

NIST Special Publication 800-208

Recommendation for Stateful
Hash-Based Signature Schemes

David A. Cooper
Daniel C. Apon
Quynh H. Dang

Michael S. Davidson
Morris J. Dworkin

Carl A. Miller

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-208

NIST Special Publication 800-208

Recommendation for Stateful
Hash-Based Signature Schemes

David A. Cooper
Daniel C. Apon
Quynh H. Dang

Michael S. Davidson
Morris J. Dworkin

Carl A. Miller
Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-208

October 2020

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-208
Natl. Inst. Stand. Technol. Spec. Publ. 800-208, 59 pages (October 2020)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-208

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: pqc-comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
mailto:pqc-comments@nist.gov

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and
outreach efforts in information system security, and its collaborative activities with industry,
government, and academic organizations.

Abstract

This recommendation specifies two algorithms that can be used to generate a digital signature,
both of which are stateful hash-based signature schemes: the Leighton-Micali Signature (LMS)
system and the eXtended Merkle Signature Scheme (XMSS), along with their multi-tree variants,
the Hierarchical Signature System (HSS) and multi-tree XMSS (XMSSMT).

 Keywords

cryptography; digital signatures; hash-based signatures; public-key cryptography.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Document Conventions

The terms “shall” and “shall not” indicate requirements to be followed strictly in order to
conform to the publication and from which no deviation is permitted.

The terms “should” and “should not” indicate that, among several possibilities, one is
recommended as particularly suitable without mentioning or excluding others, that a certain
course of action is preferred but not necessarily required, or that (in the negative form) a certain
possibility or course of action is discouraged but not prohibited.

The terms “may” and “need not” indicate a course of action permissible within the limits of the
publication.

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or
causal.

Conformance Testing

Conformance testing for implementations of the functions that are specified in this publication
will be conducted within the framework of the Cryptographic Algorithm Validation Program
(CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements that
apply to these implementations are indicated by the word “shall.” Some of these requirements
may be out-of-scope for CAVP or CMVP validation testing and, thus, are the responsibility of
entities using, implementing, installing, or configuring applications that incorporate this
Recommendation.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Patent Disclosure Notice

NOTICE: The Information Technology Laboratory (ITL) has requested that holders of patent claims
whose use may be required for compliance with the guidance or requirements of this publication
disclose such patent claims to ITL. However, holders of patents are not obligated to respond to ITL
calls for patents and ITL has not undertaken a patent search in order to identify which, if any,
patents may apply to this publication.

As of the date of publication and following call(s) for the identification of patent claims whose use
may be required for compliance with the guidance or requirements of this publication, no such
patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Table of Contents

1 Introduction .. 1

1.1 Intended Applications for Stateful HBS Schemes ... 1

1.2 The Importance of the Proper Maintenance of State 1

1.3 Outline of Text .. 2

2 Glossary of Terms, Acronyms, and Mathematical Symbols 4

2.1 Terms and Definitions ... 4

2.2 Acronyms .. 4

2.3 Mathematical Symbols .. 5

3 General Discussion .. 7

3.1 One-Time Signature Systems ... 7

3.2 Merkle Trees ... 8

3.3 Two-Level Trees ... 9

3.4 Prefixes and Bitmasks .. 10

4 Leighton-Micali Signatures (LMS) Parameter Sets ... 12

4.1 LMS with SHA-256 .. 12

4.2 LMS with SHA-256/192 ... 13

4.3 LMS with SHAKE256/256 ... 14

4.4 LMS with SHAKE256/192 ... 14

5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets 16

5.1 XMSS and XMSSMT with SHA-256 ... 16

5.2 XMSS and XMSSMT with SHA-256/192 .. 17

5.3 XMSS and XMSSMT with SHAKE256/256 ... 18

5.4 XMSS and XMSSMT with SHAKE256/192 ... 19

6 Random Number Generation for Keys and Signatures 21

6.1 LMS and HSS Random Number Generation Requirements 21

6.2 XMSS and XMSSMT Random Number Generation Requirements 21

7 Distributed Multi-Tree Hash-Based Signatures ... 22

7.1 HSS .. 23

7.2 XMSSMT .. 23

7.2.1 Modified XMSS Key Generation and Signature Algorithms 24

7.2.2 XMSSMT External Device Operations ... 26

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

8 Conformance .. 28

8.1 Key Generation and Signature Generation ... 28

8.2 Signature Verification .. 29

9 Security Considerations .. 30

9.1 One-Time Signature Key Reuse ... 30

9.2 Hash Collisions ... 30

9.3 Revocation .. 31

References ... 32

List of Appendices

Appendix A— LMS XDR Syntax Additions ... 35

Appendix B— XMSS XDR Syntax Additions ... 39

B.1 WOTS+ .. 39

B.2 XMSS .. 39

B.3 XMSSMT .. 42

Appendix C— Provable Security Analysis .. 48

C.1 The Random Oracle Model ... 48

C.2 The Quantum Random Oracle Model ... 48

C.3 LMS Security Proof ... 49

C.4 XMSS Security Proof .. 49

C.5 Comparison of the Security Models and Proofs of LMS and XMSS.............. 50

List of Figures

Figure 1: A sample Winternitz chain for b = 4.. 7

Figure 2: A sample Winternitz signature generation and verification 7

Figure 3: A sample Winternitz signature .. 8

Figure 4: A Merkle Hash Tree ... 9

Figure 5: A two-Level Merkle tree ... 10

Figure 6: XMSS hash computation with prefix and bitmask .. 11

List of Tables

Table 1: LM-OTS parameter sets for SHA-256 ... 12

file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc40692301
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc40692302
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc40692305
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc40692306

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

vii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Table 2: LMS parameter sets for SHA-256 ... 13

Table 3: LM-OTS parameter sets for SHA-256/192 .. 13

Table 4: LMS parameter sets for SHA-256/192 .. 13

Table 5: LM-OTS parameter sets for SHAKE256/256 ... 14

Table 6: LMS parameter sets for SHAKE256/256 ... 14

Table 7: LM-OTS parameter sets for SHAKE256/192 ... 14

Table 8: LMS parameter sets for SHAKE256/192 ... 15

Table 9: WOTS+ parameter sets ... 16

Table 10: XMSS parameter sets for SHA-256 ... 16

Table 11: XMSSMT parameter sets for SHA-256 ... 17

Table 12: XMSS parameter sets for SHA-256/192 .. 17

Table 13: XMSSMT parameter sets for SHA-256/192 .. 18

Table 14: XMSS parameter sets for SHAKE256/256 .. 18

Table 15: XMSSMT parameter sets for SHAKE256/256 ... 19

Table 16: XMSS parameter sets for SHAKE256/192 .. 19

Table 17: XMSSMT parameter sets for SHAKE256/192 ... 20

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

1 Introduction

This publication supplements FIPS 186 [4] by specifying two additional digital signature
schemes, both of which are stateful hash-based signature (HBS) schemes: the Leighton-Micali
Signature (LMS) system [2] and the eXtended Merkle Signature Scheme (XMSS) [1], along with
their multi-tree variants, the Hierarchical Signature System (HSS) and multi-tree XMSS
(XMSSMT). All of the digital signature schemes specified in FIPS 186 will be broken if large-
scale quantum computers are ever built. The security of the stateful HBS schemes in this
publication depends only on the security of the underlying hash functions—in particular, the
infeasibility of finding a preimage or a second preimage—and it is believed that the security of
hash functions will not be broken by the development of large-scale quantum computers [20].

This recommendation specifies profiles of LMS, HSS, XMSS, and XMSSMT that are appropriate
for use by the U.S. Federal Government. This publication approves the use of some but not all of
the parameter sets defined in [1] and [2] and also defines some new parameter sets. The
approved parameter sets use 192- or 256-bit outputs with either SHA-256 [3] or SHAKE256 [5].
This recommendation requires that key and signature generation be performed in hardware
cryptographic modules that do not allow secret keying material to be exported, even in encrypted
form.

1.1 Intended Applications for Stateful HBS Schemes

NIST is in the process of developing standards for post-quantum secure digital signature
schemes [7] that can be used as replacements for the schemes that are specified in [4]. Stateful
HBS schemes are not suitable for general use because they require careful state management that
is often difficult to assure, as summarized in Section 1.2 and described in detail in [8].

Instead, stateful HBS schemes are primarily intended for applications with the following
characteristics: 1) it is necessary to implement a digital signature scheme in the near future; 2)
the implementation will have a long lifetime; and 3) it would not be practical to transition to a
different digital signature scheme once the implementation has been deployed.

An application that may fit this profile is the authentication of firmware updates for constrained
devices. Some constrained devices that will be deployed in the near future will be in use for
decades. These devices will need to have a secure mechanism for receiving firmware updates,
and it may not be practical to change the code for verifying signatures on updates once the
devices have been deployed.

1.2 The Importance of the Proper Maintenance of State

In a stateful HBS scheme, an HBS private key consists of a large set of one-time signature (OTS)
private keys. The signer needs to ensure that no individual OTS key is ever used to sign more
than one message. If an attacker were able to obtain digital signatures for two different messages
that were created using the same OTS key, then it would become computationally feasible for
that attacker to forge signatures on arbitrary messages [13]. Therefore, as described in [8], when
a stateful HBS scheme is implemented, extreme care needs to be taken in order to ensure that no
OTS key is ever reused.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

In order to obtain assurance that OTS keys are not reused, the signing process should be
performed in a highly controlled environment. As described in [8], there are many ways in which
seemingly routine operations could lead to the risk of one-time key reuse. The conformance
requirements imposed in Section 8.1 on cryptographic modules that implement stateful HBS
schemes are intended to help prevent one-time key reuse.

1.3 Outline of Text

The remainder of this document is divided into the following sections and appendices:

• Section 2, Glossary of Terms, Acronyms, and Mathematical Symbols, defines the terms,
acronyms, and mathematical symbols used in this document. This section is informative.

• Section 3, General Discussion, gives a conceptual explanation of the elements used in
stateful hash-based signature schemes (including hash chains, Merkle trees, and hash
prefixes). This section may be used as either a high-level overview of stateful hash-based
signature schemes or as an introduction to the detailed descriptions of LMS and XMSS
provided in [1] and [2]. This section is informative.

• Section 4, Leighton-Micali Signatures (LMS) Parameter Sets, describes the parameter
sets that are approved for use by this Special Publication with LMS and HSS.

• Section 5, eXtended Merkle Signature Scheme (XMSS) Parameter Sets, describes the
parameter sets that are approved for use by this Special Publication with XMSS and
XMSSMT.

• Section 6, Random Number Generation for Keys and Signatures, states how the random
data used in XMSS and LMS must be generated.

• Section 7, Distributed Multi-Tree Hash-Based Signatures, provides recommendations for
distributing the implementation of a single HSS or XMSSMT instance over multiple
cryptographic modules.

• Section 8, Conformance, specifies requirements for cryptographic algorithm and module
validation that are specific to modules that implement the algorithms in this document.

• Section 9, Security Considerations, enumerates security risks in various scenarios for
stateful HBS schemes (with a focus on the problem of key reuse) and describes steps that
should be taken to maximize the security of an implementation. This section is
informative.

• Appendix A, LMS XDR Syntax Additions, describes additions that are required for the
External Data Representation (XDR) syntax for LMS in order to support the new
parameter sets specified in this document.

• Appendix B, XMSS XDR Syntax Additions, describes additions that are required for the
XDR syntax for XMSS and XMSSMT in order to support the new parameter sets specified
in this document.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

• Appendix C, Provable Security Analysis, provides information about the security proofs
that are available for LMS and XMSS. This section is informative.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

2 Glossary of Terms, Acronyms, and Mathematical Symbols

2.1 Terms and Definitions

approved FIPS-approved or NIST-recommended. An algorithm or technique
that is either 1) specified in a FIPS or NIST Recommendation or 2)
adopted in a FIPS or NIST Recommendation and specified either (a)
in an appendix to the FIPS or NIST Recommendation or (b) in a
document referenced by the FIPS or NIST Recommendation.

2.2 Acronyms

Selected acronyms and abbreviations used in this publication are defined below.

EEPROM Electronically erasable programmable read-only memory

EUF-CMA Existential unforgeability under adaptive chosen message attacks

FIPS Federal Information Processing Standard

HBS Hash-based signature

HSS Hierarchical Signature Scheme

IRTF Internet Research Task Force

LM-OTS Leighton-Micali One-Time Signature

LMS Leighton-Micali signature

NIST National Institute of Standards and Technology

OTS One-time signature

QROM Quantum random oracle model

RAM Random access memory

RFC Request for Comments

ROM Random oracle model

SHA Secure Hash Algorithm

SHAKE Secure Hash Algorithm KECCAK

SP Special Publication

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

VM Virtual machine

WOTS+ Winternitz One-Time Signature Plus

XDR External Data Representation

XMSS eXtended Merkle Signature Scheme

XMSSMT Multi-tree XMSS

2.3 Mathematical Symbols

SHA-256(M) SHA-256 hash function as specified in [3].

SHA-256/192(M) T192(SHA-256(M)), the most significant (i.e., leftmost) 192 bits of the
SHA-256 hash of M.

SHAKE256/256(M) SHAKE256(M, 256), where SHAKE256 is specified in Section 6.2 of
[5]. The output length is 256 bits.

SHAKE256/192(M) SHAKE256(M, 192), where SHAKE256 is specified in Section 6.2 of
[5]. The output length is 192 bits.

T192(X) A truncation function that outputs the most significant (i.e., leftmost)
192 bits of the input bit string X.

n The number of bytes in the output of a hash function.

m In LMS, the number of bytes associated with each node of a Merkle
tree.

w 1. In XMSS, the length of a Winternitz chain. A single Winternitz chain
uses log2(w) bits from the hash or checksum.

2. In LMS, the number of bits from the hash or checksum used in a
single Winternitz chain. The length of a Winternitz chain is 2w. (Note
that using a Winternitz parameter of w = 4 in LMS would be
comparable to using a parameter of w = 16 in XMSS.)

p The number of n-byte string elements in an LM-OTS private key, public
key, and signature.

Len The number of n-byte string elements in a WOTS+ private key, public
key, and signature.

H In LMS and XMSS, the height of the tree. In XMSSMT, the total height
of the multi-tree (the trees at each level have a height of H/D).

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

D The number of levels of trees in XMSSMT.

L The number of levels of trees in HSS.

I A 16-byte string used in LMS as a key pair identifier.

C In LMS, the n-byte randomizer used for randomized message hashing.

R In XMSS, the n-byte randomizer used for randomized message hashing.

SK_PRF An n-byte key used to pseudorandomly generate the randomizer r.

S_XMSS A secret random value used for pseudorandom key generation in
XMSS.

ADRS A 32-byte data structure used in XMSS when generating prefixes (keys)
and bitmasks.

SEED 1. In XMSS, the public, random, unique identifier for the long-term key.

2. In LMS, a secret random value used for pseudorandom key
generation.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

3 General Discussion

At a high level, XMSS and LMS are very similar. They each consist of two components—a one-
time signature (OTS) scheme and a method for creating a single, long-term public key from a
large set of OTS public keys. A brief explanation of OTS schemes and the method for creating a
long-term public key from a large set of OTS public keys can be found in Sections 3 and 4 of
[14].

3.1 One-Time Signature Systems

Both LMS and XMSS make use of variants of the Winternitz signature scheme. In the Winternitz
signature scheme, the message to be signed is hashed to create a digest; the digest is encoded as a
base b number;1 and then each digit of the digest is signed using a hash chain, as follows.

A hash chain is created by first randomly generating a secret value, x, which is the private key.
The size of x should generally correspond to the targeted security strength of the scheme. So, for
the parameter sets approved by this recommendation, x will be either 192 or 256 bits in length.
The public key, pub, is then created by applying the hash function, H, to the secret b – 1 times,
𝐻𝐻𝑏𝑏−1(𝑥𝑥). Figure 1 shows an example of a hash chain for the kth digit of a digest where b is 4.

The kth digit of the digest, Nk, is signed by applying the hash function, H, to the private key Nk
times, 𝐻𝐻𝑁𝑁𝑘𝑘(𝑥𝑥𝑘𝑘). Figure 2 shows an example of a signature for the kth digit of the digest created
using the Winternitz chain in Figure 1 when Nk is 1. As shown, the signature is 𝑠𝑠𝑘𝑘 = 𝐻𝐻1(𝑥𝑥𝑘𝑘) =
𝐻𝐻(𝑥𝑥𝑘𝑘). Figure 2 also shows how the signature, sk, can be verified. The hash function, H, is
applied to sk twice, and if the resulting value is the same as the public key, pubk, then the
signature is valid. In general, the signature for the kth digit of a digest can be verified by
checking that 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻𝑏𝑏−1−𝑁𝑁𝑘𝑘(𝑠𝑠𝑘𝑘).

As noted in [14], simply signing the individual digits of the digest is not sufficient because an

1 The base b is referred to as the Winternitz parameter in this publication. RFC 8391 [1] specifies that the Winternitz parameter,
denoted by w there, may be either 4 or 16 but only specifies parameter sets for w = 16. In RFC 8554 [2], the term “Winternitz
parameter,” also denoted by w, refers to a different but related quantity: the number of bits of the digest that is encoded by b.
RFC 8554 specifies that w may be 1, 2, 4, or 8, which corresponds to a b of 2, 4, 16, or 256, respectively.

𝑥𝑥𝑘𝑘 H H H 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻 �𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)�� 𝐻𝐻(𝑥𝑥𝑘𝑘) 𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)�

Figure 1: A sample Winternitz chain for b = 4

𝑥𝑥𝑘𝑘 H 𝑠𝑠𝑘𝑘 = 𝐻𝐻(𝑥𝑥𝑘𝑘)

H H 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 ≟ 𝐻𝐻�𝐻𝐻(𝑠𝑠𝑘𝑘)� 𝐻𝐻(𝑠𝑠𝑘𝑘) 𝑠𝑠𝑘𝑘

Figure 2: A sample Winternitz signature generation and verification

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

attacker would be able to generate valid signatures for other message digests. For example, given
𝑠𝑠𝑘𝑘 = 𝐻𝐻(𝑥𝑥𝑘𝑘), as in Figure 2, an attacker would be able to generate a signature for a message
digest with a kth digit of 2 by applying H to 𝑠𝑠𝑘𝑘 once or to a message digest with a kth digit of 3
by applying H to 𝑠𝑠𝑘𝑘 twice. An attacker could not, however, generate a signature for a message
digest with a kth digit of 0 as this would require finding some value y such that 𝐻𝐻(𝑦𝑦) = 𝑠𝑠𝑘𝑘,
which would not be feasible as long as H is preimage-resistant.

In order to protect against the above attack, the Winternitz signature scheme computes a
checksum of the message digest and signs the checksum along with the digest. For an n-digit
message digest, the checksum is computed as ∑ (𝑏𝑏 − 1 − 𝑁𝑁𝑘𝑘)𝑛𝑛−1

𝑘𝑘=0 . The checksum is designed so
that the value is non-negative, and any increase in a digit in the message digest will result in the
checksum becoming smaller. This prevents an attacker from creating an effective forgery from a
message signature since the attacker can only increase values within the message digest and
cannot decrease values within the checksum.

Figure 3 shows an example of a signature for a 32-bit message digest using b = 16. The digest is
written as eight hexadecimal digits, and a separate hash chain is used to sign each digit with each
hash chain having its own private key.2

Digest Checksum

Digest 6 3 F 1 E 9 0 B 3 D

Private
Key

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Signature H6(x0) H3(x1) H15(x2) H(x3) H14(x4) H9(x5) x6 H11(x7) H3(x8) H13(x9)

Public
Key

H15(x0) H15(x1) H15(x2) H15(x3) H15(x4) H15(x5) H15(x6) H15(x7) H15(x8) H15(x9)

Figure 3: A sample Winternitz signature

3.2 Merkle Trees

While a single, long-term public key could be created from a large set of OTS public keys by
simply concatenating the keys together, the resulting public key would be unacceptably large.
XMSS and LMS instead use Merkle hash trees [18], which allow for the long-term public key to
be very short in exchange for requiring a small amount of additional information to be provided
with each OTS key. To create a hash tree, the OTS public keys are hashed once to form the
leaves of the tree, and these hashes are then hashed together in pairs to form the next level up.
Those hash values are then hashed together in pairs, the resulting hash values are hashed
together, and so on until all of the public keys have been used to generate a single hash value (the
root of the tree), which will be used as the long-term public key.

2 If SHA-256 were used as the hash function, then the message digest would be encoded as 64 hexadecimal digits, and the
checksum would be encoded as three hexadecimal digits.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Figure 4: A Merkle Hash Tree

Figure 4 depicts a hash tree that contains eight OTS public keys (k0 … k7). The eight keys are
each hashed to form the leaves of the tree (h0 … h7), and the eight leaf values are hashed in pairs
to create the next level up in the tree (h01, h23, h45, h67). These four hash values are again hashed in
pairs to create h0−3 and h4−7, which are hashed together to create the long-term public key, h0−7.
In order for an entity that had already received h0−7 in a secure manner to verify a message
signed using k2, the signer would need to provide h3, h01, and h4−7 in addition to k2. The verifier
would compute ℎ2′ = 𝐻𝐻(𝑘𝑘2), ℎ23′ = 𝐻𝐻(ℎ2′ ||ℎ3), ℎ0−3′ = 𝐻𝐻(ℎ01||ℎ23′), and ℎ0−7′ =
𝐻𝐻(ℎ0−3′ ||ℎ4−7). If ℎ0−7′ is the same as h0−7, then k2 may be used to verify the message signature.

3.3 Two-Level Trees

Both [1] and [2] define single tree and multi-tree variants of their signature schemes. In an
instance that involves two levels of trees, as shown in Figure 5, the OTS keys that form the
leaves of the top-level tree sign the roots of the trees at the bottom level, and the OTS keys that
form the leaves of the bottom-level trees are used to sign the messages. The root of the top-level
tree is the long-term public key for the signature scheme.3

3 While this section only describes two-level trees, HSS allows for up to eight levels of trees, and XMSSMT allows for up to 12
levels of trees.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

As described in Section 7, the use of two levels of trees can make it easier to distribute OTS keys
across multiple cryptographic modules in order to protect against private key loss. A set of OTS
keys can be created in one cryptographic module, and the root of the Merkle tree formed from
these keys can be published as the public key for the signature scheme. OTS keys can then be
created on multiple other cryptographic modules with a separate Merkle tree created for the OTS
keys of each of the other cryptographic modules, and a different OTS key from the first
cryptographic module can be used to sign each of the roots of the other cryptographic modules.

While there are benefits in the use of a two-level tree, it results in larger signatures and slower
signature verification as each message signature will need to include two OTS signatures. For
example, if a message were signed using OTS key kb,6 in Figure 5, the signature would need to
include the signature on rootb,1 using ka,1 in addition to the signature on the message using kb,6.

3.4 Prefixes and Bitmasks

In order to strengthen the security of the schemes in both XMSS and LMS, a prefix is prepended
whenever a value is hashed. For example, when computing the public key for a Winternitz
signature from the private key in LMS as described in Section 3.1, rather than just computing
𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻3(𝑥𝑥𝑘𝑘) = 𝐻𝐻 �𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)��, the public key is computed as 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 =

𝐻𝐻 �𝑝𝑝3 || 𝐻𝐻�𝑝𝑝2 || 𝐻𝐻(𝑝𝑝1 || 𝑥𝑥𝑘𝑘)��, where p1, p2, and p3 are each different prefix values. The prefix is
formed by concatenating together various pieces of information, including a unique identifier for
the long-term public key and an indicator of the purpose of the hash (e.g., Winternitz chain or
Merkle tree). If the hash is part of a Winternitz chain, then the prefix also includes the number of
the OTS key, which digit of the digest or checksum is being signed, and where in the chain the
hash appears. The goal is to ensure that every single hash that is computed within the LMS
scheme uses a different prefix.

XMSS generates its prefixes in a similar way. The information described above is used to form
an address, which uniquely identifies where a particular hash invocation occurs within the

ka,0 ka,1 ka,2 ka,3

roota

rootb,0

kb,0 kb,1 kb,2 kb,3

rootb,1

kb,4 kb,5 kb,6 kb,7

rootb,2

kb,8 kb,9 kb,10 kb,11

rootb,3

kb,12 kb,13 kb,14 kb,15

Figure 5: A two-Level Merkle tree

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

scheme. This address is then hashed along with a unique identifier (SEED) for the long-term
public key to create the prefix.

Unlike LMS, XMSS also uses bitmasks. Similar to the generation of the prefix, a slightly
different address is hashed along with the SEED to create a bitmask, which is exclusive-ORed
with the value to be hashed (the input). The prefix and masked input value are concatenated as
specified in [1] to form the input to the hash function.4 Figure 6 illustrates an example of this
computation when the input is a Winternitz chaining value. In [1], the hash function is referred to
as H, H_msg, F, or PRF, depending on where it is being used. However, in each case, it is the
same function, just with a different prefix prepended in order to ensure separation between the
uses.

4 When hashing values within a Merkle tree, two bitmasks are created, one for the left input and one for the right input, and the
two bitmasked values are concatenated along with the prefix.

Figure 6: XMSS hash computation with prefix and bitmask

⊕

3 || SEED || ADDR

3 || SEED || ADDR'

0 || prefix || bitmasked input

input

H

H

H

bitmask

output

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

4 Leighton-Micali Signatures (LMS) Parameter Sets

The LMS and HSS algorithms are described in RFC 8554 [2]. This Special Publication approves
the use of LMS and HSS with four different hash functions: SHA-256, SHA-256/192,
SHAKE256/256, and SHAKE256/192 (see Section 2.3). The parameter sets that use SHA-256
are defined in RFC 8554 [2]. The parameter sets that use SHA-256/192, SHAKE256/256, and
SHAKE256/192 are defined in this publication.

When generating a key pair for an LMS instance, each LM-OTS key in the system shall use the
same parameter set, and the hash function used for the LMS system shall be the same as the hash
function used in the LM-OTS keys. The height of the tree (h) shall be 5, 10, 15, 20, or 25.

When generating a key pair for an HSS instance, the requirements specified in the previous
paragraph apply to each LMS tree in the instance. If the HSS instance has more than one level,
then the hash function used for the tree at level 0 shall be used for every LMS tree at every other
level. For each level, the same LMS and LM-OTS parameter sets shall be used for every LMS
tree at that level. Different LMS and LM-OTS parameter sets may be used at different levels, as
long as all chosen parameter sets use the same hash function.

The LMS and LM-OTS parameter sets that are approved for use by this Special Publication are
specified in tables in Sections 4.1 through 4.4. The parameters n, w, p, m, and h specified in the
tables are defined in Sections 4.1 and 5.1 of [2].

Extensions to the XDR syntax in Section 3.3 of [2] needed to support the parameter sets defined
in Sections 4.2 through 4.4 of this document are specified in Appendix A. The numeric
identifiers for these parameter sets are marked as “TBD” since they had not yet been assigned at
the time this document was published. Once they are assigned, the numeric identifiers may be
found at https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-
signatures.xhtml.

4.1 LMS with SHA-256

When generating LMS or HSS key pairs using SHA-256, the LMS and LM-OTS parameter sets
shall be selected from the following two tables, which come from Sections 4 and 5 of [2].

Table 1: LM-OTS parameter sets for SHA-256

LM-OTS Parameter Sets
Numeric
Identifier n w P

LMOTS_SHA256_N32_W1 0x00000001 32 1 265

LMOTS_SHA256_N32_W2 0x00000002 32 2 133

LMOTS_SHA256_N32_W4 0x00000003 32 4 67

LMOTS_SHA256_N32_W8 0x00000004 32 8 34

https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml
https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Table 2: LMS parameter sets for SHA-256

LMS Parameter Sets Numeric Identifier m h

LMS_SHA256_M32_H5 0x00000005 32 5

LMS_SHA256_M32_H10 0x00000006 32 10

LMS_SHA256_M32_H15 0x00000007 32 15

LMS_SHA256_M32_H20 0x00000008 32 20

LMS_SHA256_M32_H25 0x00000009 32 25

4.2 LMS with SHA-256/192

When generating LMS or HSS key pairs using SHA-256/192, the LMS and LM-OTS parameter
sets shall be selected from the following two tables.

Table 3: LM-OTS parameter sets for SHA-256/192

LM-OTS Parameter Sets
Numeric
Identifier n w P

LMOTS_SHA256_N24_W1 TBD 24 1 200

LMOTS_SHA256_N24_W2 TBD 24 2 101

LMOTS_SHA256_N24_W4 TBD 24 4 51

LMOTS_SHA256_N24_W8 TBD 24 8 26

Table 4: LMS parameter sets for SHA-256/192

LMS Parameter Sets Numeric Identifier m h

LMS_SHA256_M24_H5 TBD 24 5

LMS_SHA256_M24_H10 TBD 24 10

LMS_SHA256_M24_H15 TBD 24 15

LMS_SHA256_M24_H20 TBD 24 20

LMS_SHA256_M24_H25 TBD 24 25

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

4.3 LMS with SHAKE256/256

When generating LMS or HSS key pairs using SHAKE256/256, the LMS and LM-OTS
parameter sets shall be selected from the following two tables.

Table 5: LM-OTS parameter sets for SHAKE256/256

LM-OTS Parameter Sets
Numeric
Identifier n w p

LMOTS_SHAKE_N32_W1 TBD 32 1 265

LMOTS_SHAKE_N32_W2 TBD 32 2 133

LMOTS_SHAKE_N32_W4 TBD 32 4 67

LMOTS_SHAKE_N32_W8 TBD 32 8 34

Table 6: LMS parameter sets for SHAKE256/256

LMS Parameter Sets Numeric Identifier m h

LMS_ SHAKE_M32_H5 TBD 32 5

LMS_ SHAKE_M32_H10 TBD 32 10

LMS_ SHAKE_M32_H15 TBD 32 15

LMS_ SHAKE_M32_H20 TBD 32 20

LMS_ SHAKE_M32_H25 TBD 32 25

4.4 LMS with SHAKE256/192

When generating LMS or HSS key pairs using SHAKE256/192, the LMS and LM-OTS
parameter sets shall be selected from the following two tables.

Table 7: LM-OTS parameter sets for SHAKE256/192

LM-OTS Parameter Sets
Numeric
Identifier n w p

LMOTS_SHAKE_N24_W1 TBD 24 1 200

LMOTS_SHAKE_N24_W2 TBD 24 2 101

LMOTS_SHAKE_N24_W4 TBD 24 4 51

LMOTS_SHAKE_N24_W8 TBD 24 8 26

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Table 8: LMS parameter sets for SHAKE256/192

LMS Parameter Sets Numeric Identifier m h

LMS_ SHAKE_M24_H5 TBD 24 5

LMS_ SHAKE_M24_H10 TBD 24 10

LMS_ SHAKE_M24_H15 TBD 24 15

LMS_ SHAKE_M24_H20 TBD 24 20

LMS_ SHAKE_M24_H25 TBD 24 25

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets

The XMSS and XMSSMT algorithms are described in RFC 8391 [1]. This Special Publication
approves the use of XMSS and XMSSMT with four different hash functions: SHA-256, SHA-
256/192, SHAKE256/256, and SHAKE256/192 (see Section 2.3).5 The parameter sets that use
SHA-256 are defined in RFC 8391 [1]. The parameter sets that use SHA-256/192,
SHAKE256/256, and SHAKE256/192 are defined below.

The WOTS+ parameters that correspond to the use of each of these hash functions are specified
in the following table.

Table 9: WOTS+ parameter sets

Parameter Sets Numeric Identifier F / PRF n w len
WOTSP-SHA2_256 0x00000001 See Section 5.1 32 16 67

WOTSP-SHA2_192 0x00000005 See Section 5.2 24 16 51

WOTSP-SHAKE256_256 0x00000006 See Section 5.3 32 16 67

WOTSP-SHAKE256_192 0x00000007 See Section 5.4 24 16 51

The XMSS and XMSSMT parameter sets that are approved for use by this Special Publication are
specified in Sections 5.1 through 5.4. The parameters n, w, len, h, and d specified in the tables
are defined in Sections 3.1.1, 4.1.1, and 4.2.1 of [1].

Extensions to the XDR syntax in Appendices A, B, and C of [1] needed to support the parameter
sets defined in Sections 5.2 through 5.4 of this document are specified in Appendix B.

5.1 XMSS and XMSSMT with SHA-256

When generating XMSS or XMSSMT key pairs using SHA-256, the parameter sets shall be
selected from the following two tables, which come from Section 5 of [1]. Each of these uses the
WOTSP-SHA2_256 parameter set.

Table 10: XMSS parameter sets for SHA-256

Parameter Sets Numeric Identifier n w len h
XMSS-SHA2_10_256 0x00000001 32 16 67 10

XMSS-SHA2_16_256 0x00000002 32 16 67 16

XMSS-SHA2_20_256 0x00000003 32 16 67 20

5 The parameter sets specified in RFC 8391 [1] that use SHAKE128, SHAKE256, and SHA-512 are not approved for use by this
Special Publication.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Table 11: XMSSMT parameter sets for SHA-256

Parameter Sets Numeric Identifier n w len h d

XMSSMT-SHA2_20/2_256 0x00000001 32 16 67 20 2

XMSSMT-SHA2_20/4_256 0x00000002 32 16 67 20 4

XMSSMT-SHA2_40/2_256 0x00000003 32 16 67 40 2

XMSSMT-SHA2_40/4_256 0x00000004 32 16 67 40 4

XMSSMT-SHA2_40/8_256 0x00000005 32 16 67 40 8

XMSSMT-SHA2_60/3_256 0x00000006 32 16 67 60 3

XMSSMT-SHA2_60/6_256 0x00000007 32 16 67 60 6

XMSSMT-SHA2_60/12_256 0x00000008 32 16 67 60 12

For the parameter sets in this section, the functions F, H, H_msg, and PRF are as defined in
Section 5.1 of [1] for SHA2 with n = 32. The function PRFkeygen, which is used for key
generation as specified in Section 6.2, is defined as follows:

PRFkeygen(KEY, M): SHA-256(toByte(4, 32) || KEY || M).

5.2 XMSS and XMSSMT with SHA-256/192

When generating XMSS or XMSSMT key pairs using SHA-256/192, the parameter sets shall be
selected from the following two tables. Each of these uses the WOTSP-SHA2_192 parameter
set.

Table 12: XMSS parameter sets for SHA-256/192

Parameter Sets Numeric Identifier n w len h

XMSS-SHA2_10_192 0x0000000D 24 16 51 10

XMSS-SHA2_16_192 0x0000000E 24 16 51 16

XMSS-SHA2_20_192 0x0000000F 24 16 51 20

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Table 13: XMSSMT parameter sets for SHA-256/192

Parameter Sets Numeric Identifier n w len h d

XMSSMT-SHA2_20/2_192 0x00000021 24 16 51 20 2

XMSSMT-SHA2_20/4_192 0x00000022 24 16 51 20 4

XMSSMT-SHA2_40/2_192 0x00000023 24 16 51 40 2

XMSSMT-SHA2_40/4_192 0x00000024 24 16 51 40 4

XMSSMT-SHA2_40/8_192 0x00000025 24 16 51 40 8

XMSSMT-SHA2_60/3_192 0x00000026 24 16 51 60 3

XMSSMT-SHA2_60/6_192 0x00000027 24 16 51 60 6

XMSSMT-SHA2_60/12_192 0x00000028 24 16 51 60 12

For the parameter sets in this section, the functions F, H, H_msg, PRF, and PRFkeygen are defined
as follows:

• F(KEY, M): T192(SHA-256(toByte(0, 4) || KEY || M))
• H(KEY, M): T192(SHA-256(toByte(1, 4) || KEY || M))
• H_msg(KEY, M): T192(SHA-256(toByte(2, 4) || KEY || M))
• PRF(KEY, M): T192(SHA-256(toByte(3, 4) || KEY || M))
• PRFkeygen(KEY, M): T192(SHA-256(toByte(4, 4) || KEY || M))

5.3 XMSS and XMSSMT with SHAKE256/256

When generating XMSS or XMSSMT key pairs using SHAKE256/256, the parameter sets shall
be selected from the following two tables. Each of these uses the WOTSP-SHAKE256_256
parameter set.

Table 14: XMSS parameter sets for SHAKE256/256

Parameter Sets Numeric Identifier n w len h

XMSS-SHAKE256_10_256 0x00000010 32 16 67 10

XMSS-SHAKE256_16_256 0x00000011 32 16 67 16

XMSS-SHAKE256_20_256 0x00000012 32 16 67 20

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Table 15: XMSSMT parameter sets for SHAKE256/256

Parameter Sets Numeric Identifier n w len h d

XMSSMT-SHAKE256_20/2_256 0x00000029 32 16 67 20 2

XMSSMT-SHAKE256_20/4_256 0x0000002A 32 16 67 20 4

XMSSMT-SHAKE256_40/2_256 0x0000002B 32 16 67 40 2

XMSSMT-SHAKE256_40/4_256 0x0000002C 32 16 67 40 4

XMSSMT-SHAKE256_40/8_256 0x0000002D 32 16 67 40 8

XMSSMT-SHAKE256_60/3_256 0x0000002E 32 16 67 60 3

XMSSMT-SHAKE256_60/6_256 0x0000002F 32 16 67 60 6

XMSSMT-SHAKE256_60/12_256 0x00000030 32 16 67 60 12

For the parameter sets in this section, the functions F, H, H_msg, PRF, and PRFkeygen are defined
as follows:

• F(KEY, M): SHAKE256(toByte(0, 32) || KEY || M, 256)
• H(KEY, M): SHAKE256(toByte(1, 32) || KEY || M, 256)
• H_msg(KEY, M): SHAKE256(toByte(2, 32) || KEY || M, 256)
• PRF(KEY, M): SHAKE256(toByte(3, 32) || KEY || M, 256)
• PRFkeygen(KEY, M): SHAKE256(toByte(4, 32) || KEY || M, 256)

5.4 XMSS and XMSSMT with SHAKE256/192

When generating XMSS or XMSSMT key pairs using SHAKE256/192, the parameter sets shall
be selected from the following two tables. Each of these uses the WOTSP-SHAKE256_192
parameter set.

Table 16: XMSS parameter sets for SHAKE256/192

Parameter Sets Numeric Identifier n w len h

XMSS-SHAKE256_10_192 0x00000013 24 16 51 10

XMSS-SHAKE256_16_192 0x00000014 24 16 51 16

XMSS-SHAKE256_20_192 0x00000015 24 16 51 20

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Table 17: XMSSMT parameter sets for SHAKE256/192

Parameter Sets Numeric Identifier n w len h d

XMSSMT-SHAKE256_20/2_192 0x00000031 24 16 51 20 2

XMSSMT-SHAKE256_20/4_192 0x00000032 24 16 51 20 4

XMSSMT-SHAKE256_40/2_192 0x00000033 24 16 51 40 2

XMSSMT-SHAKE256_40/4_192 0x00000034 24 16 51 40 4

XMSSMT-SHAKE256_40/8_192 0x00000035 24 16 51 40 8

XMSSMT-SHAKE256_60/3_192 0x00000036 24 16 51 60 3

XMSSMT-SHAKE256_60/6_192 0x00000037 24 16 51 60 6

XMSSMT-SHAKE256_60/12_192 0x00000038 24 16 51 60 12

For the parameter sets in this section, the functions F, H, H_msg, PRF, and PRFkeygen are defined
as follows:

• F(KEY, M): SHAKE256(toByte(0, 4) || KEY || M, 192)
• H(KEY, M): SHAKE256(toByte(1, 4) || KEY || M, 192)
• H_msg(KEY, M): SHAKE256(toByte(2, 4) || KEY || M, 192)
• PRF(KEY, M): SHAKE256(toByte(3, 4) || KEY || M, 192)
• PRFkeygen(KEY, M): SHAKE256(toByte(4, 4) || KEY || M, 192)

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

6 Random Number Generation for Keys and Signatures

This section specifies requirements for the generation of random data that apply in addition to
the requirements that are specified in [2] for LMS and HSS and in [1] for XMSS and XMSSMT.

Note: Variables and notations used in this section are defined in the relevant documents
mentioned above.

6.1 LMS and HSS Random Number Generation Requirements

The LMS key pair identifier, I, shall be generated using an approved random bit generator (see
the SP 800-90 series of publications [6]), where the instantiation of the random bit generator
supports at least 128 bits of security strength.

The n-byte private elements of the LM-OTS private keys (x[i] in Section 4.2 of [2]) shall be
generated using the pseudorandom key generation method specified in Appendix A of [2]. The
same SEED value shall be used to generate every private element in a single LMS instance, and
SEED shall be generated using an approved random bit generator [6], where the instantiation of
the random bit generator supports at least 8n bits of security strength.

If more than one LMS instance is being created (e.g., for an HSS instance), then a separate key
pair identifier, I, and SEED shall be generated for each LMS instance.

When generating a signature, the n-byte randomizer C (see Section 4.5 of [2]) shall be generated
using an approved random bit generator [6], where the instantiation of the random bit generator
supports at least 8n bits of security strength.

6.2 XMSS and XMSSMT Random Number Generation Requirements

The n-byte values SK_PRF and SEED shall be generated using an approved random bit
generator (see the SP 800-90 series of publications [6]), where the instantiation of the random bit
generator supports at least 8n bits of security strength.

The private n-byte strings in the WOTS+ private keys (sk[i] in Section 3.1.3 of [1]) shall be
generated using the pseudorandom key generation method specified in Algorithm 10' in Section
7.2.1: sk[j] = PRFkeygen(S_XMSS, SEED || ADRS), where PRFkeygen is as defined in Section 5 for
the parameter set being used.6 The private seed, S_XMSS, shall be generated using an approved
random bit generator [6], where the instantiation of the random bit generator supports at least 8n
bits of security strength. If more than one XMSS key pair is being created within a cryptographic
module (including XMSS keys that belong to a single XMSSMT instance), then a separate
random S_XMSS shall be generated for each XMSS key pair.

6 For an XMSS key that is not part of an XMSSMT instance, d = 1, L = 0, and t = 0.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

7 Distributed Multi-Tree Hash-Based Signatures

If a digital signature key will be used to generate signatures over a long period of time and
replacing the public key would be difficult, then it will be necessary to prepare for the possibility
that a cryptographic module holding the private key may fail during the key’s lifetime. In the
case of most digital signature schemes, a common solution is to make copies of the private key.
However, in the case of stateful HBS schemes, simply copying the private key would create a
risk of OTS key reuse.

While it would be possible to have one cryptographic module generate all of the OTS keys and
then distribute different OTS keys to each of the other cryptographic modules, doing so is not an
option for cryptographic modules that conform to this recommendation: due to the risks
associated with copying OTS keys, this recommendation prohibits exporting private keying
material (Section 8).

One option would be to create multiple stateful HBS keys on different cryptographic modules
and then configure clients to accept signatures created using any of these keys. These keys could
be distributed to clients all at once or using a mechanism such as the Hash Of Root Key
certificate extension [23], which provides a mechanism for distributing new public keys over
time.

Another option would be to create a single stateful HBS key in which the OTS private keys are
distributed across multiple cryptographic modules. The easiest way to have OTS keys on
multiple cryptographic modules without exporting private keys is to use HSS or XMSSMT with
two levels of trees where the trees are instantiated on different cryptographic modules. First, a
top-level LMS or XMSS key pair would be created in a cryptographic module. The top level’s
OTS keys would only be used to sign the roots of other trees. Then, bottom-level LMS or XMSS
key pairs would be created, and the public keys from those key pairs (i.e., the roots of their
Merkle trees) would be signed by OTS keys of the top-level key pair. The OTS keys of the
bottom-level key pairs would be used to sign ordinary messages. The number of bottom-level
key pairs that could be created would be limited only by the number of OTS keys in the top-level
key pair.

As an example, suppose that an organization wishes to have a single XMSSMT key with the OTS
private keys being distributed across two cryptographic modules (in case one fails), and the
organization has determined that, at most, 10 000 signatures will need to be generated over the
lifetime of the XMSSMT key. The organization could create a top-level XMSS key pair in one
cryptographic module using the XMSSMT-SHA2_20/2_256 parameter set and then create 10
bottom-level XMSS keys in that same cryptographic module. An additional 10 bottom-level
XMSS keys could be created in a second cryptographic module with all 20 of the bottom-level’s
keys being signed by OTS keys of the top-level key pair.

When working with distributed multi-tree hash-based signatures, the cryptographic module that
holds the top-level tree is a potential single point of failure. Once this cryptographic module
fails, it is no longer possible to sign additional bottom-level key pairs. Consequently, all of the
bottom-level keys should be generated up front as part of the initial key generation ceremony.
Once the top-level key has been used to sign all of the bottom-level keys, the top-level key is no

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

longer needed, as copies of the signatures created using OTS keys of the top-level key pair may
be stored outside of the cryptographic module.

In order to avoid the top-level key being a single point of failure, the two options described
above could be combined to create multiple distributed multi-tree HBS keys. Multiple top-level
keys pairs would initially be created, each on a different cryptographic module, and clients
would be configured to accept signatures created using any of these keys. Then, whenever a new
bottom-level key needed to be created, it could be signed by any one of the top-level keys. This
would allow for new bottom-level keys to be created as long as at least one of the cryptographic
modules that contains a top-level key remained operational. Of course, the same level of care
should be used when signing a bottom-level key as would be used during the initial key
generation ceremony (or as would be used in making a copy of an RSA or ECDSA private key).

7.1 HSS

In the case of HSS, the distributed multi-tree scheme described above can be implemented using
multiple cryptographic modules that individually implement LMS without modifications. The
top-level LMS public key can be converted to an HSS public key by an external, non-
cryptographic device. This device can also submit the public keys of the bottom-level LMS keys
for signature by the top-level LMS key. In HSS, the operation for signing the root of a lower-
level tree is the same as the operation for signing an ordinary message. Finally, this external
device can submit ordinary messages to cryptographic modules that hold the bottom-level LMS
keys for signing and then combine the resulting LMS signatures with the top-level key’s
signature on the bottom-level LMS public key in order to create the HSS signature for the
ordinary messages (see Algorithm 7 and Algorithm 8 in [2]).

7.2 XMSSMT

Distributing the implementation of an XMSSMT instance across multiple cryptographic modules
requires each cryptographic module to implement slightly modified versions of the XMSS key
and signature generation algorithms provided in [1]. The modified versions of these algorithms
are provided in Section 7.2.1. The modifications are primarily intended to ensure that each
XMSS key uses the appropriate values for its layer and tree addresses when computing prefixes
and bitmasks. The modifications also ensure that every XMSS key uses the same value for SEED
and that the root of the top-level tree is used when computing the hashes of messages to be
signed.

Note that while Algorithm 15 in [1] indicates that an XMSSMT secret key has a single SK_PRF
value that is shared by all of the XMSS secret keys, Algorithm 10' in Section 7.2.1 has each
cryptographic module generate its own value for SK_PRF. While generating a different SK_PRF
for each cryptographic module does not exactly align with the specification in [1], doing so does
not affect either interoperability or security. SK_PRF is only used to pseudorandomly generate
the value r in Algorithm 16, which is used for randomized hashing, and any secure method for
generating random values could be used to generate r.

Section 7.2.2 describes the steps that an external, non-cryptographic device needs to perform in
order to implement XMSSMT key and signature generation using a set of cryptographic modules
that implement the algorithms in Section 7.2.1. While Algorithms 10' and 12' in Section 7.2.1

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

have been designed to work with XMSSMT instances that have more than two layers, the
algorithms in Section 7.2.2 assume that an XMSSMT instance with exactly two layers is being
created.

7.2.1 Modified XMSS Key Generation and Signature Algorithms

Algorithm 10': XMSS'_keyGen

 // L needs to be in the range [0 … d-1]
 // t needs to be in the range [0 … 2^((d-1-L)(h/d)) - 1]
 Input: level L, tree t,
 public key of top-level tree PK_MT (if L ≠ d - 1)
 Output: XMSS public key PK

 Initialize S_XMSS with an n-byte string using an approved
 random bit generator [6], where the instantiation of the
 random bit generator supports at least 8n bits of security
 strength;

 // SEED needs to be generated for the top-level XMSS key.
 // For all other XMSS keys, the value needs to be copied from
 // the top-level XMSS key.
 if (L = d – 1) {
 Initialize SEED with an n-byte string using an approved
 random bit generator [6], where the instantiation of the
 random bit generator supports at least 8n bits of security
 strength;
 } else {
 SEED = getSEED(PK_MT);
 }
 setSEED(SK, SEED);

 ADRS = toByte(0, 32);
 ADRS.setLayerAddress(L);
 ADRS.setTreeAddress(t);

 // Initialization for SK-specific contents
 idx = t * 2^(h / d);
 for (i = 0; i < 2^(h / d); i++) {
 ADRS.setOTSAddress(i);
 // For each OTS key, i, generate the private key value for
 // chain in the OTS key.
 for (j=0; j < len; j++) {
 ADRS.setChainAddress(j);
 sk[j] = PRFkeygen(S_XMSS, SEED || ADRS);
 }
 // Set the secret key for OTS key i to the array of len
 // private key values generated for that key.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 wots_sk[i] = sk;
 }
 setWOTS_SK(SK, wots_sk);

 Initialize SK_PRF with an n-byte string using an approved
 random bit generator [6], where the instantiation of the
 random bit generator supports at least 8n bits of security
 strength;
 setSK_PRF(SK, SK_PRF);

 root = treeHash(SK, 0, h / d, ADRS);

 setLayerAddress(SK, L);
 setTreeAddress(SK, t);
 setIdx(SK, idx);

 // The "root" value in SK needs to be the root of the top-level
 // XMSS tree, as this is the value used when hashing the message
 // to be signed.
 if (L = d – 1) {
 setRoot(SK, root);
 SK = L || t || idx || wots_sk || SK_PRF || root || SEED;
 } else {
 setRoot(SK, getRoot(PK_MT));
 SK = L || t || idx || wots_sk || SK_PRF || getRoot(PK_MT) || SEED;
 }
 // The public key should be encoded using the XDR for
 // xmssmt_public_key in Appendix C.3 of [1] with the additions
 // specified in Appendix B.3 of this document.
 PK = OID || root || SEED;
 return PK;

Algorithm 12': XMSS'_sign

 Input: Message M
 Output: signature Sig

 idx_sig = getIdx(SK);
 setIdx(SK, idx_sig + 1);
 L = getLayerAddress(SK);
 t = getTreeAddress(SK);
 ADRS = toByte(0, 32);
 ADRS.setLayerAddress(L);
 ADRS.setTreeAddress(t);

 if (L > 0) {
 // M must be the n-byte root from an XMSS public key
 byte[n] r = 0; // n-byte string of zeros

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 byte[n] M' = M;
 } else {
 byte[n] r = PRF(getSK_PRF(SK), toByte(idx_sig, 32));
 byte[n] M' = H_msg(r || getRoot(SK) || (toByte(idx_sig, n)), M);
 }
 idx_leaf = idx_sig - t * 2^(h / d);
 Sig = idx_sig || r || treeSig(M', SK, idx_leaf, ADRS);
 return Sig;

7.2.2 XMSSMT External Device Operations

XMSS^MT external device keygen

 Input: No input

 // Generate top-level key pair on a cryptographic module
 PK_MT = XMSS'_keyGen(1, 0, NULL);

 t = 0;
 for each bottom-level key pair to be created {
 // Generate bottom-level key pair on a cryptographic module
 PK[t] = XMSS’_keygen(0, t, PK_MT);

 // Submit root of bottom-level key pair’s public key
 // to be signed by the top-level key pair.
 SigPK[t] = XMSS'_sign(getRoot(PK[t]));

 // If the public key on the bottom-level tree was created using
 // a tree address of t, then its root needs to be signed by OTS
 // key t of the top-level tree. If it was not, then try again.7
 while (getIdx(SigPK[t]) ≠ t) {
 t = getIdx(SigPK[t]) + 1;
 PK[t] = XMSS'_keygen(0, t, PK_MT);
 SigPK[t] = XMSS'_sign(getRoot(PK[t]));
 }
 t = t + 1;
 }

XMSS^MT external device sign

 Input: Message M

7 While the signing cryptographic module should use its one-time keys sequentially, making it possible for the external device to
determine in advance which one-time key will be used to sign the public key of the bottom-level tree, the external device
cannot specify to the signing cryptographic module which one-time key it should use. So, there is a small chance that an
internal glitch in the signing cryptographic module will cause it to skip over one or more key indices and sign the bottom-
level’s public key using an unexpected key index. While this event should be rare, if it does happen, the only option is to
regenerate the bottom-level key pair, set the tree address to the next expected key index, and then try again.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 Output: signature Sig

 // Send XMSS'_sign() command to one of the bottom-level key pairs
 Sig_tmp = XMSS'_sign(M);

 idx_sig = getIdx(Sig_tmp);

 // Determine which bottom-level tree was used to sign the message
 // by extracting the most significant bits of idx_sig.
 t = [idx_sig – (idx_sig mod 2^(h / d))]/ 2^(h / d));

 // Append the signature of the signing key pair's root
 // (just the output of treeSig, not idx_sig or r).
 Sig = Sig_tmp || getSig(SigPK[t]);
 return Sig;

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

8 Conformance

8.1 Key Generation and Signature Generation

Cryptographic modules that implement signature generation for a parameter set shall also
implement key generation for that parameter set. Implementations of the key generation and
signature algorithms in this document shall only be validated for use within hardware
cryptographic modules. The cryptographic modules shall be validated to provide FIPS 140-2 or
FIPS 140-3 [19] Level 3 or higher physical security, and the operational environment shall be
non-modifiable or limited.8 In addition, a cryptographic module that implements the key
generation or signature algorithms shall only operate in an approved mode of operation and
shall not implement a bypass mode. The cryptographic module shall not allow for the export of
private keying material. The entropy source for any approved random bit generator [6] used in
the implementation shall be located inside the cryptographic module’s physical boundary.

In order to prevent the possible reuse of an OTS key, when the cryptographic module accepts a
request to sign a message, the cryptographic module shall increment the leaf index of the private
key (q in LMS, idx in XMSS, idx_sig in XMSSMT) and shall store the incremented leaf index
value in nonvolatile storage before exporting a signature value or accepting another request to
sign a message. The cryptographic module shall not use an OTS key to generate a digital
signature more than one time.9

Cryptographic modules that implement LMS key and signature generation shall support at least
one of the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a
cryptographic module, the cryptographic module shall support at least one LMS parameter set
from Section 4 that uses the same hash function as the LM-OTS parameter set. Cryptographic
modules that implement LMS key and signature generation shall generate random data in
accordance with Section 6.1.

Cryptographic modules that implement XMSS key and signature generation shall implement
Algorithm 10 and Algorithm 12 from [1] for at least one of the XMSS parameter sets in Section
5. (The WOTS+ key generation method specified in Algorithm 10' in Section 7.2.1 shall be
used.) Cryptographic modules that support implementation of XMSSMT key and signature
generation shall implement Algorithm 10' and Algorithm 12' from Section 7.2.1 of this
document for at least one of the XMSSMT parameter sets in Section 5. Cryptographic modules
that implement XMSS or XMSSMT key and signature generation shall generate random data in
accordance with Section 6.2.

8 See Section 4.6 of FIPS 140-2 [19] and Section 7.6 of ISO/IEC 19790.
9 In some implementations of HSS or XMSSMT (e.g., Algorithm 16 in [1]), the root of the LMS or XMSS tree used to create the

signature is signed by its parent each time a signature is generated. This results in an OTS key being used to generate a digital
signature more than once. While the OTS key is used more than once, the message being signed is the same, so the result is to
just recreate the same signature (as long as the randomizer value is the same each time). However, as noted in [9] and [10],
such implementations are vulnerable to fault injection attacks. Implementations compliant with this publication must sign the
root of each tree only once. The resulting signature may be stored within the cryptographic module, or it may be exported from
the cryptographic module for storage elsewhere.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

8.2 Signature Verification

Cryptographic modules that implement LMS signature verification shall support at least one of
the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a
cryptographic module, the cryptographic module shall support at least one LMS parameter set
from Section 4 that uses the same hash function as the LM-OTS parameter set.

Cryptographic modules that implement XMSS signature verification shall implement Algorithm
14 of [1] for at least one of the parameter sets in Section 5. Cryptographic modules that
implement XMSSMT signature verification shall implement Algorithm 17 of [1] for at least one
of the parameter sets in Section 5.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

9 Security Considerations

9.1 One-Time Signature Key Reuse

Both LMS and XMSS are stateful signature schemes. If an attacker were able to obtain
signatures for two different messages created using the same one-time signature (OTS) key, then
it would become computationally feasible for that attacker to create forgeries [13]. As noted in
[8], extreme care needs to be taken in order to avoid the risk that an OTS key will be reused
accidentally. While the conformance requirements in Section 8.1 prevent many of the actions
that could result in accidental OTS key reuse, cryptographic modules still need to be carefully
designed to ensure that unexpected behavior cannot result in an OTS key being reused.

In order to avoid reuse of an OTS key, the state of the private key must be updated each time a
signature is generated. If the private key is stored in non-volatile memory, then the state of the
key must be updated in the nonvolatile memory to mark an OTS key as unavailable before the
corresponding signature that was generated using the OTS key is exported. Depending on the
environment, this can be nontrivial to implement. With many operating systems, simply writing
the update to a file is not sufficient because the write operation will be cached with the actual
write to non-volatile memory occurring later. If the cryptographic module loses power or crashes
before the write to non-volatile memory occurs, then the state update will be lost. If a signature
were exported after the write operation was issued, but before the update was written to non-
volatile memory, there would be a risk that the OTS key would be used again after the
cryptographic module restarts.

Some hardware cryptographic modules implement monotonic counters, which are guaranteed to
increment each time the counter’s value is read. When available, using the current value of a
monotonic counter to determine which OTS key to use for a signature may be very helpful in
avoiding unintentional reuse of an OTS key.

9.2 Hash Collisions

For LMS and XMSS, as for the other approved digital signature schemes [4], the signature
generation algorithm is not applied directly to the message but to a message digest generated by
the underlying hash function. The security of any signature scheme depends on the inability of an
attacker to find distinct messages with the same message digest.

There are two ways that an attacker might find these distinct messages. The attacker could look
for a message that has the same message digest as a message that has already been signed (a
second preimage), or the attacker could look for any two messages that have the same message
digest (a generic collision) and then try to get the private key holder (i.e., signer) to sign one of
them [21]. Finding a second preimage is much more difficult than finding a generic collision,
and it would be infeasible for an attacker to find a second preimage with any of the hash
functions allowed by this recommendation.

LMS and XMSS both use randomized hashing. When a message is presented to be signed, a
random value is created and prepended to the message, and the hash function is applied to this
expanded message to produce the message digest. Prepending the random value makes it
infeasible for anyone other than the signer to find a generic collision because finding a collision

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

would require predicting the randomizing value. The randomized hashing process does not,
however, impact the ability of a signer to create a generic collision since the signer, knowing the
private key, can choose the random value to prepend to the message.

The 192-bit hash functions described in this recommendation, SHA-256/192 and
SHAKE256/192, offer significantly less resistance to generic collision searches than their 256-bit
counterparts. In particular, a collision of the 192-bit functions may be found as the number of
sampled inputs approaches 296, as opposed to 2128 for the 256-bit functions, and it may be
possible for a signer with access to an extremely large amount of computing resources to sample
296 inputs.

Consequently, one trade-off for the use of 192-bit hash functions in LMS and XMSS is the
weakening of the verifier’s assurance that the signer will not be able to change the message once
the signature is revealed. This possibility does not affect the formal security properties of the
schemes because it remains the case that only the signer could produce a valid signature on a
message.

9.3 Revocation

Although procedures for the revocation of a compromised key are outside the scope of this
publication, the implementation of any signature scheme, in principle, should include such a
procedure [22]. For implementations of stateful hash-based signature schemes, which would be
vulnerable in the event of OTS key reuse, revocation procedures would arguably be even more
important.

In practice, however, procedures for revocation that are timely, efficient, and robust are often
difficult to implement. For applications with the characteristics described in Section 1.1, the
difficulties would likely be magnified.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

References

[1] Huelsing A, Butin D, Gazdag S, Rijneveld J, Mohaisen A (2018) XMSS:
eXtended Merkle Signature Scheme. (Internet Research Task Force (IRTF)),
IRTF Request for Comments (RFC) 8391.
https://doi.org/10.17487/RFC8391

[2] McGrew D, Curcio M, Fluhrer S (2019) Leighton-Micali Hash-Based
Signatures. (Internet Research Task Force (IRTF)), IRTF Request for
Comments (RFC) 8554. https://doi.org/10.17487/RFC8554

[3] National Institute of Standards and Technology (2015) Secure Hash Standard
(SHS). (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 180-4.
https://doi.org/10.6028/NIST.FIPS.180-4

[4] National Institute of Standards and Technology (2013) Digital Signature
Standard (DSS). (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 186-4.
https://doi.org/10.6028/NIST.FIPS.186-4

[5] National Institute of Standards and Technology (2015) SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. (U.S.
Department of Commerce, Washington, DC), Federal Information
Processing Standards Publication (FIPS) 202.
https://doi.org/10.6028/NIST.FIPS.202

[6] Special Publication 800-90 series:

Barker EB, Kelsey JM (2015) Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) 800-90A, Rev. 1. https://doi.org/10.6028/NIST.SP.800-90Ar1

Sönmez Turan M, Barker EB, Kelsey JM, McKay KA, Baish ML, Boyle M
(2018) Recommendation for the Entropy Sources Used for Random Bit
Generation. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) 800-90B.
https://doi.org/10.6028/NIST.SP.800-90B

Barker EB, Kelsey JM (2016) Recommendation for Random Bit Generator
(RBG) Constructions. (National Institute of Standards and Technology,
Gaithersburg, MD), (Second Draft) NIST Special Publication (SP) 800-90C.
Available at https://csrc.nist.gov/publications/detail/sp/800-90c/draft

[7] National Institute of Standards and Technology (2019) Post-Quantum
Cryptography. Available at https://csrc.nist.gov/projects/post-quantum-
cryptography

https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC8554
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

[8] McGrew D, Kampanakis P, Fluhrer S, Gazdag S, Butin D, Buchmann J
(2016) State Management for Hash-Based Signatures. Cryptology ePrint
Archive, Report 2016/357. https://eprint.iacr.org/2016/357.pdf

[9] Genêt A, Kannwischer MJ, Pelletier H, McLauchlan A (2018) Practical Fault
Injection Attacks on SPHINCS. Cryptology ePrint Archive, Report
2018/674. https://eprint.iacr.org/2018/674

[10] Castelnovi L, Martinelli A, Prest T (2018) Grafting trees: A fault attack
against the SPHINCS framework. Post-Quantum Cryptography - 9th
International Conference (PQCrypto 2018), Lecture Notes in Computer
Science 10786, pp 165–184. https://doi.org/10.1007/978-3-319-79063-3_8

[11] Fluhrer S (2017) Further Analysis of a Proposed Hash-Based Signature
Standard. Cryptology ePrint Archive, Report 2017/553.
https://eprint.iacr.org/2017/553.pdf

[12] Buchmann J, Dahmen E, Hulsing A (2011) XMSS – A Practical Forward
Secure Signature Scheme based on Minimal Security Assumptions.
Cryptology ePrint Archive, Report 2011/484.
https://eprint.iacr.org/2011/484.pdf

[13] Bruinderink LG, Hülsing A (2016) “Oops, I did it again” – Security of One-
Time Signatures under Two-Message Attacks. Cryptology ePrint Archive,
Report 2016/1042. https://eprint.iacr.org/2016/1042.pdf

[14] Perlner R, Cooper D (2009) Quantum Resistant Public Key Cryptography: A
Survey. 8th Symposium on Identity and Trust on the Internet (IDtrust 2009),
pp 85-93. https://doi.org/10.1145/1527017.1527028

[15] Eaton E (2017) Leighton-Micali Hash-Based Signatures in the Quantum
Random-Oracle Model. Cryptology ePrint Archive, Report 2017/607.
https://eprint.iacr.org/2017/607

[16] Bernstein DJ, Hülsing A, Kölbl S, Niederhagen R, Rijneveld J, Schwabe P
(2019) The SPHINCS+ Signature Framework. Cryptology ePrint Archive,
Report 2019/1086. https://eprint.iacr.org/2019/1086.pdf

[17] Malkin T, Micciancio D, Miner S (2002) Efficient generic forward-secure
signatures with an unbounded number of time periods. Advances in
Cryptology — EUROCRYPT 2002, Lecture Notes in Computer Science
2332, pp 400–417. https://doi.org/10.1007/3-540-46035-7_27

[18] Merkle RC (1979) Security, Authentication, and Public Key Systems. PhD
thesis, Stanford University, June 1979. Available at
https://www.merkle.com/papers/Thesis1979.pdf

https://eprint.iacr.org/2016/357.pdf
https://eprint.iacr.org/2018/674
https://doi.org/10.1007/978-3-319-79063-3_8
https://eprint.iacr.org/2017/553.pdf
https://eprint.iacr.org/2011/484.pdf
https://eprint.iacr.org/2016/1042.pdf
https://doi.org/10.1145/1527017.1527028
https://eprint.iacr.org/2017/607
https://eprint.iacr.org/2019/1086.pdf
https://doi.org/10.1007/3-540-46035-7_27
https://www.merkle.com/papers/Thesis1979.pdf

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

[19] National Institute of Standards and Technology (2001) Security
Requirements for Cryptographic Modules. (U.S. Department of Commerce,
Washington, DC), Federal Information Processing Standards Publication
(FIPS) 140-2, Change Notice 2 December 03, 2002.
https://doi.org/10.6028/NIST.FIPS.140-2

National Institute of Standards and Technology (2019) Security
Requirements for Cryptographic Modules. (U.S. Department of Commerce,
Washington, DC), Federal Information Processing Standards Publication
(FIPS) 140-3. https://doi.org/10.6028/NIST.FIPS.140-3

[20] Chen L, Jordan S, Liu Y-K, Moody D, Peralta R, Perlner RA, Smith-Tone D
(2016) Report on Post-Quantum Cryptography. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal
Report (IR) 8105. https://doi.org/10.6028/NIST.IR.8105

[21] Sotirov A, Stevens M, Appelbaum J, Lenstra A, Molnar D, Osvik DA, de
Weger B (2008) MD5 considered harmful today: Creating a rogue CA
certificate. Available at https://www.win.tue.nl/hashclash/rogue-ca

[22] Special Publication 800-57 series:

Barker EB (2020) Recommendation for Key Management, Part 1: General.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-57 Part 1, Rev. 5.
https://doi.org/10.6028/NIST.SP.800-57pt1r5

Barker EB, Barker WC (2019) Recommendation for Key Management: Part
2 – Best Practices for Key Management Organizations. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) 800-57 Part 2, Rev. 1. https://doi.org/10.6028/NIST.SP.800-57pt2r1

Barker EB, Dang QH (2015) Recommendation for Key Management, Part 3:
Application-Specific Key Management Guidance. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) 800-57 Part 3, Rev. 1. https://doi.org/10.6028/NIST.SP.800-57pt3r1

[23] Housley R (2019) Hash Of Root Key Certificate Extension. (Internet
Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8649.
https://doi.org/10.17487/RFC8649

https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.IR.8105
https://www.win.tue.nl/hashclash/rogue-ca
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://doi.org/10.6028/NIST.SP.800-57pt3r1
https://doi.org/10.17487/RFC8649

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Appendix A—LMS XDR Syntax Additions

In order to support the LM-OTS and LMS parameter sets defined in Sections 4.2 through 4.4, the
XDR syntax in Section 3.3 of [2] is extended as follows. For data structures of type enum or
union below, the values or case statements specified in this appendix are to be added to the
ones specified in Section 3.3 of [2].

The numeric identifiers for the parameter sets defined in Sections 4.2 through 4.4 are marked as
“TBD,” as they had not yet been assigned at the time this document was published. Once they
are assigned, the numeric identifiers may be found at https://www.iana.org/assignments/leighton-
micali-signatures/leighton-micali-signatures.xhtml.

/* one-time signatures */

enum lmots_algorithm_type {
 lmots_sha256_n24_w1 = TBD,
 lmots_sha256_n24_w2 = TBD,
 lmots_sha256_n24_w4 = TBD,
 lmots_sha256_n24_w8 = TBD,
 lmots_shake_n32_w1 = TBD,
 lmots_shake_n32_w2 = TBD,
 lmots_shake_n32_w4 = TBD,
 lmots_shake_n32_w8 = TBD,
 lmots_shake_n24_w1 = TBD,
 lmots_shake_n24_w2 = TBD,
 lmots_shake_n24_w4 = TBD,
 lmots_shake_n24_w8 = TBD
};

typedef opaque bytestring24[24];

struct lmots_signature_n24_p200 {
 bytestring24 C;
 bytestring24 y[200];
};

struct lmots_signature_n24_p101 {
 bytestring24 C;
 bytestring24 y[101];
};

struct lmots_signature_n24_p51 {
 bytestring24 C;
 bytestring24 y[51];
};

struct lmots_signature_n24_p26 {

https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml
https://www.iana.org/assignments/leighton-micali-signatures/leighton-micali-signatures.xhtml

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

36

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 bytestring24 C;
 bytestring24 y[26];
};

union lmots_signature switch (lmots_algorithm_type type) {
 case lmots_sha256_n24_w1:
 lmots_signature_n24_p200 sig_n24_p200;
 case lmots_sha256_n24_w2:
 lmots_signature_n24_p101 sig_n24_p101;
 case lmots_sha256_n24_w4:
 lmots_signature_n24_p51 sig_n24_p51;
 case lmots_sha256_n24_w8:
 lmots_signature_n24_p26 sig_n24_p26;
 case lmots_shake_n32_w1:
 lmots_signature_n32_p265 sig_n32_p265;
 case lmots_shake_n32_w2:
 lmots_signature_n32_p133 sig_n32_p133;
 case lmots_shake_n32_w4:
 lmots_signature_n32_p67 sig_n32_p67;
 case lmots_shake_n32_w8:
 lmots_signature_n32_p34 sig_n32_p34;
 case lmots_shake_n24_w1:
 lmots_signature_n24_p200 sig_n24_p200;
 case lmots_shake_n24_w2:
 lmots_signature_n24_p101 sig_n24_p101;
 case lmots_shake_n24_w4:
 lmots_signature_n24_p51 sig_n24_p51;
 case lmots_shake_n24_w8:
 lmots_signature_n24_p26 sig_n24_p26;
};

/* hash-based signatures (hbs) */

enum lms_algorithm_type {
 lms_sha256_n24_h5 = TBD,
 lms_sha256_n24_h10 = TBD,
 lms_sha256_n24_h15 = TBD,
 lms_sha256_n24_h20 = TBD,
 lms_sha256_n24_h25 = TBD,
 lms_shake_n32_h5 = TBD,
 lms_shake_n32_h10 = TBD,
 lms_shake_n32_h15 = TBD,
 lms_shake_n32_h20 = TBD,
 lms_shake_n32_h25 = TBD,
 lms_shake_n24_h5 = TBD,
 lms_shake_n24_h10 = TBD,
 lms_shake_n24_h15 = TBD,

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

37

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 lms_shake_n24_h20 = TBD,
 lms_shake_n24_h25 = TBD
};

/* leighton-micali signatures (lms) */

union lms_path switch (lms_algorithm_type type) {
 case lms_sha256_n24_h5:
 case lms_shake_n24_h5:
 bytestring24 path_n24_h5[5];
 case lms_sha256_n24_h10:
 case lms_shake_n24_h10:
 bytestring24 path_n24_h10[10];
 case lms_sha256_n24_h15:
 case lms_shake_n24_h15:
 bytestring24 path_n24_h15[15];
 case lms_sha256_n24_h20:
 case lms_shake_n24_h20:
 bytestring24 path_n24_h20[20];
 case lms_sha256_n24_h25:
 case lms_shake_n24_h25:
 bytestring24 path_n24_h25[25];

 case lms_shake_n32_h5:
 bytestring32 path_n32_h5[5];
 case lms_shake_n32_h10:
 bytestring32 path_n32_h10[10];
 case lms_shake_n32_h15:
 bytestring32 path_n32_h15[15];
 case lms_shake_n32_h20:
 bytestring32 path_n32_h20[20];
 case lms_shake_n32_h25:
 bytestring32 path_n32_h25[25];
};

struct lms_key_n24 {
 lmots_algorithm_type ots_alg_type;
 opaque I[16];
 opaque K[24];
};

union lms_public_key switch (lms_algorithm_type type) {
 case lms_sha256_n24_h5:
 case lms_sha256_n24_h10:
 case lms_sha256_n24_h15:
 case lms_sha256_n24_h20:
 case lms_sha256_n24_h25:

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

38

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 case lms_shake_n24_h5:
 case lms_shake_n24_h10:
 case lms_shake_n24_h15:
 case lms_shake_n24_h20:
 case lms_shake_n24_h25:
 lms_key_n24 z_n24;

 case lms_shake_n32_h5:
 case lms_shake_n32_h10:
 case lms_shake_n32_h15:
 case lms_shake_n32_h20:
 case lms_shake_n32_h25:
 lms_key_n32 z_n32;
};

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

39

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Appendix B—XMSS XDR Syntax Additions

In order to support the XMSS parameter sets defined in Sections 5.2 through 5.4, the XDR
syntax in Appendices A, B, and C of [1] is extended as follows. For data structures of type enum
or union below, the values or case statements specified in this appendix are to be added to the
ones specified in Appendices A, B, and C of [1].

B.1 WOTS+

/* ots_algorithm_type identifies a particular
 signature algorithm */

enum ots_algorithm_type {
 wotsp-sha2_192 = 0x00000005,
 wotsp-shake256_256 = 0x00000006,
 wotsp-shake256_192 = 0x00000007,
};

/* Byte strings */

typedef opaque bytestring24[24];

union ots_signature switch (ots_algorithm_type type) {

 case wotsp-sha2_192:
 case wotsp-shake256_192:
 bytestring24 ots_sig_n24_len51[51];

 case wotsp-shake256_256:
 bytestring32 ots_sig_n32_len67[67];
};

union ots_pubkey switch (ots_algorithm_type type) {
 case wotsp-sha2_192:
 case wotsp-shake256_192:
 bytestring24 ots_pubk_n24_len51[51];

 case wotsp-shake256_256:
 bytestring32 ots_pubk_n32_len67[67];
};

B.2 XMSS

/* Definition of parameter sets */

enum xmss_algorithm_type {
 xmss-sha2_10_192 = 0x0000000D,
 xmss-sha2_16_192 = 0x0000000E,

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

40

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 xmss-sha2_20_192 = 0x0000000F,

 xmss-shake256_10_256 = 0x00000010,
 xmss-shake256_16_256 = 0x00000011,
 xmss-shake256_20_256 = 0x00000012,

 xmss-shake256_10_192 = 0x00000013,
 xmss-shake256_16_192 = 0x00000014,
 xmss-shake256_20_192 = 0x00000015,
};

/* Authentication path types */

union xmss_path switch (xmss_algorithm_type type) {
 case xmss-sha2_10_192:
 case xmss-shake256_10_192:
 bytestring24 path_n24_t10[10];

 case xmss-shake256_10_256:
 bytestring32 path_n32_t10[10];

 case xmss-sha2_16_192:
 case xmss-shake256_16_192:
 bytestring24 path_n24_t16[16];

 case xmss-shake256_16_256:
 bytestring32 path_n32_t16[16];

 case xmss-sha2_20_192:
 case xmss-shake256_20_192:
 bytestring24 path_n24_t20[20];

 case xmss-shake256_20_256:
 bytestring32 path_n32_t20[20];
};

/* Types for XMSS random strings */

union random_string_xmss switch (xmss_algorithm_type type) {
 case xmss-sha2_10_192:
 case xmss-sha2_16_192:
 case xmss-sha2_20_192:
 case xmss-shake256_10_192:
 case xmss-shake256_16_192:
 case xmss-shake256_20_192:
 bytestring24 rand_n24;

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

41

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 case xmss-shake256_10_256:
 case xmss-shake256_16_256:
 case xmss-shake256_20_256:
 bytestring32 rand_n32;
};

/* Corresponding WOTS+ type for given XMSS type */

union xmss_ots_signature switch (xmss_algorithm_type type) {
 case xmss-sha2_10_192:
 case xmss-sha2_16_192:
 case xmss-sha2_20_192:
 wotsp-sha2_192;

 case xmss-shake256_10_256:
 case xmss-shake256_16_256:
 case xmss-shake256_20_256:
 wotsp-shake256_256;

 case xmss-shake256_10_192:
 case xmss-shake256_16_192:
 case xmss-shake256_20_192:
 wotsp-shake256_192;
};

/* Types for bitmask seed */

union seed switch (xmss_algorithm_type type) {
 case xmss-sha2_10_192:
 case xmss-sha2_16_192:
 case xmss-sha2_20_192:
 case xmss-shake256_10_192:
 case xmss-shake256_16_192:
 case xmss-shake256_20_192:
 bytestring24 seed_n24;

 case xmss-shake256_10_256:
 case xmss-shake256_16_256:
 case xmss-shake256_20_256:
 bytestring32 seed_n32;
};

/* Types for XMSS root node */

union xmss_root switch (xmss_algorithm_type type) {
 case xmss-sha2_10_192:
 case xmss-sha2_16_192:

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

42

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 case xmss-sha2_20_192:
 case xmss-shake256_10_192:
 case xmss-shake256_16_192:
 case xmss-shake256_20_192:
 bytestring24 root_n24;

 case xmss-shake256_10_256:
 case xmss-shake256_16_256:
 case xmss-shake256_20_256:
 bytestring32 root_n32;
};

B.3 XMSSMT

/* Definition of parameter sets */

enum xmssmt_algorithm_type {

 xmssmt-sha2_20/2_192 = 0x00000021,
 xmssmt-sha2_20/4_192 = 0x00000022,
 xmssmt-sha2_40/2_192 = 0x00000023,
 xmssmt-sha2_40/4_192 = 0x00000024,
 xmssmt-sha2_40/8_192 = 0x00000025,
 xmssmt-sha2_60/3_192 = 0x00000026,
 xmssmt-sha2_60/6_192 = 0x00000027,
 xmssmt-sha2_60/12_192 = 0x00000028,

 xmssmt-shake256_20/2_256 = 0x00000029,
 xmssmt-shake256_20/4_256 = 0x0000002A,
 xmssmt-shake256_40/2_256 = 0x0000002B,
 xmssmt-shake256_40/4_256 = 0x0000002C,
 xmssmt-shake256_40/8_256 = 0x0000002D,
 xmssmt-shake256_60/3_256 = 0x0000002E,
 xmssmt-shake256_60/6_256 = 0x0000002F,
 xmssmt-shake256_60/12_256 = 0x00000030,

 xmssmt-shake256_20/2_192 = 0x00000031,
 xmssmt-shake256_20/4_192 = 0x00000032,
 xmssmt-shake256_40/2_192 = 0x00000033,
 xmssmt-shake256_40/4_192 = 0x00000034,
 xmssmt-shake256_40/8_192 = 0x00000035,
 xmssmt-shake256_60/3_192 = 0x00000036,
 xmssmt-shake256_60/6_192 = 0x00000037,
 xmssmt-shake256_60/12_192 = 0x00000038,
};

/* Type for XMSS^MT key pair index */

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

43

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

/* Depends solely on h */

union idx_sig_xmssmt switch (xmss_algorithm_type type) {
 case xmssmt-sha2_20/2_192:
 case xmssmt-sha2_20/4_192:
 case xmssmt-shake256_20/2_256:
 case xmssmt-shake256_20/4_256:
 case xmssmt-shake256_20/2_192:
 case xmssmt-shake256_20/4_192:
 bytestring3 idx3;

 case xmssmt-sha2_40/2_192:
 case xmssmt-sha2_40/4_192:
 case xmssmt-sha2_40/8_192:
 case xmssmt-shake256_40/2_256:
 case xmssmt-shake256_40/4_256:
 case xmssmt-shake256_40/8_256:
 case xmssmt-shake256_40/2_192:
 case xmssmt-shake256_40/4_192:
 case xmssmt-shake256_40/8_192:
 bytestring5 idx5;

 case xmssmt-sha2_60/3_192:
 case xmssmt-sha2_60/6_192:
 case xmssmt-sha2_60/12_192:
 case xmssmt-shake256_60/3_256:
 case xmssmt-shake256_60/6_256:
 case xmssmt-shake256_60/12_256:
 case xmssmt-shake256_60/3_192:
 case xmssmt-shake256_60/6_192:
 case xmssmt-shake256_60/12_192:
 bytestring8 idx8;
};

union random_string_xmssmt switch (xmssmt_algorithm_type type) {
 case xmssmt-sha2_20/2_192:
 case xmssmt-sha2_20/4_192:
 case xmssmt-sha2_40/2_192:
 case xmssmt-sha2_40/4_192:
 case xmssmt-sha2_40/8_192:
 case xmssmt-sha2_60/3_192:
 case xmssmt-sha2_60/6_192:
 case xmssmt-sha2_60/12_192:
 case xmssmt-shake256_20/2_192:
 case xmssmt-shake256_20/4_192:
 case xmssmt-shake256_40/2_192:
 case xmssmt-shake256_40/4_192:

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

44

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 case xmssmt-shake256_40/8_192:
 case xmssmt-shake256_60/3_192:
 case xmssmt-shake256_60/6_192:
 case xmssmt-shake256_60/12_192:
 bytestring24 rand_n24;

 case xmssmt-shake256_20/2_256:
 case xmssmt-shake256_20/4_256:
 case xmssmt-shake256_40/2_256:
 case xmssmt-shake256_40/4_256:
 case xmssmt-shake256_40/8_256:
 case xmssmt-shake256_60/3_256:
 case xmssmt-shake256_60/6_256:
 case xmssmt-shake256_60/12_256:
 bytestring32 rand_n32;
};

/* Type for reduced XMSS signatures */

union xmss_reduced (xmss_algorithm_type type) {
 case xmssmt-sha2_20/2_192:
 case xmssmt-sha2_40/4_192:
 case xmssmt-sha2_60/6_192:
 case xmssmt-shake256_20/2_192:
 case xmssmt-shake256_40/4_192:
 case xmssmt-shake256_60/6_192:
 bytestring24 xmss_reduced_n24_t61[61];

 case xmssmt-sha2_20/4_192:
 case xmssmt-sha2_40/8_192:
 case xmssmt-sha2_60/12_192:
 case xmssmt-shake256_20/4_192:
 case xmssmt-shake256_40/8_192:
 case xmssmt-shake256_60/12_192:
 bytestring24 xmss_reduced_n24_t56[56];

 case xmssmt-sha2_40/2_192:
 case xmssmt-sha2_60/3_192:
 case xmssmt-shake256_40/2_192:
 case xmssmt-shake256_60/3_192:
 bytestring24 xmss_reduced_n24_t71[71];

 case xmssmt-shake256_20/2_256:
 case xmssmt-shake256_40/4_256:
 case xmssmt-shake256_60/6_256:
 bytestring32 xmss_reduced_n32_t77[77];

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

45

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 case xmssmt-shake256_20/4_256:
 case xmssmt-shake256_40/8_256:
 case xmssmt-shake256_60/12_256:
 bytestring32 xmss_reduced_n32_t72[72];

 case xmssmt-shake256_40/2_256:
 case xmssmt-shake256_60/3_256:
 bytestring32 xmss_reduced_n32_t87[87];
};

/* xmss_reduced_array depends on d */

union xmss_reduced_array (xmss_algorithm_type type) {
 case xmssmt-sha2_20/2_192:
 case xmssmt-sha2_40/2_192:
 case xmssmt-shake256_20/2_256:
 case xmssmt-shake256_40/2_256:
 case xmssmt-shake256_20/2_192:
 case xmssmt-shake256_40/2_192:
 xmss_reduced xmss_red_arr_d2[2];

 case xmssmt-sha2_60/3_192:
 case xmssmt-shake256_60/3_256:
 case xmssmt-shake256_60/3_192:
 xmss_reduced xmss_red_arr_d3[3];

 case xmssmt-sha2_20/4_192:
 case xmssmt-sha2_40/4_192:
 case xmssmt-shake256_20/4_256:
 case xmssmt-shake256_40/4_256:
 case xmssmt-shake256_20/4_192:
 case xmssmt-shake256_40/4_192:
 xmss_reduced xmss_red_arr_d4[4];

 case xmssmt-sha2_60/6_192:
 case xmssmt-shake256_60/6_256:
 case xmssmt-shake256_60/6_192:
 xmss_reduced xmss_red_arr_d6[6];

 case xmssmt-sha2_40/8_192:
 case xmssmt-shake256_40/8_256:
 case xmssmt-shake256_40/8_192:
 xmss_reduced xmss_red_arr_d8[8];

 case xmssmt-sha2_60/12_192:
 case xmssmt-shake256_60/12_256:
 case xmssmt-shake256_60/12_192:

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

46

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 xmss_reduced xmss_red_arr_d12[12];
};

/* Types for bitmask seed */

union seed switch (xmssmt_algorithm_type type) {
 case xmssmt-sha2_20/2_192:
 case xmssmt-sha2_20/4_192:
 case xmssmt-sha2_40/2_192:
 case xmssmt-sha2_40/4_192:
 case xmssmt-sha2_40/8_192:
 case xmssmt-sha2_60/3_192:
 case xmssmt-sha2_60/6_192:
 case xmssmt-sha2_60/12_192:
 case xmssmt-shake256_20/2_192:
 case xmssmt-shake256_20/4_192:
 case xmssmt-shake256_40/2_192:
 case xmssmt-shake256_40/4_192:
 case xmssmt-shake256_40/8_192:
 case xmssmt-shake256_60/3_192:
 case xmssmt-shake256_60/6_192:
 case xmssmt-shake256_60/12_192:
 bytestring24 seed_n24;

 case xmssmt-shake256_20/2_256:
 case xmssmt-shake256_20/4_256:
 case xmssmt-shake256_40/2_256:
 case xmssmt-shake256_40/4_256:
 case xmssmt-shake256_40/8_256:
 case xmssmt-shake256_60/3_256:
 case xmssmt-shake256_60/6_256:
 case xmssmt-shake256_60/12_256:
 bytestring32 seed_n32;

};

/* Types for XMSS^MT root node */

union xmssmt_root switch (xmssmt_algorithm_type type) {
 case xmssmt-sha2_20/2_192:
 case xmssmt-sha2_20/4_192:
 case xmssmt-sha2_40/2_192:
 case xmssmt-sha2_40/4_192:
 case xmssmt-sha2_40/8_192:
 case xmssmt-sha2_60/3_192:
 case xmssmt-sha2_60/6_192:
 case xmssmt-sha2_60/12_192:

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

47

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

 case xmssmt-shake256_20/2_192:
 case xmssmt-shake256_20/4_192:
 case xmssmt-shake256_40/2_192:
 case xmssmt-shake256_40/4_192:
 case xmssmt-shake256_40/8_192:
 case xmssmt-shake256_60/3_192:
 case xmssmt-shake256_60/6_192:
 case xmssmt-shake256_60/12_192:
 bytestring24 root_n24;

 case xmssmt-shake256_20/2_256:
 case xmssmt-shake256_20/4_256:
 case xmssmt-shake256_40/2_256:
 case xmssmt-shake256_40/4_256:
 case xmssmt-shake256_40/8_256:
 case xmssmt-shake256_60/3_256:
 case xmssmt-shake256_60/6_256:
 case xmssmt-shake256_60/12_256:
 bytestring32 root_n32;
};

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

48

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

Appendix C—Provable Security Analysis

This appendix briefly summarizes the formal security model and proofs of security of the LMS
and XMSS signature schemes and provides a short discussion comparing these models and
proofs.

C.1 The Random Oracle Model

In the random oracle model (ROM), there is a publicly accessible random oracle that both the
user and the adversary can send queries to and receive responses from at any time. A random
oracle H is a hypothetical, interactive black-box algorithm that obeys the following rules:

1. Every time the algorithm H receives a new input string s, it generates an output t
uniformly at random from its output space and returns the response t. The algorithm H
then records the pair (s, t) for future use.

2. If the algorithm H is ever queried in the future with some prior input s, it will always
return the same output t according to its recorded memory.

Alternatively, the random oracle H can be described as a non-interactive but exponentially large
look-up table initialized with truly random outputs t for each possible input string s.

To say that a cryptographic security proof is done in the random oracle model means that every
use of a particular function (e.g., in the case here, the compression function that is used to
perform hashes) is replaced by a query to the random oracle H. This simplifies security claims
because, for example, it becomes easy to prove upper bounds on the likelihood of producing a
second preimage within a fixed number of queries to H. On the other hand, (compression)
functions in the real world are neither interactive nor have exponentially large descriptions, so
they cannot truly behave like a random oracle.

It is therefore desirable to have a cryptographic security proof that avoids using the random
oracle model. However, this often leads to less efficient cryptographic systems, or it is not yet
known how to perform a proof without appealing to the random oracle model, or both. So, as a
matter of real-world pragmatism, the ROM is commonly used.

C.2 The Quantum Random Oracle Model

The quantum random oracle model (QROM) is similar to the ROM, except that it is additionally
assumed that all parties (in particular, the adversary) have quantum computers and can query the
random oracle H in superposition. (In the real world, the random oracle H is still instantiated as a
compression function or something similar, in accordance with the cryptosystem’s specification.)
While this complicates security claims as compared to the ROM, it more accurately models the
power of an adversary that has access to a large-scale quantum device for its cryptanalysis when
attacking a real-world scheme.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

49

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

C.3 LMS Security Proof

In [11], the author considers a particular experiment in the random oracle model in which the
adversary is given a series of strings with prefixes (in a randomly chosen but structured manner)
and hash targets. The attacker’s goal is to find one more string that has the same prefix and hash
target as any of its input strings. The author proves an upper bound on the adversary’s ability to
compute first or second preimages from these strings (by querying the compression function
modeled as a random oracle).

Then, the author reduces the problem of forging a signature in LMS to this stated experiment,
concluding that the same upper bounds apply to the problem of producing forgeries against
LMS. This random oracle model proof critically depends on the randomness of the prefixes used
in LMS, which means that LMS in the real world critically depends on the pseudorandomness of
the prefixes.

Further, in [15], the same proof is carried out in the QROM.

C.4 XMSS Security Proof

In [12], a security analysis for the original (academic publication) version of XMSS is given
under the following assumptions:

1. The function family {fk} used to construct Winternitz signatures is pseudorandom. This
means that if the bit string k is chosen uniformly at random, then an adversary given
black-box access to the function fk cannot distinguish this black box from a random
function within a polynomial number of queries (except with negligible probability).

2. The hash function family {hk} is second preimage-resistant. This means that if bit strings
k and m are chosen uniformly at random, then an adversary given k and m cannot
construct m' ≠ m such that hk(m') = hk(m) in polynomial time (except with negligible
probability).

The proof in [12] asserts that if both of these assumptions are true, then XMSS is existentially
unforgeable under adaptive chosen message attacks (EUF-CMA) in the standard model.

However, in the current version of XMSSMT [1], the security analysis differs somewhat. In the
standard model, [17] shows that XMSSMT is EUF-CMA. Further, [16] shows that XMSSMT is
post-quantum existentially unforgeable under adaptive chosen message attacks with respect to
the QROM.

In a little more detail, the current version of XMSS uses two types of assumptions:

1. A standard model assumption that the hash function hk, used for the one-time signatures
and tree node computations, is post-quantum, multi-function, multi-target decisional
second-preimage-resistant.

NIST SP 800-208 RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

50

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-208

2. A (quantum) random oracle model assumption that the pseudorandom function fk, used to
generate pseudorandom values for randomized hashing and computing bitmasks as
blinding keys, may be validly modeled as a quantum random oracle H.

C.5 Comparison of the Security Models and Proofs of LMS and XMSS

Generally speaking, both LMS and XMSS are supported by sound security proofs under
commonly used cryptographic hardness assumptions. That is, if these cryptographic assumptions
are true, then both schemes are provably shown to be existentially unforgeable under chosen
message attack, even against an adversary that has access to a large-scale quantum computer for
use in its forgery attack.

The main difference between these schemes’ security analyses comes down to the use (and the
degree of use) of the random oracle or quantum random oracle models. Along these lines, the
difference between the (standard model/real world) cryptographic assumption that some function
family {fk} is pseudorandom and the use of the random oracle model is briefly pointed out. For a
function fk to be a pseudorandom function in the real world, it should be the case that the bit
string k used as the key to the function remains private, meaning that it is not in the view of the
adversary at any point of the security experiment. On the other hand, a random oracle H achieves
the same pseudorandomness (or even randomness) properties of a pseudorandom function fk, but
no key k is necessarily associated with the random oracle. Indeed, all inputs to the random oracle
H may be known to all parties and, in particular, to the adversary. Therefore, using the random
oracle model clearly involves making a stronger assumption about the (limits of the)
cryptanalytic power of the adversary.

That said, a security proof is either entirely a “real-world proof,” which does not use the random
oracle model, or it appeals to the random oracle methodology in some manner. The security
analysis of the current version of XMSS only uses the random oracle H when performing
randomized hashing and computing bitmasks, whereas LMS uses the random oracle H to a
greater degree (modeling the compression function as a random oracle). However, it remains the
case that both schemes in their modern form are ultimately proven secure using the ROM and
QROM.

Therefore, the cryptographic hardness assumptions made by LMS and XMSS in order to achieve
existential unforgeability under chosen message attack (EUF-CMA) may be viewed as
substantially similar and worthy of essentially equal confidence. As such, the practitioner’s
decision to deploy one scheme or the other should primarily depend on other factors, such as the
efficiency demands for a given deployment environment or the other security considerations
enumerated earlier in this document.

	NIST SP 800-208, Recommendation for Stateful Hash-Based Signature Schemes
	1 Introduction
	1.1 Intended Applications for Stateful HBS Schemes
	1.2 The Importance of the Proper Maintenance of State
	1.3 Outline of Text

	2 Glossary of Terms, Acronyms, and Mathematical Symbols
	2.1 Terms and Definitions
	2.2 Acronyms
	2.3 Mathematical Symbols

	3 General Discussion
	3.1 One-Time Signature Systems
	3.2 Merkle Trees
	3.3 Two-Level Trees
	3.4 Prefixes and Bitmasks

	4 Leighton-Micali Signatures (LMS) Parameter Sets
	4.1 LMS with SHA-256
	4.2 LMS with SHA-256/192
	4.3 LMS with SHAKE256/256
	4.4 LMS with SHAKE256/192

	5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets
	5.1 XMSS and XMSSMT with SHA-256
	5.2 XMSS and XMSSMT with SHA-256/192
	5.3 XMSS and XMSSMT with SHAKE256/256
	5.4 XMSS and XMSSMT with SHAKE256/192

	6 Random Number Generation for Keys and Signatures
	6.1 LMS and HSS Random Number Generation Requirements
	6.2 XMSS and XMSSMT Random Number Generation Requirements

	7 Distributed Multi-Tree Hash-Based Signatures
	7.1 HSS
	7.2 XMSSMT
	7.2.1 Modified XMSS Key Generation and Signature Algorithms
	7.2.2 XMSSMT External Device Operations

	8 Conformance
	8.1 Key Generation and Signature Generation
	8.2 Signature Verification

	9 Security Considerations
	9.1 One-Time Signature Key Reuse
	9.2 Hash Collisions
	9.3 Revocation

	References
	Appendix A— LMS XDR Syntax Additions
	Appendix B— XMSS XDR Syntax Additions
	B.1 WOTS+
	B.2 XMSS
	B.3 XMSSMT

	Appendix C— Provable Security Analysis
	C.1 The Random Oracle Model
	C.2 The Quantum Random Oracle Model
	C.3 LMS Security Proof
	C.4 XMSS Security Proof
	C.5 Comparison of the Security Models and Proofs of LMS and XMSS

