, to the secret b – 1 times, 
𝐻𝐻𝑏𝑏−1(𝑥𝑥). Figure 1 shows an example of a hash chain for the kth digit of a digest where b is 4. 

The kth digit of the digest, Nk, is signed by applying the hash function, H, to the private key Nk 
times, 𝐻𝐻𝑁𝑁𝑘𝑘(𝑥𝑥𝑘𝑘). Figure 2 shows an example of a signature for the kth digit of the digest created 
using the Winternitz chain in Figure 1 when Nk is 1. As shown, the signature is 𝑠𝑠𝑘𝑘 = 𝐻𝐻1(𝑥𝑥𝑘𝑘) =
𝐻𝐻(𝑥𝑥𝑘𝑘). Figure 2 also shows how the signature, sk, can be verified. The hash function, H, is 
applied to sk twice, and if the resulting value is the same as the public key, pubk, then the 
signature is valid. In general, the signature for the kth digit of a digest can be verified by 
checking that 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻𝑏𝑏−1−𝑁𝑁𝑘𝑘(𝑠𝑠𝑘𝑘). 

 

As noted in [14], simply signing the individual digits of the digest is not sufficient because an 
 

1 The base b is referred to as the Winternitz parameter in this publication. RFC 8391 [1] specifies that the Winternitz parameter, 
denoted by w there, may be either 4 or 16 but only specifies parameter sets for w = 16. In RFC 8554 [2], the term “Winternitz 
parameter,” also denoted by w, refers to a different but related quantity: the number of bits of the digest that is encoded by b. 
RFC 8554 specifies that w may be 1, 2, 4, or 8, which corresponds to a b of 2, 4, 16, or 256, respectively. 

𝑥𝑥𝑘𝑘 H H H 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻 �𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)�� 𝐻𝐻(𝑥𝑥𝑘𝑘) 𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)� 

Figure 1: A sample Winternitz chain for b = 4 

𝑥𝑥𝑘𝑘 H 𝑠𝑠𝑘𝑘 = 𝐻𝐻(𝑥𝑥𝑘𝑘) 

H H 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 ≟ 𝐻𝐻�𝐻𝐻(𝑠𝑠𝑘𝑘)� 𝐻𝐻(𝑠𝑠𝑘𝑘) 𝑠𝑠𝑘𝑘 

Figure 2: A sample Winternitz signature generation and verification 
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attacker would be able to generate valid signatures for other message digests. For example, given 
𝑠𝑠𝑘𝑘 = 𝐻𝐻(𝑥𝑥𝑘𝑘), as in Figure 2, an attacker would be able to generate a signature for a message 
digest with a kth digit of 2 by applying H to 𝑠𝑠𝑘𝑘 once or to a message digest with a kth digit of 3 
by applying H to 𝑠𝑠𝑘𝑘 twice. An attacker could not, however, generate a signature for a message 
digest with a kth digit of 0 as this would require finding some value y such that 𝐻𝐻(𝑦𝑦) = 𝑠𝑠𝑘𝑘, 
which would not be feasible as long as H is preimage-resistant. 

In order to protect against the above attack, the Winternitz signature scheme computes a 
checksum of the message digest and signs the checksum along with the digest. For an n-digit 
message digest, the checksum is computed as ∑ (𝑏𝑏 − 1 − 𝑁𝑁𝑘𝑘)𝑛𝑛−1

𝑘𝑘=0 . The checksum is designed so 
that the value is non-negative, and any increase in a digit in the message digest will result in the 
checksum becoming smaller. This prevents an attacker from creating an effective forgery from a 
message signature since the attacker can only increase values within the message digest and 
cannot decrease values within the checksum. 

Figure 3 shows an example of a signature for a 32-bit message digest using b = 16. The digest is 
written as eight hexadecimal digits, and a separate hash chain is used to sign each digit with each 
hash chain having its own private key.2 

 
Digest  Checksum 

Digest 6 3 F 1 E 9 0 B  3 D 

Private 
Key 

x0 x1 x2 x3 x4 x5 x6 x7  x8 x9 

Signature H6(x0) H3(x1) H15(x2) H(x3) H14(x4) H9(x5) x6 H11(x7)  H3(x8) H13(x9) 

Public 
Key 

H15(x0) H15(x1) H15(x2) H15(x3) H15(x4) H15(x5) H15(x6) H15(x7)  H15(x8) H15(x9) 

Figure 3: A sample Winternitz signature 

3.2 Merkle Trees 

While a single, long-term public key could be created from a large set of OTS public keys by 
simply concatenating the keys together, the resulting public key would be unacceptably large. 
XMSS and LMS instead use Merkle hash trees [18], which allow for the long-term public key to 
be very short in exchange for requiring a small amount of additional information to be provided 
with each OTS key. To create a hash tree, the OTS public keys are hashed once to form the 
leaves of the tree, and these hashes are then hashed together in pairs to form the next level up. 
Those hash values are then hashed together in pairs, the resulting hash values are hashed 
together, and so on until all of the public keys have been used to generate a single hash value (the 
root of the tree), which will be used as the long-term public key. 

 

2 If SHA-256 were used as the hash function, then the message digest would be encoded as 64 hexadecimal digits, and the 
checksum would be encoded as three hexadecimal digits. 
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Figure 4: A Merkle Hash Tree 

Figure 4 depicts a hash tree that contains eight OTS public keys (k0 … k7). The eight keys are 
each hashed to form the leaves of the tree (h0 … h7), and the eight leaf values are hashed in pairs 
to create the next level up in the tree (h01, h23, h45, h67). These four hash values are again hashed in 
pairs to create h0−3 and h4−7, which are hashed together to create the long-term public key, h0−7. 
In order for an entity that had already received h0−7 in a secure manner to verify a message 
signed using k2, the signer would need to provide h3, h01, and h4−7 in addition to k2. The verifier 
would compute ℎ2′ = 𝐻𝐻(𝑘𝑘2), ℎ23′ = 𝐻𝐻(ℎ2′ ||ℎ3), ℎ0−3′ = 𝐻𝐻(ℎ01||ℎ23′ ), and ℎ0−7′ =
𝐻𝐻(ℎ0−3′ ||ℎ4−7). If ℎ0−7′  is the same as h0−7, then k2 may be used to verify the message signature. 

3.3 Two-Level Trees 

Both [1] and [2] define single tree and multi-tree variants of their signature schemes. In an 
instance that involves two levels of trees, as shown in Figure 5, the OTS keys that form the 
leaves of the top-level tree sign the roots of the trees at the bottom level, and the OTS keys that 
form the leaves of the bottom-level trees are used to sign the messages. The root of the top-level 
tree is the long-term public key for the signature scheme.3 

 

3 While this section only describes two-level trees, HSS allows for up to eight levels of trees, and XMSSMT allows for up to 12 
levels of trees.  
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As described in Section 7, the use of two levels of trees can make it easier to distribute OTS keys 
across multiple cryptographic modules in order to protect against private key loss. A set of OTS 
keys can be created in one cryptographic module, and the root of the Merkle tree formed from 
these keys can be published as the public key for the signature scheme. OTS keys can then be 
created on multiple other cryptographic modules with a separate Merkle tree created for the OTS 
keys of each of the other cryptographic modules, and a different OTS key from the first 
cryptographic module can be used to sign each of the roots of the other cryptographic modules. 

While there are benefits in the use of a two-level tree, it results in larger signatures and slower 
signature verification as each message signature will need to include two OTS signatures. For 
example, if a message were signed using OTS key kb,6 in Figure 5, the signature would need to 
include the signature on rootb,1 using ka,1 in addition to the signature on the message using kb,6. 

3.4 Prefixes and Bitmasks 

In order to strengthen the security of the schemes in both XMSS and LMS, a prefix is prepended 
whenever a value is hashed. For example, when computing the public key for a Winternitz 
signature from the private key in LMS as described in Section 3.1, rather than just computing 
𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻3(𝑥𝑥𝑘𝑘) = 𝐻𝐻 �𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)��, the public key is computed as 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 =

𝐻𝐻 �𝑝𝑝3 || 𝐻𝐻�𝑝𝑝2 || 𝐻𝐻(𝑝𝑝1 || 𝑥𝑥𝑘𝑘)��, where p1, p2, and p3 are each different prefix values. The prefix is 
formed by concatenating together various pieces of information, including a unique identifier for 
the long-term public key and an indicator of the purpose of the hash (e.g., Winternitz chain or 
Merkle tree). If the hash is part of a Winternitz chain, then the prefix also includes the number of 
the OTS key, which digit of the digest or checksum is being signed, and where in the chain the 
hash appears. The goal is to ensure that every single hash that is computed within the LMS 
scheme uses a different prefix. 

XMSS generates its prefixes in a similar way. The information described above is used to form 
an address, which uniquely identifies where a particular hash invocation occurs within the 

ka,0 ka,1 ka,2 ka,3 

roota 

rootb,0 

kb,0 kb,1 kb,2 kb,3 

rootb,1 

kb,4 kb,5 kb,6 kb,7 

rootb,2 

kb,8 kb,9 kb,10 kb,11 

rootb,3 

kb,12 kb,13 kb,14 kb,15 

Figure 5: A two-Level Merkle tree 
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scheme. This address is then hashed along with a unique identifier (SEED) for the long-term 
public key to create the prefix. 

Unlike LMS, XMSS also uses bitmasks. Similar to the generation of the prefix, a slightly 
different address is hashed along with the SEED to create a bitmask, which is exclusive-ORed 
with the value to be hashed (the input). The prefix and masked input value are concatenated as 
specified in [1] to form the input to the hash function.4 Figure 6 illustrates an example of this 
computation when the input is a Winternitz chaining value. In [1], the hash function is referred to 
as H, H_msg, F, or PRF, depending on where it is being used. However, in each case, it is the 
same function, just with a different prefix prepended in order to ensure separation between the 
uses. 

  

 

4 When hashing values within a Merkle tree, two bitmasks are created, one for the left input and one for the right input, and the 
two bitmasked values are concatenated along with the prefix. 

Figure 6: XMSS hash computation with prefix and bitmask 

⊕ 

3 || SEED || ADDR 

3 || SEED || ADDR' 

0 || prefix || bitmasked input 

input 

H 

H 

H 

bitmask 

output 
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4 Leighton-Micali Signatures (LMS) Parameter Sets 

The LMS and HSS algorithms are described in RFC 8554 [2]. This Special Publication approves 
the use of LMS and HSS with four different hash functions: SHA-256, SHA-256/192, 
SHAKE256/256, and SHAKE256/192 (see Section 2.3). The parameter sets that use SHA-256 
are defined in RFC 8554 [2]. The parameter sets that use SHA-256/192, SHAKE256/256, and 
SHAKE256/192 are defined in this publication. 

When generating a key pair for an LMS instance, each LM-OTS key in the system shall use the 
same parameter set, and the hash function used for the LMS system shall be the same as the hash 
function used in the LM-OTS keys. The height of the tree (h) shall be 5, 10, 15, 20, or 25. 

When generating a key pair for an HSS instance, the requirements specified in the previous 
paragraph apply to each LMS tree in the instance. If the HSS instance has more than one level, 
then the hash function used for the tree at level 0 shall be used for every LMS tree at every other 
level. For each level, the same LMS and LM-OTS parameter sets shall be used for every LMS 
tree at that level. Different LMS and LM-OTS parameter sets may be used at different levels, as 
long as all chosen parameter sets use the same hash function. 

The LMS and LM-OTS parameter sets that are approved for use by this Special Publication are 
specified in tables in Sections 4.1 through 4.4. The parameters n, w, p, m, and h specified in the 
tables are defined in Sections 4.1 and 5.1 of [2]. 

Extensions to the XDR syntax in Section 3.3 of [2] needed to support the parameter sets defined 
in Sections 4.2 through 4.4 of this document are specified in Appendix A. The numeric 
identifiers for these parameter sets are marked as “TBD” since they had not yet been assigned at 
the time this document was published. Once they are assigned, the numeric identifiers may be 
found at https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-
signatures.xhtml. 

4.1 LMS with SHA-256 

When generating LMS or HSS key pairs using SHA-256, the LMS and LM-OTS parameter sets 
shall be selected from the following two tables, which come from Sections 4 and 5 of [2]. 

Table 1: LM-OTS parameter sets for SHA-256 

LM-OTS Parameter Sets 
Numeric 
Identifier n w P 

LMOTS_SHA256_N32_W1 0x00000001 32 1 265 

LMOTS_SHA256_N32_W2 0x00000002 32 2 133 

LMOTS_SHA256_N32_W4 0x00000003 32 4 67 

LMOTS_SHA256_N32_W8 0x00000004 32 8 34 

  

https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml
https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml
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Table 2: LMS parameter sets for SHA-256 

LMS Parameter Sets Numeric Identifier m h 

LMS_SHA256_M32_H5 0x00000005 32 5 

LMS_SHA256_M32_H10 0x00000006 32 10 

LMS_SHA256_M32_H15 0x00000007 32 15 

LMS_SHA256_M32_H20 0x00000008 32 20 

LMS_SHA256_M32_H25 0x00000009 32 25 

 

4.2 LMS with SHA-256/192 

When generating LMS or HSS key pairs using SHA-256/192, the LMS and LM-OTS parameter 
sets shall be selected from the following two tables. 

Table 3: LM-OTS parameter sets for SHA-256/192 

LM-OTS Parameter Sets 
Numeric 
Identifier n w P 

LMOTS_SHA256_N24_W1 TBD 24 1 200 

LMOTS_SHA256_N24_W2 TBD 24 2 101 

LMOTS_SHA256_N24_W4 TBD 24 4 51 

LMOTS_SHA256_N24_W8 TBD 24 8 26 

 

Table 4: LMS parameter sets for SHA-256/192 

LMS Parameter Sets Numeric Identifier m h 

LMS_SHA256_M24_H5 TBD 24 5 

LMS_SHA256_M24_H10 TBD 24 10 

LMS_SHA256_M24_H15 TBD 24 15 

LMS_SHA256_M24_H20 TBD 24 20 

LMS_SHA256_M24_H25 TBD 24 25 
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4.3 LMS with SHAKE256/256 

When generating LMS or HSS key pairs using SHAKE256/256, the LMS and LM-OTS 
parameter sets shall be selected from the following two tables. 

Table 5: LM-OTS parameter sets for SHAKE256/256 

LM-OTS Parameter Sets 
Numeric 
Identifier n w p 

LMOTS_SHAKE_N32_W1 TBD 32 1 265 

LMOTS_SHAKE_N32_W2 TBD 32 2 133 

LMOTS_SHAKE_N32_W4 TBD 32 4 67 

LMOTS_SHAKE_N32_W8 TBD 32 8 34 

 
Table 6: LMS parameter sets for SHAKE256/256 

LMS Parameter Sets Numeric Identifier m h 

LMS_ SHAKE_M32_H5 TBD 32 5 

LMS_ SHAKE_M32_H10 TBD 32 10 

LMS_ SHAKE_M32_H15 TBD 32 15 

LMS_ SHAKE_M32_H20 TBD 32 20 

LMS_ SHAKE_M32_H25 TBD 32 25 

 
4.4 LMS with SHAKE256/192 

When generating LMS or HSS key pairs using SHAKE256/192, the LMS and LM-OTS 
parameter sets shall be selected from the following two tables. 

Table 7: LM-OTS parameter sets for SHAKE256/192 

LM-OTS Parameter Sets 
Numeric 
Identifier n w p 

LMOTS_SHAKE_N24_W1 TBD 24 1 200 

LMOTS_SHAKE_N24_W2 TBD 24 2 101 

LMOTS_SHAKE_N24_W4 TBD 24 4 51 

LMOTS_SHAKE_N24_W8 TBD 24 8 26 
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Table 8: LMS parameter sets for SHAKE256/192 

LMS Parameter Sets Numeric Identifier m h 

LMS_ SHAKE_M24_H5 TBD 24 5 

LMS_ SHAKE_M24_H10 TBD 24 10 

LMS_ SHAKE_M24_H15 TBD 24 15 

LMS_ SHAKE_M24_H20 TBD 24 20 

LMS_ SHAKE_M24_H25 TBD 24 25 
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5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets 

The XMSS and XMSSMT algorithms are described in RFC 8391 [1]. This Special Publication 
approves the use of XMSS and XMSSMT with four different hash functions: SHA-256, SHA-
256/192, SHAKE256/256, and SHAKE256/192 (see Section 2.3).5 The parameter sets that use 
SHA-256 are defined in RFC 8391 [1]. The parameter sets that use SHA-256/192, 
SHAKE256/256, and SHAKE256/192 are defined below. 

The WOTS+ parameters that correspond to the use of each of these hash functions are specified 
in the following table. 

Table 9: WOTS+ parameter sets 

Parameter Sets Numeric Identifier F / PRF n w len 
WOTSP-SHA2_256 0x00000001 See Section 5.1 32 16 67 

WOTSP-SHA2_192 0x00000005 See Section 5.2 24 16 51 

WOTSP-SHAKE256_256 0x00000006 See Section 5.3 32 16 67 

WOTSP-SHAKE256_192 0x00000007 See Section 5.4 24 16 51 
 
The XMSS and XMSSMT parameter sets that are approved for use by this Special Publication are 
specified in Sections 5.1 through 5.4. The parameters n, w, len, h, and d specified in the tables 
are defined in Sections 3.1.1, 4.1.1, and 4.2.1 of [1]. 

Extensions to the XDR syntax in Appendices A, B, and C of [1] needed to support the parameter 
sets defined in Sections 5.2 through 5.4 of this document are specified in Appendix B. 

5.1 XMSS and XMSSMT with SHA-256 

When generating XMSS or XMSSMT key pairs using SHA-256, the parameter sets shall be 
selected from the following two tables, which come from Section 5 of [1]. Each of these uses the 
WOTSP-SHA2_256 parameter set. 

Table 10: XMSS parameter sets for SHA-256 

Parameter Sets Numeric Identifier n w len h 
XMSS-SHA2_10_256 0x00000001 32 16 67 10 

XMSS-SHA2_16_256 0x00000002 32 16 67 16 

XMSS-SHA2_20_256 0x00000003 32 16 67 20 

 

5 The parameter sets specified in RFC 8391 [1] that use SHAKE128, SHAKE256, and SHA-512 are not approved for use by this 
Special Publication. 
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Table 11: XMSSMT parameter sets for SHA-256 

Parameter Sets Numeric Identifier n w len h d 

XMSSMT-SHA2_20/2_256 0x00000001 32 16 67 20 2 

XMSSMT-SHA2_20/4_256 0x00000002 32 16 67 20 4 

XMSSMT-SHA2_40/2_256 0x00000003 32 16 67 40 2 

XMSSMT-SHA2_40/4_256 0x00000004 32 16 67 40 4 

XMSSMT-SHA2_40/8_256 0x00000005 32 16 67 40 8 

XMSSMT-SHA2_60/3_256 0x00000006 32 16 67 60 3 

XMSSMT-SHA2_60/6_256 0x00000007 32 16 67 60 6 

XMSSMT-SHA2_60/12_256 0x00000008 32 16 67 60 12 

 
For the parameter sets in this section, the functions F, H, H_msg, and PRF are as defined in 
Section 5.1 of [1] for SHA2 with n = 32. The function PRFkeygen, which is used for key 
generation as specified in Section 6.2, is defined as follows: 

PRFkeygen(KEY, M): SHA-256(toByte(4, 32) || KEY || M). 

5.2 XMSS and XMSSMT with SHA-256/192 

When generating XMSS or XMSSMT key pairs using SHA-256/192, the parameter sets shall be 
selected from the following two tables. Each of these uses the WOTSP-SHA2_192 parameter 
set. 

Table 12: XMSS parameter sets for SHA-256/192 

Parameter Sets Numeric Identifier n w len h 

XMSS-SHA2_10_192 0x0000000D 24 16 51 10 

XMSS-SHA2_16_192 0x0000000E 24 16 51 16 

XMSS-SHA2_20_192 0x0000000F 24 16 51 20 
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Table 13: XMSSMT parameter sets for SHA-256/192 

Parameter Sets Numeric Identifier n w len h d 

XMSSMT-SHA2_20/2_192 0x00000021 24 16 51 20 2 

XMSSMT-SHA2_20/4_192 0x00000022 24 16 51 20 4 

XMSSMT-SHA2_40/2_192 0x00000023 24 16 51 40 2 

XMSSMT-SHA2_40/4_192 0x00000024 24 16 51 40 4 

XMSSMT-SHA2_40/8_192 0x00000025 24 16 51 40 8 

XMSSMT-SHA2_60/3_192 0x00000026 24 16 51 60 3 

XMSSMT-SHA2_60/6_192 0x00000027 24 16 51 60 6 

XMSSMT-SHA2_60/12_192 0x00000028 24 16 51 60 12 

 
For the parameter sets in this section, the functions F, H, H_msg, PRF, and PRFkeygen are defined 
as follows: 

• F(KEY, M): T192(SHA-256(toByte(0, 4) || KEY || M)) 
• H(KEY, M): T192(SHA-256(toByte(1, 4) || KEY || M)) 
• H_msg(KEY, M): T192(SHA-256(toByte(2, 4) || KEY || M)) 
• PRF(KEY, M): T192(SHA-256(toByte(3, 4) || KEY || M)) 
• PRFkeygen(KEY, M): T192(SHA-256(toByte(4, 4) || KEY || M)) 

5.3 XMSS and XMSSMT with SHAKE256/256 

When generating XMSS or XMSSMT key pairs using SHAKE256/256, the parameter sets shall 
be selected from the following two tables. Each of these uses the WOTSP-SHAKE256_256 
parameter set. 

Table 14: XMSS parameter sets for SHAKE256/256 

Parameter Sets Numeric Identifier n w len h 

XMSS-SHAKE256_10_256 0x00000010 32 16 67 10 

XMSS-SHAKE256_16_256 0x00000011 32 16 67 16 

XMSS-SHAKE256_20_256 0x00000012 32 16 67 20 
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Table 15: XMSSMT parameter sets for SHAKE256/256 

Parameter Sets Numeric Identifier n w len h d 

XMSSMT-SHAKE256_20/2_256 0x00000029 32 16 67 20 2 

XMSSMT-SHAKE256_20/4_256 0x0000002A 32 16 67 20 4 

XMSSMT-SHAKE256_40/2_256 0x0000002B 32 16 67 40 2 

XMSSMT-SHAKE256_40/4_256 0x0000002C 32 16 67 40 4 

XMSSMT-SHAKE256_40/8_256 0x0000002D 32 16 67 40 8 

XMSSMT-SHAKE256_60/3_256 0x0000002E 32 16 67 60 3 

XMSSMT-SHAKE256_60/6_256 0x0000002F 32 16 67 60 6 

XMSSMT-SHAKE256_60/12_256 0x00000030 32 16 67 60 12 

 
For the parameter sets in this section, the functions F, H, H_msg, PRF, and PRFkeygen are defined 
as follows: 

• F(KEY, M): SHAKE256(toByte(0, 32) || KEY || M, 256) 
• H(KEY, M): SHAKE256(toByte(1, 32) || KEY || M, 256) 
• H_msg(KEY, M): SHAKE256(toByte(2, 32) || KEY || M, 256) 
• PRF(KEY, M): SHAKE256(toByte(3, 32) || KEY || M, 256) 
• PRFkeygen(KEY, M): SHAKE256(toByte(4, 32) || KEY || M, 256) 

5.4 XMSS and XMSSMT with SHAKE256/192 

When generating XMSS or XMSSMT key pairs using SHAKE256/192, the parameter sets shall 
be selected from the following two tables. Each of these uses the WOTSP-SHAKE256_192 
parameter set. 

Table 16: XMSS parameter sets for SHAKE256/192 

Parameter Sets Numeric Identifier n w len h 

XMSS-SHAKE256_10_192 0x00000013 24 16 51 10 

XMSS-SHAKE256_16_192 0x00000014 24 16 51 16 

XMSS-SHAKE256_20_192 0x00000015 24 16 51 20 
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Table 17: XMSSMT parameter sets for SHAKE256/192 

Parameter Sets Numeric Identifier n w len h d 

XMSSMT-SHAKE256_20/2_192 0x00000031 24 16 51 20 2 

XMSSMT-SHAKE256_20/4_192 0x00000032 24 16 51 20 4 

XMSSMT-SHAKE256_40/2_192 0x00000033 24 16 51 40 2 

XMSSMT-SHAKE256_40/4_192 0x00000034 24 16 51 40 4 

XMSSMT-SHAKE256_40/8_192 0x00000035 24 16 51 40 8 

XMSSMT-SHAKE256_60/3_192 0x00000036 24 16 51 60 3 

XMSSMT-SHAKE256_60/6_192 0x00000037 24 16 51 60 6 

XMSSMT-SHAKE256_60/12_192 0x00000038 24 16 51 60 12 

 
For the parameter sets in this section, the functions F, H, H_msg, PRF, and PRFkeygen are defined 
as follows: 

• F(KEY, M): SHAKE256(toByte(0, 4) || KEY || M, 192) 
• H(KEY, M): SHAKE256(toByte(1, 4) || KEY || M, 192) 
• H_msg(KEY, M): SHAKE256(toByte(2, 4) || KEY || M, 192) 
• PRF(KEY, M): SHAKE256(toByte(3, 4) || KEY || M, 192) 
• PRFkeygen(KEY, M): SHAKE256(toByte(4, 4) || KEY || M, 192) 
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6 Random Number Generation for Keys and Signatures 

This section specifies requirements for the generation of random data that apply in addition to 
the requirements that are specified in [2] for LMS and HSS and in [1] for XMSS and XMSSMT. 

Note: Variables and notations used in this section are defined in the relevant documents 
mentioned above. 

6.1 LMS and HSS Random Number Generation Requirements 

The LMS key pair identifier, I, shall be generated using an approved random bit generator (see 
the SP 800-90 series of publications [6]), where the instantiation of the random bit generator 
supports at least 128 bits of security strength. 

The n-byte private elements of the LM-OTS private keys (x[i] in Section 4.2 of [2]) shall be 
generated using the pseudorandom key generation method specified in Appendix A of [2]. The 
same SEED value shall be used to generate every private element in a single LMS instance, and 
SEED shall be generated using an approved random bit generator [6], where the instantiation of 
the random bit generator supports at least 8n bits of security strength. 

If more than one LMS instance is being created (e.g., for an HSS instance), then a separate key 
pair identifier, I, and SEED shall be generated for each LMS instance. 

When generating a signature, the n-byte randomizer C (see Section 4.5 of [2]) shall be generated 
using an approved random bit generator [6], where the instantiation of the random bit generator 
supports at least 8n bits of security strength. 

6.2 XMSS and XMSSMT Random Number Generation Requirements 

The n-byte values SK_PRF and SEED shall be generated using an approved random bit 
generator (see the SP 800-90 series of publications [6]), where the instantiation of the random bit 
generator supports at least 8n bits of security strength. 

The private n-byte strings in the WOTS+ private keys (sk[i] in Section 3.1.3 of [1]) shall be 
generated using the pseudorandom key generation method specified in Algorithm 10' in Section 
7.2.1: sk[j] = PRFkeygen(S_XMSS, SEED || ADRS), where PRFkeygen is as defined in Section 5 for 
the parameter set being used.6 The private seed, S_XMSS, shall be generated using an approved 
random bit generator [6], where the instantiation of the random bit generator supports at least 8n 
bits of security strength. If more than one XMSS key pair is being created within a cryptographic 
module (including XMSS keys that belong to a single XMSSMT instance), then a separate 
random S_XMSS shall be generated for each XMSS key pair.  

 

6 For an XMSS key that is not part of an XMSSMT instance, d = 1, L = 0, and t = 0. 
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7 Distributed Multi-Tree Hash-Based Signatures 

If a digital signature key will be used to generate signatures over a long period of time and 
replacing the public key would be difficult, then it will be necessary to prepare for the possibility 
that a cryptographic module holding the private key may fail during the key’s lifetime. In the 
case of most digital signature schemes, a common solution is to make copies of the private key. 
However, in the case of stateful HBS schemes, simply copying the private key would create a 
risk of OTS key reuse. 

While it would be possible to have one cryptographic module generate all of the OTS keys and 
then distribute different OTS keys to each of the other cryptographic modules, doing so is not an 
option for cryptographic modules that conform to this recommendation: due to the risks 
associated with copying OTS keys, this recommendation prohibits exporting private keying 
material (Section 8). 

One option would be to create multiple stateful HBS keys on different cryptographic modules 
and then configure clients to accept signatures created using any of these keys. These keys could 
be distributed to clients all at once or using a mechanism such as the Hash Of Root Key 
certificate extension [23], which provides a mechanism for distributing new public keys over 
time. 

Another option would be to create a single stateful HBS key in which the OTS private keys are 
distributed across multiple cryptographic modules. The easiest way to have OTS keys on 
multiple cryptographic modules without exporting private keys is to use HSS or XMSSMT with 
two levels of trees where the trees are instantiated on different cryptographic modules. First, a 
top-level LMS or XMSS key pair would be created in a cryptographic module. The top level’s 
OTS keys would only be used to sign the roots of other trees. Then, bottom-level LMS or XMSS 
key pairs would be created, and the public keys from those key pairs (i.e., the roots of their 
Merkle trees) would be signed by OTS keys of the top-level key pair. The OTS keys of the 
bottom-level key pairs would be used to sign ordinary messages. The number of bottom-level 
key pairs that could be created would be limited only by the number of OTS keys in the top-level 
key pair. 

As an example, suppose that an organization wishes to have a single XMSSMT key with the OTS 
private keys being distributed across two cryptographic modules (in case one fails), and the 
organization has determined that, at most, 10 000 signatures will need to be generated over the 
lifetime of the XMSSMT key. The organization could create a top-level XMSS key pair in one 
cryptographic module using the XMSSMT-SHA2_20/2_256 parameter set and then create 10 
bottom-level XMSS keys in that same cryptographic module. An additional 10 bottom-level 
XMSS keys could be created in a second cryptographic module with all 20 of the bottom-level’s 
keys being signed by OTS keys of the top-level key pair. 

When working with distributed multi-tree hash-based signatures, the cryptographic module that 
holds the top-level tree is a potential single point of failure. Once this cryptographic module 
fails, it is no longer possible to sign additional bottom-level key pairs. Consequently, all of the 
bottom-level keys should be generated up front as part of the initial key generation ceremony. 
Once the top-level key has been used to sign all of the bottom-level keys, the top-level key is no 
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longer needed, as copies of the signatures created using OTS keys of the top-level key pair may 
be stored outside of the cryptographic module. 

In order to avoid the top-level key being a single point of failure, the two options described 
above could be combined to create multiple distributed multi-tree HBS keys. Multiple top-level 
keys pairs would initially be created, each on a different cryptographic module, and clients 
would be configured to accept signatures created using any of these keys. Then, whenever a new 
bottom-level key needed to be created, it could be signed by any one of the top-level keys. This 
would allow for new bottom-level keys to be created as long as at least one of the cryptographic 
modules that contains a top-level key remained operational. Of course, the same level of care 
should be used when signing a bottom-level key as would be used during the initial key 
generation ceremony (or as would be used in making a copy of an RSA or ECDSA private key). 

7.1 HSS 

In the case of HSS, the distributed multi-tree scheme described above can be implemented using 
multiple cryptographic modules that individually implement LMS without modifications. The 
top-level LMS public key can be converted to an HSS public key by an external, non-
cryptographic device. This device can also submit the public keys of the bottom-level LMS keys 
for signature by the top-level LMS key. In HSS, the operation for signing the root of a lower-
level tree is the same as the operation for signing an ordinary message. Finally, this external 
device can submit ordinary messages to cryptographic modules that hold the bottom-level LMS 
keys for signing and then combine the resulting LMS signatures with the top-level key’s 
signature on the bottom-level LMS public key in order to create the HSS signature for the 
ordinary messages (see Algorithm 7 and Algorithm 8 in [2]). 

7.2 XMSSMT 

Distributing the implementation of an XMSSMT instance across multiple cryptographic modules 
requires each cryptographic module to implement slightly modified versions of the XMSS key 
and signature generation algorithms provided in [1]. The modified versions of these algorithms 
are provided in Section 7.2.1. The modifications are primarily intended to ensure that each 
XMSS key uses the appropriate values for its layer and tree addresses when computing prefixes 
and bitmasks. The modifications also ensure that every XMSS key uses the same value for SEED 
and that the root of the top-level tree is used when computing the hashes of messages to be 
signed. 

Note that while Algorithm 15 in [1] indicates that an XMSSMT secret key has a single SK_PRF 
value that is shared by all of the XMSS secret keys, Algorithm 10' in Section 7.2.1 has each 
cryptographic module generate its own value for SK_PRF. While generating a different SK_PRF 
for each cryptographic module does not exactly align with the specification in [1], doing so does 
not affect either interoperability or security. SK_PRF is only used to pseudorandomly generate 
the value r in Algorithm 16, which is used for randomized hashing, and any secure method for 
generating random values could be used to generate r. 

Section 7.2.2 describes the steps that an external, non-cryptographic device needs to perform in 
order to implement XMSSMT key and signature generation using a set of cryptographic modules 
that implement the algorithms in Section 7.2.1. While Algorithms 10' and 12' in Section 7.2.1 
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have been designed to work with XMSSMT instances that have more than two layers, the 
algorithms in Section 7.2.2 assume that an XMSSMT instance with exactly two layers is being 
created. 

7.2.1 Modified XMSS Key Generation and Signature Algorithms 

Algorithm 10': XMSS'_keyGen 

  // L needs to be in the range [0 … d-1] 
  // t needs to be in the range [0 … 2^((d-1-L)(h/d)) - 1] 
  Input: level L, tree t, 
         public key of top-level tree PK_MT (if L ≠ d - 1) 
  Output: XMSS public key PK 

  Initialize S_XMSS with an n-byte string using an approved 
  random bit generator [6], where the instantiation of the 
  random bit generator supports at least 8n bits of security 
  strength; 

  // SEED needs to be generated for the top-level XMSS key. 
  // For all other XMSS keys, the value needs to be copied from 
  // the top-level XMSS key. 
  if ( L = d – 1 ) { 
    Initialize SEED with an n-byte string using an approved 
    random bit generator [6], where the instantiation of the 
    random bit generator supports at least 8n bits of security 
    strength; 
  } else { 
    SEED = getSEED(PK_MT); 
  } 
  setSEED(SK, SEED); 

  ADRS = toByte(0, 32); 
  ADRS.setLayerAddress(L); 
  ADRS.setTreeAddress(t); 

  // Initialization for SK-specific contents 
  idx = t * 2^(h / d); 
  for ( i = 0; i < 2^(h / d); i++ ) { 
    ADRS.setOTSAddress(i); 
    // For each OTS key, i, generate the private key value for 
    // chain in the OTS key. 
    for ( j=0; j < len; j++) { 
      ADRS.setChainAddress(j); 
      sk[j] = PRFkeygen(S_XMSS, SEED || ADRS); 
    } 
    // Set the secret key for OTS key i to the array of len 
    // private key values generated for that key. 
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    wots_sk[i] = sk; 
  } 
  setWOTS_SK(SK, wots_sk); 

  Initialize SK_PRF with an n-byte string using an approved 
  random bit generator [6], where the instantiation of the 
  random bit generator supports at least 8n bits of security 
  strength; 
  setSK_PRF(SK, SK_PRF); 

  root = treeHash(SK, 0, h / d, ADRS); 
 
  setLayerAddress(SK, L); 
  setTreeAddress(SK, t); 
  setIdx(SK, idx); 

  // The "root" value in SK needs to be the root of the top-level 
  // XMSS tree, as this is the value used when hashing the message 
  // to be signed. 
  if ( L = d – 1 ) { 
    setRoot(SK, root); 
    SK = L || t || idx || wots_sk || SK_PRF || root || SEED; 
  } else { 
    setRoot(SK, getRoot(PK_MT)); 
    SK = L || t || idx || wots_sk || SK_PRF || getRoot(PK_MT) || SEED; 
  } 
  // The public key should be encoded using the XDR for 
  // xmssmt_public_key in Appendix C.3 of [1] with the additions 
  // specified in Appendix B.3 of this document. 
  PK = OID || root || SEED; 
  return PK; 

Algorithm 12': XMSS'_sign 

  Input: Message M 
  Output: signature Sig 

  idx_sig = getIdx(SK); 
  setIdx(SK, idx_sig + 1); 
  L = getLayerAddress(SK); 
  t = getTreeAddress(SK); 
  ADRS = toByte(0, 32); 
  ADRS.setLayerAddress(L); 
  ADRS.setTreeAddress(t); 

  if ( L > 0 ) { 
    // M must be the n-byte root from an XMSS public key 
    byte[n] r = 0; // n-byte string of zeros 
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    byte[n] M' = M; 
  } else { 
    byte[n] r = PRF(getSK_PRF(SK), toByte(idx_sig, 32)); 
    byte[n] M' = H_msg(r || getRoot(SK) || (toByte(idx_sig, n)), M);  
  } 
  idx_leaf = idx_sig - t * 2^(h / d); 
  Sig = idx_sig || r || treeSig(M', SK, idx_leaf, ADRS); 
  return Sig; 

7.2.2 XMSSMT External Device Operations 

XMSS^MT external device keygen 

  Input: No input 

  // Generate top-level key pair on a cryptographic module 
  PK_MT = XMSS'_keyGen(1, 0, NULL); 

  t = 0; 
  for each bottom-level key pair to be created { 
    // Generate bottom-level key pair on a cryptographic module 
    PK[t] = XMSS’_keygen(0, t, PK_MT); 

    // Submit root of bottom-level key pair’s public key 
    // to be signed by the top-level key pair. 
    SigPK[t] = XMSS'_sign(getRoot(PK[t])); 

    // If the public key on the bottom-level tree was created using 
    // a tree address of t, then its root needs to be signed by OTS 
    // key t of the top-level tree. If it was not, then try again.7 
    while ( getIdx(SigPK[t]) ≠ t ) { 
      t = getIdx(SigPK[t]) + 1; 
      PK[t] = XMSS'_keygen(0, t, PK_MT); 
      SigPK[t] = XMSS'_sign(getRoot(PK[t])); 
    } 
    t = t + 1; 
  } 

XMSS^MT external device sign  

  Input: Message M  

 

7 While the signing cryptographic module should use its one-time keys sequentially, making it possible for the external device to 
determine in advance which one-time key will be used to sign the public key of the bottom-level tree, the external device 
cannot specify to the signing cryptographic module which one-time key it should use. So, there is a small chance that an 
internal glitch in the signing cryptographic module will cause it to skip over one or more key indices and sign the bottom-
level’s public key using an unexpected key index. While this event should be rare, if it does happen, the only option is to 
regenerate the bottom-level key pair, set the tree address to the next expected key index, and then try again. 
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  Output: signature Sig 

  // Send XMSS'_sign() command to one of the bottom-level key pairs 
  Sig_tmp = XMSS'_sign(M); 

  idx_sig = getIdx(Sig_tmp); 

  // Determine which bottom-level tree was used to sign the message 
  // by extracting the most significant bits of idx_sig. 
  t = [idx_sig – (idx_sig mod 2^(h / d))]/ 2^(h / d)); 

  // Append the signature of the signing key pair's root 
  // (just the output of treeSig, not idx_sig or r). 
  Sig = Sig_tmp || getSig(SigPK[t]); 
  return Sig;  
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8 Conformance 

8.1 Key Generation and Signature Generation 

Cryptographic modules that implement signature generation for a parameter set shall also 
implement key generation for that parameter set. Implementations of the key generation and 
signature algorithms in this document shall only be validated for use within hardware 
cryptographic modules. The cryptographic modules shall be validated to provide FIPS 140-2 or 
FIPS 140-3 [19] Level 3 or higher physical security, and the operational environment shall be 
non-modifiable or limited.8 In addition, a cryptographic module that implements the key 
generation or signature algorithms shall only operate in an approved mode of operation and 
shall not implement a bypass mode. The cryptographic module shall not allow for the export of 
private keying material. The entropy source for any approved random bit generator [6] used in 
the implementation shall be located inside the cryptographic module’s physical boundary. 

In order to prevent the possible reuse of an OTS key, when the cryptographic module accepts a 
request to sign a message, the cryptographic module shall increment the leaf index of the private 
key (q in LMS, idx in XMSS, idx_sig in XMSSMT) and shall store the incremented leaf index 
value in nonvolatile storage before exporting a signature value or accepting another request to 
sign a message. The cryptographic module shall not use an OTS key to generate a digital 
signature more than one time.9 

Cryptographic modules that implement LMS key and signature generation shall support at least 
one of the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 
cryptographic module, the cryptographic module shall support at least one LMS parameter set 
from Section 4 that uses the same hash function as the LM-OTS parameter set. Cryptographic 
modules that implement LMS key and signature generation shall generate random data in 
accordance with Section 6.1. 

Cryptographic modules that implement XMSS key and signature generation shall implement 
Algorithm 10 and Algorithm 12 from [1] for at least one of the XMSS parameter sets in Section 
5. (The WOTS+ key generation method specified in Algorithm 10' in Section 7.2.1 shall be 
used.) Cryptographic modules that support implementation of XMSSMT key and signature 
generation shall implement Algorithm 10' and Algorithm 12' from Section 7.2.1 of this 
document for at least one of the XMSSMT parameter sets in Section 5. Cryptographic modules 
that implement XMSS or XMSSMT key and signature generation shall generate random data in 
accordance with Section 6.2. 

 

8 See Section 4.6 of FIPS 140-2 [19] and Section 7.6 of ISO/IEC 19790. 
9 In some implementations of HSS or XMSSMT (e.g., Algorithm 16 in [1]), the root of the LMS or XMSS tree used to create the 

signature is signed by its parent each time a signature is generated. This results in an OTS key being used to generate a digital 
signature more than once. While the OTS key is used more than once, the message being signed is the same, so the result is to 
just recreate the same signature (as long as the randomizer value is the same each time). However, as noted in [9] and [10], 
such implementations are vulnerable to fault injection attacks. Implementations compliant with this publication must sign the 
root of each tree only once. The resulting signature may be stored within the cryptographic module, or it may be exported from 
the cryptographic module for storage elsewhere. 
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8.2 Signature Verification 

Cryptographic modules that implement LMS signature verification shall support at least one of 
the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 
cryptographic module, the cryptographic module shall support at least one LMS parameter set 
from Section 4 that uses the same hash function as the LM-OTS parameter set. 

Cryptographic modules that implement XMSS signature verification shall implement Algorithm 
14 of [1] for at least one of the parameter sets in Section 5. Cryptographic modules that 
implement XMSSMT signature verification shall implement Algorithm 17 of [1] for at least one 
of the parameter sets in Section 5.  
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9 Security Considerations 

9.1 One-Time Signature Key Reuse 

Both LMS and XMSS are stateful signature schemes. If an attacker were able to obtain 
signatures for two different messages created using the same one-time signature (OTS) key, then 
it would become computationally feasible for that attacker to create forgeries [13]. As noted in 
[8], extreme care needs to be taken in order to avoid the risk that an OTS key will be reused 
accidentally. While the conformance requirements in Section 8.1 prevent many of the actions 
that could result in accidental OTS key reuse, cryptographic modules still need to be carefully 
designed to ensure that unexpected behavior cannot result in an OTS key being reused. 

In order to avoid reuse of an OTS key, the state of the private key must be updated each time a 
signature is generated. If the private key is stored in non-volatile memory, then the state of the 
key must be updated in the nonvolatile memory to mark an OTS key as unavailable before the 
corresponding signature that was generated using the OTS key is exported. Depending on the 
environment, this can be nontrivial to implement. With many operating systems, simply writing 
the update to a file is not sufficient because the write operation will be cached with the actual 
write to non-volatile memory occurring later. If the cryptographic module loses power or crashes 
before the write to non-volatile memory occurs, then the state update will be lost. If a signature 
were exported after the write operation was issued, but before the update was written to non-
volatile memory, there would be a risk that the OTS key would be used again after the 
cryptographic module restarts. 

Some hardware cryptographic modules implement monotonic counters, which are guaranteed to 
increment each time the counter’s value is read. When available, using the current value of a 
monotonic counter to determine which OTS key to use for a signature may be very helpful in 
avoiding unintentional reuse of an OTS key. 

9.2 Hash Collisions 

For LMS and XMSS, as for the other approved digital signature schemes [4], the signature 
generation algorithm is not applied directly to the message but to a message digest generated by 
the underlying hash function. The security of any signature scheme depends on the inability of an 
attacker to find distinct messages with the same message digest. 

There are two ways that an attacker might find these distinct messages. The attacker could look 
for a message that has the same message digest as a message that has already been signed (a 
second preimage), or the attacker could look for any two messages that have the same message 
digest (a generic collision) and then try to get the private key holder (i.e., signer) to sign one of 
them [21]. Finding a second preimage is much more difficult than finding a generic collision, 
and it would be infeasible for an attacker to find a second preimage with any of the hash 
functions allowed by this recommendation. 

LMS and XMSS both use randomized hashing. When a message is presented to be signed, a 
random value is created and prepended to the message, and the hash function is applied to this 
expanded message to produce the message digest. Prepending the random value makes it 
infeasible for anyone other than the signer to find a generic collision because finding a collision 
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would require predicting the randomizing value. The randomized hashing process does not, 
however, impact the ability of a signer to create a generic collision since the signer, knowing the 
private key, can choose the random value to prepend to the message. 

The 192-bit hash functions described in this recommendation, SHA-256/192 and 
SHAKE256/192, offer significantly less resistance to generic collision searches than their 256-bit 
counterparts. In particular, a collision of the 192-bit functions may be found as the number of 
sampled inputs approaches 296, as opposed to 2128 for the 256-bit functions, and it may be 
possible for a signer with access to an extremely large amount of computing resources to sample 
296 inputs. 

Consequently, one trade-off for the use of 192-bit hash functions in LMS and XMSS is the 
weakening of the verifier’s assurance that the signer will not be able to change the message once 
the signature is revealed. This possibility does not affect the formal security properties of the 
schemes because it remains the case that only the signer could produce a valid signature on a 
message. 

9.3 Revocation 

Although procedures for the revocation of a compromised key are outside the scope of this 
publication, the implementation of any signature scheme, in principle, should include such a 
procedure [22]. For implementations of stateful hash-based signature schemes, which would be 
vulnerable in the event of OTS key reuse, revocation procedures would arguably be even more 
important. 

In practice, however, procedures for revocation that are timely, efficient, and robust are often 
difficult to implement. For applications with the characteristics described in Section 1.1, the 
difficulties would likely be magnified. 
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Appendix A—LMS XDR Syntax Additions 

In order to support the LM-OTS and LMS parameter sets defined in Sections 4.2 through 4.4, the 
XDR syntax in Section 3.3 of [2] is extended as follows. For data structures of type enum or 
union below, the values or case statements specified in this appendix are to be added to the 
ones specified in Section 3.3 of [2]. 

The numeric identifiers for the parameter sets defined in Sections 4.2 through 4.4 are marked as 
“TBD,” as they had not yet been assigned at the time this document was published. Once they 
are assigned, the numeric identifiers may be found at https://www.iana.org/assignments/leighton-
micali-signatures/leighton-micali-signatures.xhtml. 

/* one-time signatures */ 
 
enum lmots_algorithm_type { 
  lmots_sha256_n24_w1 = TBD, 
  lmots_sha256_n24_w2 = TBD, 
  lmots_sha256_n24_w4 = TBD, 
  lmots_sha256_n24_w8 = TBD, 
  lmots_shake_n32_w1  = TBD, 
  lmots_shake_n32_w2  = TBD, 
  lmots_shake_n32_w4  = TBD, 
  lmots_shake_n32_w8  = TBD, 
  lmots_shake_n24_w1  = TBD, 
  lmots_shake_n24_w2  = TBD, 
  lmots_shake_n24_w4  = TBD, 
  lmots_shake_n24_w8  = TBD 
}; 
 
typedef opaque bytestring24[24]; 
 
struct lmots_signature_n24_p200 { 
  bytestring24 C; 
  bytestring24 y[200]; 
}; 
 
struct lmots_signature_n24_p101 { 
  bytestring24 C; 
  bytestring24 y[101]; 
}; 
 
struct lmots_signature_n24_p51 { 
  bytestring24 C; 
  bytestring24 y[51]; 
}; 
 
struct lmots_signature_n24_p26 { 

https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml
https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml
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  bytestring24 C; 
  bytestring24 y[26]; 
}; 
 
union lmots_signature switch (lmots_algorithm_type type) { 
 case lmots_sha256_n24_w1: 
   lmots_signature_n24_p200 sig_n24_p200; 
 case lmots_sha256_n24_w2: 
   lmots_signature_n24_p101 sig_n24_p101; 
 case lmots_sha256_n24_w4: 
   lmots_signature_n24_p51  sig_n24_p51; 
 case lmots_sha256_n24_w8: 
   lmots_signature_n24_p26  sig_n24_p26; 
 case lmots_shake_n32_w1: 
   lmots_signature_n32_p265 sig_n32_p265; 
 case lmots_shake_n32_w2: 
   lmots_signature_n32_p133 sig_n32_p133; 
 case lmots_shake_n32_w4: 
   lmots_signature_n32_p67  sig_n32_p67; 
 case lmots_shake_n32_w8: 
   lmots_signature_n32_p34  sig_n32_p34; 
 case lmots_shake_n24_w1: 
   lmots_signature_n24_p200 sig_n24_p200; 
 case lmots_shake_n24_w2: 
   lmots_signature_n24_p101 sig_n24_p101; 
 case lmots_shake_n24_w4: 
   lmots_signature_n24_p51  sig_n24_p51; 
 case lmots_shake_n24_w8: 
   lmots_signature_n24_p26  sig_n24_p26; 
}; 
 
/* hash-based signatures (hbs) */ 
 
enum lms_algorithm_type { 
  lms_sha256_n24_h5  = TBD, 
  lms_sha256_n24_h10 = TBD, 
  lms_sha256_n24_h15 = TBD, 
  lms_sha256_n24_h20 = TBD, 
  lms_sha256_n24_h25 = TBD, 
  lms_shake_n32_h5   = TBD, 
  lms_shake_n32_h10  = TBD, 
  lms_shake_n32_h15  = TBD, 
  lms_shake_n32_h20  = TBD, 
  lms_shake_n32_h25  = TBD, 
  lms_shake_n24_h5   = TBD, 
  lms_shake_n24_h10  = TBD, 
  lms_shake_n24_h15  = TBD, 
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  lms_shake_n24_h20  = TBD, 
  lms_shake_n24_h25  = TBD 
}; 
 
/* leighton-micali signatures (lms) */ 
 
union lms_path switch (lms_algorithm_type type) { 
 case lms_sha256_n24_h5: 
 case lms_shake_n24_h5: 
   bytestring24 path_n24_h5[5]; 
 case lms_sha256_n24_h10: 
 case lms_shake_n24_h10: 
   bytestring24 path_n24_h10[10]; 
 case lms_sha256_n24_h15: 
 case lms_shake_n24_h15: 
   bytestring24 path_n24_h15[15]; 
 case lms_sha256_n24_h20: 
 case lms_shake_n24_h20: 
   bytestring24 path_n24_h20[20]; 
 case lms_sha256_n24_h25: 
 case lms_shake_n24_h25: 
   bytestring24 path_n24_h25[25]; 
 
 case lms_shake_n32_h5: 
   bytestring32 path_n32_h5[5]; 
 case lms_shake_n32_h10: 
   bytestring32 path_n32_h10[10]; 
 case lms_shake_n32_h15: 
   bytestring32 path_n32_h15[15]; 
 case lms_shake_n32_h20: 
   bytestring32 path_n32_h20[20]; 
 case lms_shake_n32_h25: 
   bytestring32 path_n32_h25[25]; 
}; 
 
struct lms_key_n24 { 
  lmots_algorithm_type ots_alg_type; 
  opaque I[16]; 
  opaque K[24]; 
}; 
 
union lms_public_key switch (lms_algorithm_type type) { 
 case lms_sha256_n24_h5: 
 case lms_sha256_n24_h10: 
 case lms_sha256_n24_h15: 
 case lms_sha256_n24_h20: 
 case lms_sha256_n24_h25: 
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 case lms_shake_n24_h5: 
 case lms_shake_n24_h10: 
 case lms_shake_n24_h15: 
 case lms_shake_n24_h20: 
 case lms_shake_n24_h25: 
      lms_key_n24 z_n24; 
 
 case lms_shake_n32_h5: 
 case lms_shake_n32_h10: 
 case lms_shake_n32_h15: 
 case lms_shake_n32_h20: 
 case lms_shake_n32_h25: 
      lms_key_n32 z_n32; 
}; 
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Appendix B—XMSS XDR Syntax Additions 

In order to support the XMSS parameter sets defined in Sections 5.2 through 5.4, the XDR 
syntax in Appendices A, B, and C of [1] is extended as follows. For data structures of type enum 
or union below, the values or case statements specified in this appendix are to be added to the 
ones specified in Appendices A, B, and C of [1]. 

B.1 WOTS+ 

/* ots_algorithm_type identifies a particular 
   signature algorithm */ 
 
enum ots_algorithm_type { 
  wotsp-sha2_192     = 0x00000005, 
  wotsp-shake256_256 = 0x00000006, 
  wotsp-shake256_192 = 0x00000007, 
}; 

 
/* Byte strings */ 
 
typedef opaque bytestring24[24]; 
 
union ots_signature switch (ots_algorithm_type type) { 
 
  case wotsp-sha2_192: 
  case wotsp-shake256_192: 
    bytestring24 ots_sig_n24_len51[51]; 
 
  case wotsp-shake256_256: 
    bytestring32 ots_sig_n32_len67[67]; 
}; 
 
union ots_pubkey switch (ots_algorithm_type type) { 
  case wotsp-sha2_192: 
  case wotsp-shake256_192: 
    bytestring24 ots_pubk_n24_len51[51]; 
 
  case wotsp-shake256_256: 
    bytestring32 ots_pubk_n32_len67[67]; 
}; 

B.2 XMSS 

/* Definition of parameter sets */ 
 
enum xmss_algorithm_type { 
  xmss-sha2_10_192      = 0x0000000D, 
  xmss-sha2_16_192      = 0x0000000E, 
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  xmss-sha2_20_192      = 0x0000000F, 
 
  xmss-shake256_10_256  = 0x00000010, 
  xmss-shake256_16_256  = 0x00000011, 
  xmss-shake256_20_256  = 0x00000012, 
 
  xmss-shake256_10_192  = 0x00000013, 
  xmss-shake256_16_192  = 0x00000014, 
  xmss-shake256_20_192  = 0x00000015, 
}; 
 
/* Authentication path types */ 
 
union xmss_path switch (xmss_algorithm_type type) { 
  case xmss-sha2_10_192: 
  case xmss-shake256_10_192: 
    bytestring24 path_n24_t10[10]; 
 
  case xmss-shake256_10_256: 
    bytestring32 path_n32_t10[10]; 
 
  case xmss-sha2_16_192: 
  case xmss-shake256_16_192: 
    bytestring24 path_n24_t16[16]; 
 
  case xmss-shake256_16_256: 
    bytestring32 path_n32_t16[16]; 
 
  case xmss-sha2_20_192: 
  case xmss-shake256_20_192: 
    bytestring24 path_n24_t20[20]; 
 
  case xmss-shake256_20_256: 
    bytestring32 path_n32_t20[20]; 
}; 
 
/* Types for XMSS random strings */ 
 
union random_string_xmss switch (xmss_algorithm_type type) { 
  case xmss-sha2_10_192: 
  case xmss-sha2_16_192: 
  case xmss-sha2_20_192: 
  case xmss-shake256_10_192: 
  case xmss-shake256_16_192: 
  case xmss-shake256_20_192: 
    bytestring24 rand_n24; 
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  case xmss-shake256_10_256: 
  case xmss-shake256_16_256: 
  case xmss-shake256_20_256: 
    bytestring32 rand_n32; 
}; 
 
/* Corresponding WOTS+ type for given XMSS type */ 
 
union xmss_ots_signature switch (xmss_algorithm_type type) { 
  case xmss-sha2_10_192: 
  case xmss-sha2_16_192: 
  case xmss-sha2_20_192: 
    wotsp-sha2_192; 
 
  case xmss-shake256_10_256: 
  case xmss-shake256_16_256: 
  case xmss-shake256_20_256: 
    wotsp-shake256_256; 
 
  case xmss-shake256_10_192: 
  case xmss-shake256_16_192: 
  case xmss-shake256_20_192: 
    wotsp-shake256_192; 
}; 
 
/* Types for bitmask seed */ 
 
union seed switch (xmss_algorithm_type type) { 
  case xmss-sha2_10_192: 
  case xmss-sha2_16_192: 
  case xmss-sha2_20_192: 
  case xmss-shake256_10_192: 
  case xmss-shake256_16_192: 
  case xmss-shake256_20_192: 
    bytestring24 seed_n24; 
 
  case xmss-shake256_10_256: 
  case xmss-shake256_16_256: 
  case xmss-shake256_20_256: 
    bytestring32 seed_n32; 
}; 
 
/* Types for XMSS root node */ 
 
union xmss_root switch (xmss_algorithm_type type) { 
  case xmss-sha2_10_192: 
  case xmss-sha2_16_192: 
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  case xmss-sha2_20_192: 
  case xmss-shake256_10_192: 
  case xmss-shake256_16_192: 
  case xmss-shake256_20_192: 
    bytestring24 root_n24; 
 
  case xmss-shake256_10_256: 
  case xmss-shake256_16_256: 
  case xmss-shake256_20_256: 
    bytestring32 root_n32; 
}; 

B.3 XMSSMT 

/* Definition of parameter sets */ 
 
enum xmssmt_algorithm_type { 
 
  xmssmt-sha2_20/2_192      = 0x00000021, 
  xmssmt-sha2_20/4_192      = 0x00000022, 
  xmssmt-sha2_40/2_192      = 0x00000023, 
  xmssmt-sha2_40/4_192      = 0x00000024, 
  xmssmt-sha2_40/8_192      = 0x00000025, 
  xmssmt-sha2_60/3_192      = 0x00000026, 
  xmssmt-sha2_60/6_192      = 0x00000027, 
  xmssmt-sha2_60/12_192     = 0x00000028, 
 
  xmssmt-shake256_20/2_256  = 0x00000029, 
  xmssmt-shake256_20/4_256  = 0x0000002A, 
  xmssmt-shake256_40/2_256  = 0x0000002B, 
  xmssmt-shake256_40/4_256  = 0x0000002C, 
  xmssmt-shake256_40/8_256  = 0x0000002D, 
  xmssmt-shake256_60/3_256  = 0x0000002E, 
  xmssmt-shake256_60/6_256  = 0x0000002F, 
  xmssmt-shake256_60/12_256 = 0x00000030, 
 
  xmssmt-shake256_20/2_192  = 0x00000031, 
  xmssmt-shake256_20/4_192  = 0x00000032, 
  xmssmt-shake256_40/2_192  = 0x00000033, 
  xmssmt-shake256_40/4_192  = 0x00000034, 
  xmssmt-shake256_40/8_192  = 0x00000035, 
  xmssmt-shake256_60/3_192  = 0x00000036, 
  xmssmt-shake256_60/6_192  = 0x00000037, 
  xmssmt-shake256_60/12_192 = 0x00000038, 
}; 
 
/* Type for XMSS^MT key pair index */ 



NIST SP 800-208  RECOMMENDATION FOR STATEFUL 
  HASH-BASED SIGNATURE SCHEMES 

43 

 
 

 
 

 
 

 
 

 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208 

/* Depends solely on h */ 
 
union idx_sig_xmssmt switch (xmss_algorithm_type type) { 
  case xmssmt-sha2_20/2_192: 
  case xmssmt-sha2_20/4_192: 
  case xmssmt-shake256_20/2_256: 
  case xmssmt-shake256_20/4_256: 
  case xmssmt-shake256_20/2_192: 
  case xmssmt-shake256_20/4_192: 
    bytestring3 idx3; 
 
  case xmssmt-sha2_40/2_192: 
  case xmssmt-sha2_40/4_192: 
  case xmssmt-sha2_40/8_192: 
  case xmssmt-shake256_40/2_256: 
  case xmssmt-shake256_40/4_256: 
  case xmssmt-shake256_40/8_256: 
  case xmssmt-shake256_40/2_192: 
  case xmssmt-shake256_40/4_192: 
  case xmssmt-shake256_40/8_192: 
    bytestring5 idx5; 
 
  case xmssmt-sha2_60/3_192: 
  case xmssmt-sha2_60/6_192: 
  case xmssmt-sha2_60/12_192: 
  case xmssmt-shake256_60/3_256: 
  case xmssmt-shake256_60/6_256: 
  case xmssmt-shake256_60/12_256: 
  case xmssmt-shake256_60/3_192: 
  case xmssmt-shake256_60/6_192: 
  case xmssmt-shake256_60/12_192: 
    bytestring8 idx8; 
}; 
 
union random_string_xmssmt switch (xmssmt_algorithm_type type) { 
  case xmssmt-sha2_20/2_192: 
  case xmssmt-sha2_20/4_192: 
  case xmssmt-sha2_40/2_192: 
  case xmssmt-sha2_40/4_192: 
  case xmssmt-sha2_40/8_192: 
  case xmssmt-sha2_60/3_192: 
  case xmssmt-sha2_60/6_192: 
  case xmssmt-sha2_60/12_192: 
  case xmssmt-shake256_20/2_192: 
  case xmssmt-shake256_20/4_192: 
  case xmssmt-shake256_40/2_192: 
  case xmssmt-shake256_40/4_192: 
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  case xmssmt-shake256_40/8_192: 
  case xmssmt-shake256_60/3_192: 
  case xmssmt-shake256_60/6_192: 
  case xmssmt-shake256_60/12_192: 
    bytestring24 rand_n24; 
 
  case xmssmt-shake256_20/2_256: 
  case xmssmt-shake256_20/4_256: 
  case xmssmt-shake256_40/2_256: 
  case xmssmt-shake256_40/4_256: 
  case xmssmt-shake256_40/8_256: 
  case xmssmt-shake256_60/3_256: 
  case xmssmt-shake256_60/6_256: 
  case xmssmt-shake256_60/12_256: 
    bytestring32 rand_n32; 
}; 
 
/* Type for reduced XMSS signatures */ 
 
union xmss_reduced (xmss_algorithm_type type) { 
  case xmssmt-sha2_20/2_192: 
  case xmssmt-sha2_40/4_192: 
  case xmssmt-sha2_60/6_192: 
  case xmssmt-shake256_20/2_192: 
  case xmssmt-shake256_40/4_192: 
  case xmssmt-shake256_60/6_192: 
    bytestring24 xmss_reduced_n24_t61[61]; 
 
  case xmssmt-sha2_20/4_192: 
  case xmssmt-sha2_40/8_192: 
  case xmssmt-sha2_60/12_192: 
  case xmssmt-shake256_20/4_192: 
  case xmssmt-shake256_40/8_192: 
  case xmssmt-shake256_60/12_192: 
    bytestring24 xmss_reduced_n24_t56[56]; 
 
  case xmssmt-sha2_40/2_192: 
  case xmssmt-sha2_60/3_192: 
  case xmssmt-shake256_40/2_192: 
  case xmssmt-shake256_60/3_192: 
    bytestring24 xmss_reduced_n24_t71[71]; 
 
  case xmssmt-shake256_20/2_256: 
  case xmssmt-shake256_40/4_256: 
  case xmssmt-shake256_60/6_256: 
    bytestring32 xmss_reduced_n32_t77[77]; 
 



NIST SP 800-208  RECOMMENDATION FOR STATEFUL 
  HASH-BASED SIGNATURE SCHEMES 

45 

 
 

 
 

 
 

 
 

 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208 

  case xmssmt-shake256_20/4_256: 
  case xmssmt-shake256_40/8_256: 
  case xmssmt-shake256_60/12_256: 
    bytestring32 xmss_reduced_n32_t72[72]; 
 
  case xmssmt-shake256_40/2_256: 
  case xmssmt-shake256_60/3_256: 
    bytestring32 xmss_reduced_n32_t87[87]; 
}; 
 
/* xmss_reduced_array depends on d */ 
 
union xmss_reduced_array (xmss_algorithm_type type) { 
  case xmssmt-sha2_20/2_192: 
  case xmssmt-sha2_40/2_192: 
  case xmssmt-shake256_20/2_256: 
  case xmssmt-shake256_40/2_256: 
  case xmssmt-shake256_20/2_192: 
  case xmssmt-shake256_40/2_192: 
    xmss_reduced xmss_red_arr_d2[2];  
 
  case xmssmt-sha2_60/3_192: 
  case xmssmt-shake256_60/3_256: 
  case xmssmt-shake256_60/3_192: 
    xmss_reduced xmss_red_arr_d3[3]; 
 
  case xmssmt-sha2_20/4_192: 
  case xmssmt-sha2_40/4_192: 
  case xmssmt-shake256_20/4_256: 
  case xmssmt-shake256_40/4_256: 
  case xmssmt-shake256_20/4_192: 
  case xmssmt-shake256_40/4_192: 
    xmss_reduced xmss_red_arr_d4[4]; 
 
  case xmssmt-sha2_60/6_192: 
  case xmssmt-shake256_60/6_256: 
  case xmssmt-shake256_60/6_192: 
    xmss_reduced xmss_red_arr_d6[6]; 
 
  case xmssmt-sha2_40/8_192: 
  case xmssmt-shake256_40/8_256: 
  case xmssmt-shake256_40/8_192: 
    xmss_reduced xmss_red_arr_d8[8]; 
 
  case xmssmt-sha2_60/12_192: 
  case xmssmt-shake256_60/12_256: 
  case xmssmt-shake256_60/12_192: 
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    xmss_reduced xmss_red_arr_d12[12]; 
}; 
 
/* Types for bitmask seed */ 
 
union seed switch (xmssmt_algorithm_type type) { 
  case xmssmt-sha2_20/2_192: 
  case xmssmt-sha2_20/4_192: 
  case xmssmt-sha2_40/2_192: 
  case xmssmt-sha2_40/4_192: 
  case xmssmt-sha2_40/8_192: 
  case xmssmt-sha2_60/3_192: 
  case xmssmt-sha2_60/6_192: 
  case xmssmt-sha2_60/12_192: 
  case xmssmt-shake256_20/2_192: 
  case xmssmt-shake256_20/4_192: 
  case xmssmt-shake256_40/2_192: 
  case xmssmt-shake256_40/4_192: 
  case xmssmt-shake256_40/8_192: 
  case xmssmt-shake256_60/3_192: 
  case xmssmt-shake256_60/6_192: 
  case xmssmt-shake256_60/12_192: 
    bytestring24 seed_n24; 
 
  case xmssmt-shake256_20/2_256: 
  case xmssmt-shake256_20/4_256: 
  case xmssmt-shake256_40/2_256: 
  case xmssmt-shake256_40/4_256: 
  case xmssmt-shake256_40/8_256: 
  case xmssmt-shake256_60/3_256: 
  case xmssmt-shake256_60/6_256: 
  case xmssmt-shake256_60/12_256: 
    bytestring32 seed_n32; 
 
}; 
 
/* Types for XMSS^MT root node */ 
 
union xmssmt_root switch (xmssmt_algorithm_type type) { 
  case xmssmt-sha2_20/2_192: 
  case xmssmt-sha2_20/4_192: 
  case xmssmt-sha2_40/2_192: 
  case xmssmt-sha2_40/4_192: 
  case xmssmt-sha2_40/8_192: 
  case xmssmt-sha2_60/3_192: 
  case xmssmt-sha2_60/6_192: 
  case xmssmt-sha2_60/12_192: 
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  case xmssmt-shake256_20/2_192: 
  case xmssmt-shake256_20/4_192: 
  case xmssmt-shake256_40/2_192: 
  case xmssmt-shake256_40/4_192: 
  case xmssmt-shake256_40/8_192: 
  case xmssmt-shake256_60/3_192: 
  case xmssmt-shake256_60/6_192: 
  case xmssmt-shake256_60/12_192: 
    bytestring24 root_n24; 
 
  case xmssmt-shake256_20/2_256: 
  case xmssmt-shake256_20/4_256: 
  case xmssmt-shake256_40/2_256: 
  case xmssmt-shake256_40/4_256: 
  case xmssmt-shake256_40/8_256: 
  case xmssmt-shake256_60/3_256: 
  case xmssmt-shake256_60/6_256: 
  case xmssmt-shake256_60/12_256: 
    bytestring32 root_n32; 
}; 
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Appendix C—Provable Security Analysis 

This appendix briefly summarizes the formal security model and proofs of security of the LMS 
and XMSS signature schemes and provides a short discussion comparing these models and 
proofs. 

C.1 The Random Oracle Model 

In the random oracle model (ROM), there is a publicly accessible random oracle that both the 
user and the adversary can send queries to and receive responses from at any time. A random 
oracle H is a hypothetical, interactive black-box algorithm that obeys the following rules: 

1. Every time the algorithm H receives a new input string s, it generates an output t 
uniformly at random from its output space and returns the response t. The algorithm H 
then records the pair (s, t) for future use. 

2. If the algorithm H is ever queried in the future with some prior input s, it will always 
return the same output t according to its recorded memory. 

Alternatively, the random oracle H can be described as a non-interactive but exponentially large 
look-up table initialized with truly random outputs t for each possible input string s. 

To say that a cryptographic security proof is done in the random oracle model means that every 
use of a particular function (e.g., in the case here, the compression function that is used to 
perform hashes) is replaced by a query to the random oracle H. This simplifies security claims 
because, for example, it becomes easy to prove upper bounds on the likelihood of producing a 
second preimage within a fixed number of queries to H. On the other hand, (compression) 
functions in the real world are neither interactive nor have exponentially large descriptions, so 
they cannot truly behave like a random oracle. 

It is therefore desirable to have a cryptographic security proof that avoids using the random 
oracle model. However, this often leads to less efficient cryptographic systems, or it is not yet 
known how to perform a proof without appealing to the random oracle model, or both. So, as a 
matter of real-world pragmatism, the ROM is commonly used. 

C.2 The Quantum Random Oracle Model 

The quantum random oracle model (QROM) is similar to the ROM, except that it is additionally 
assumed that all parties (in particular, the adversary) have quantum computers and can query the 
random oracle H in superposition. (In the real world, the random oracle H is still instantiated as a 
compression function or something similar, in accordance with the cryptosystem’s specification.) 
While this complicates security claims as compared to the ROM, it more accurately models the 
power of an adversary that has access to a large-scale quantum device for its cryptanalysis when 
attacking a real-world scheme. 



NIST SP 800-208  RECOMMENDATION FOR STATEFUL 
  HASH-BASED SIGNATURE SCHEMES 

49 

 
 

 
 

 
 

 
 

 

 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208 

C.3 LMS Security Proof 

In [11], the author considers a particular experiment in the random oracle model in which the 
adversary is given a series of strings with prefixes (in a randomly chosen but structured manner) 
and hash targets. The attacker’s goal is to find one more string that has the same prefix and hash 
target as any of its input strings. The author proves an upper bound on the adversary’s ability to 
compute first or second preimages from these strings (by querying the compression function 
modeled as a random oracle). 

Then, the author reduces the problem of forging a signature in LMS to this stated experiment, 
concluding that the same upper bounds apply to the problem of producing forgeries against 
LMS. This random oracle model proof critically depends on the randomness of the prefixes used 
in LMS, which means that LMS in the real world critically depends on the pseudorandomness of 
the prefixes. 

Further, in [15], the same proof is carried out in the QROM. 

C.4 XMSS Security Proof 

In [12], a security analysis for the original (academic publication) version of XMSS is given 
under the following assumptions: 

1. The function family {fk} used to construct Winternitz signatures is pseudorandom. This 
means that if the bit string k is chosen uniformly at random, then an adversary given 
black-box access to the function fk cannot distinguish this black box from a random 
function within a polynomial number of queries (except with negligible probability). 

2. The hash function family {hk} is second preimage-resistant. This means that if bit strings 
k and m are chosen uniformly at random, then an adversary given k and m cannot 
construct m' ≠ m such that hk(m') = hk(m) in polynomial time (except with negligible 
probability). 

The proof in [12] asserts that if both of these assumptions are true, then XMSS is existentially 
unforgeable under adaptive chosen message attacks (EUF-CMA) in the standard model. 

However, in the current version of XMSSMT [1], the security analysis differs somewhat. In the 
standard model, [17] shows that XMSSMT is EUF-CMA. Further, [16] shows that XMSSMT is 
post-quantum existentially unforgeable under adaptive chosen message attacks with respect to 
the QROM. 

In a little more detail, the current version of XMSS uses two types of assumptions: 

1. A standard model assumption that the hash function hk, used for the one-time signatures 
and tree node computations, is post-quantum, multi-function, multi-target decisional 
second-preimage-resistant. 
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2. A (quantum) random oracle model assumption that the pseudorandom function fk, used to 
generate pseudorandom values for randomized hashing and computing bitmasks as 
blinding keys, may be validly modeled as a quantum random oracle H. 

C.5 Comparison of the Security Models and Proofs of LMS and XMSS 

Generally speaking, both LMS and XMSS are supported by sound security proofs under 
commonly used cryptographic hardness assumptions. That is, if these cryptographic assumptions 
are true, then both schemes are provably shown to be existentially unforgeable under chosen 
message attack, even against an adversary that has access to a large-scale quantum computer for 
use in its forgery attack. 

The main difference between these schemes’ security analyses comes down to the use (and the 
degree of use) of the random oracle or quantum random oracle models. Along these lines, the 
difference between the (standard model/real world) cryptographic assumption that some function 
family {fk} is pseudorandom and the use of the random oracle model is briefly pointed out. For a 
function fk to be a pseudorandom function in the real world, it should be the case that the bit 
string k used as the key to the function remains private, meaning that it is not in the view of the 
adversary at any point of the security experiment. On the other hand, a random oracle H achieves 
the same pseudorandomness (or even randomness) properties of a pseudorandom function fk, but 
no key k is necessarily associated with the random oracle. Indeed, all inputs to the random oracle 
H may be known to all parties and, in particular, to the adversary. Therefore, using the random 
oracle model clearly involves making a stronger assumption about the (limits of the) 
cryptanalytic power of the adversary. 

That said, a security proof is either entirely a “real-world proof,” which does not use the random 
oracle model, or it appeals to the random oracle methodology in some manner. The security 
analysis of the current version of XMSS only uses the random oracle H when performing 
randomized hashing and computing bitmasks, whereas LMS uses the random oracle H to a 
greater degree (modeling the compression function as a random oracle). However, it remains the 
case that both schemes in their modern form are ultimately proven secure using the ROM and 
QROM. 

Therefore, the cryptographic hardness assumptions made by LMS and XMSS in order to achieve 
existential unforgeability under chosen message attack (EUF-CMA) may be viewed as 
substantially similar and worthy of essentially equal confidence. As such, the practitioner’s 
decision to deploy one scheme or the other should primarily depend on other factors, such as the 
efficiency demands for a given deployment environment or the other security considerations 
enumerated earlier in this document. 
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