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1. English Version

1. English Version

1.1 Abstract and Introduction

This white paper is released as an early access version

This white paper is released as an early access version, so there may be cases where the content referenced or announced in the white
paper is not included in the current white paper content.

Red Hat and KDDI are preparing to release the white paper with all content included by the fourth quarter of 2024.

1.1.1 Abstract

This white paper provides best practices for the "Shift on Stack" configuration, which integrates Red Hat OpenShift Container Platform into
the Red Hat OpenStack Platform within a telecommunications cloud.

The technological landscape surrounding telecommunications operators is undergoing significant changes, especially since the introduction
of virtualization with network functions virtualization (NFV) and more recently with containerization with cloud-native network functions
(CNF). With the advent of 5G Core network (5GC) defined in 3GPP Release 16 and beyond, Service-based Architecture (SBA) has been
specified, accelerating the movement towards cloud-native architectures among telecommunications operators.

In this white paper, we discuss the challenges faced by telecommunications operators due to the complexity of integration and the short
product lifecycle within this cloud-native paradigm. We then illustrate how leveraging Red Hat OpenStack Platform for private cloud in
conjunction with Red Hat OpenShift, which enables multi-cloud and hybrid cloud environments, can address and resolve these challenges.
Furthermore, we introduce best practices on the effective use of these products, particularly focusing on considerations and tuning within
the "Shift on Stack" configuration, utilizing OpenShift on OpenStack. We also compare this approach to utilizing OpenShift on bare metal,
another option within the telecommunications cloud. Lastly, we present a case study showcasing the utilization of these solutions in a real-
world network environment, specifically highlighting the case of KDDI, one of Japan's leading telecommunications operators.

It's worth noting that this white paper targets both telecommunications operators adopting the telecom cloud and telecom application
vendors providing applications for these telecom clouds.

1.1.2 Introduction

The trend towards openness and commoditization in telecommunications continues unabated. Digital switches, once operated on dedicated
machines, chips, operating system (OS), and applications, transitioned in the 2000s to Advanced TCA hardware and COTS servers with
general-purpose CPUs, and dedicated OS evolved into carrier-grade Linux, leveraging Linux technologies. In the 2010s, Enterprise Linux
distributions like Red Hat Enterprise Linux became the standard in telecom core networks. Furthermore, the emergence of virtualization and
cloud computing, coupled with the rise of public clouds, led to the birth of OpenStack as software for building private clouds, widely adopted
by telecommunications operators. In the early 2020s, new technologies like containers, and container orchestration software such as
Kubernetes, enabled telecommunication operators to deploy cloud-native technologies within their core networks, facilitating automated
operations and rapid application deployment.

However, telecommunications software and operations may not always keep pace with rapid technological changes, especially considering
the unique business environment for telecom operators. The societal impact of communication outages, which affect not only direct
customers but also citizens reliant on communication-based services, underscores the criticality of robust telecom infrastructure,
highlighting the significance of terms like "carrier-grade" and "telco-grade".

In addition to business considerations, telecom software and operations entail specialized requirements beyond typical enterprise needs.
Collaboration between operators and telecom application vendors is essential for building complex mobile core networks capable of serving
millions of subscribers seamlessly. Standardization efforts, such as those by 3GPP, are indispensable for ensuring interoperability and
backward compatibility, necessitating continued support for older protocols and interfaces.

Coexistence of legacy and modern systems remains a critical theme for operators, particularly for established players with long histories.
Despite the advent of 5G, many operators still support 3G and even 2G services, demanding cost-effective operation alongside efforts to
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1.1.2 Introduction

integrate and migrate legacy systems. Moreover, telecom applications must handle vast traffic volumes, maintaining performance even
during network congestion, requiring rigorous testing and performance optimization.

In this complex and interconnected landscape of mobile core networks, ensuring stable operations amidst frequent system interactions
poses significant challenges. While software and hardware migrations are crucial for maintaining stable communication services, the
execution of these migrations must also be stable and reliable, necessitating robust automation and rollback mechanisms, especially given
the stateful nature of operations within mobile core networks.

To effectively leverage the hybrid cloud and cloud-native capabilities of Red Hat OpenShift in the telecommunications industry, grounded
discussions considering both current challenges and historical contexts are essential.

This white paper combines the concepts of cloud computing with Red Hat OpenStack Platform and hybrid cloud with Red Hat OpenShift to
offer a solution to these practical operator challenges.
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1.2 Background

1.2 Background

1.2.1 Virtualization and NFV

Network function virtualization (NFV) is a way to virtualize network services that have traditionally run on proprietary hardware. These
services are packaged as VMs on commodity hardware, which allows service providers to run their network on standard servers instead of
proprietary ones. NFV improves scalability and agility by allowing service providers to deliver new network services and applications on
demand, without requiring additional hardware resources.

Key components within an NFV architecture are virtual network functions (VNFs), which service providers can flexibly run across different
servers or move around as needed when demand changes. This flexibility lets service providers deliver services and apps faster. For
example, if a customer requests a new network function, they can spin up a new VM to handle that request. If the function is no longer
needed, the VM can be decommissioned. This can also be a low-risk way to test the value of a potential new service.

VNFs are built on top of a virtual infrastructure manager (VIM) that abstracts the infrastructure to allocate compute, storage, and networking
resources efficiently among the VNFs. The framework for managing NFVI and provisioning new VNFs occurs in the management,
automation, and network orchestration (MANO) elements defined by NFV.

0 More Details

* Understanding virtualization

* What is NFV?

1.2.2 Telco Cloud

Telco cloud is a software-defined, highly resilient cloud infrastructure that allows telecommunications service providers (telcos) to add
services more quickly, respond faster to changes in network demand, and manage central and decentralized resources more efficiently. It is
one of the key foundational components in a successful digital transformation.

Enterprise clouds run internal, administrative functions and can have customer-facing portals - all delivered in a mix of public, private, and
hybrid configurations. Traditionally, telco clouds are focused on running more restrictive network functions and essential business
applications that require much higher levels of observability, control, fault tolerance, and availability.

While greenfield operators (those who build infrastructure where none existed before) can build a completely cloud-native environment
from the ground up, established operators must build their telco cloud to work with legacy network environments. Legacy and cloud-native
networks need to coexist for some period, allowing operators to migrate network functions, services, and applications in a way that makes
the most sense for their organization.

When migrating to a cloud-native architecture, a holistic approach is key. The migration might be implemented one network function or
service at a time, but the process should start with a comprehensive cloud readiness assessment that encompasses infrastructure,
applications and service portfolios, organization, and processes.

0 More Details

* What is telco cloud?

1.2.3 Containerization and Microservice

With the advent of 5G, telco clouds will utilize newer technologies like containers and microservices, as well as hybrid cloud architectures.
The adoption of CNFs can resolve some of the limitations of VNFs by moving many of these functions into containers. Containerization of
network functions makes it possible to manage how and where the functions run in the environment.

CNFs are not just the containerization of network functions. To get the full benefit of cloud-native principles requires further rearchitecting of
network function software, like decomposing it into microservices, allowing multiple versions during updates, and using available platform
services like generic load-balancers or datastores.
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1.2.4 Issues on Fragmentation

As more service providers adopt cloud-native environments, CNFs must co-exist with legacy VNFs during the transition. Service providers
must fully automate the development, deployment, maintenance, and operation of the network to effectively handle escalating demand,
accelerate deployments, and reduce complexity. Proven methodologies for configuration and deployment, tools matured in open source
communities, and rigorous testing and certification are more critical for service providers than ever.

The telco cloud is evolving to rely on an open, horizontal, hybrid approach to cloud infrastructure that increases flexibility and vendor
independence. The industry is recognizing that an open, horizontal approach rather than a vertically integrated stack?leads to faster
innovation, improved performance, increased agility, and significantly reduces the total cost of ownership.

0 More Details

» Understanding cloud-native applications

1.2.4 Issues on Fragmentation

Historically, network equipment providers (NEP) have supplied both software and hardware to telecom operators, with their software
running on their own hardware. In the cloud-native world, they sell only software, which runs on hardware platform provided by operators
or third parties. While the separation of software from hardware brings many advantages to both NEPs and operators, it also introduces
some challenges. NEPs needs to ensure their software runs properly and maintains guaranteed performance on various paltforms. This may
result in additional cost to NEPs due to required verification testing and potential modification on each platform.

The approach toward cloud-native networks varies among operators and currently appear to be fragmented. This fragmentation incurs
extra costs for both NEPs and operators.

We present this white paper to provide one of the best practices for utilizing Red Hat OpenShift Container Platform and Red Hat OpenStack
Platform for NFs in operators' networks. We anticipate that this activity will help suppress fragmentation and exploit the advantages from

private cloud solutions.
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1.3 "Shift on Stack" Solution Overview

1.3 "Shift on Stack" Solution Overview

1.3.1 Solution Overview
Challenges of Telecom Operators Toward Cloud-Native

Continuing to utilize these cloud-native technologies within telecom applications and telecom clouds is important, and there is no doubt
about the value that can be obtained by doing so.

However, as of 2024, this transformation may still be only halfway through.

In particular, telecom applications have quickly transitioned from physical appliances to virtualization through NFV in a short period of time,
and then adopted cloud-native technologies based on container technologies centered on Kubernetes. At the same time, the core
architecture has changed from 4G to 5G. Thus, there has been a drastic paradigm shift in technology from the 2010s to the present.

In the midst of these rapid paradigm shifts, both telecom application vendors and telecom operators are required to experiment and adapt
quickly. The telecommunications industry requires very high availability, and the communication protocols used cannot always be replaced
freely. Communication protocols need to be retained for compatibility with older communication standards. In addition, there are many
assets accumulated from the past regarding these communication protocols and highly reliable redundancy designs. Therefore, it is
necessary from an economic rationality perspective for telecom application vendors to reuse past assets even for new generation software
such as 5G.

As a result, the use of communication protocols such as Diameter and GTP, which use SCTP and UDP, continues. In Kubernetes,
implementations of containers that are aware of VLANs and IP addresses, such as multi-CNI using Multus and macvlan/ipvlan, are being
carried out. This allows CNF, which requires immediate switching to standby at the application layer, to continue using traditional
implementation methods and concepts, such as L2 redundancy methods using VRRP.

In order to utilize cloud-native technologies in such a situation, operators need to overcome the following specific challenges.

SHORT LIFECYCLE / FREQUENT UPGRADE

CNF ver.3
General Available

Evaluation | Rollout Operation
CNF ver.2
General Available m Maintenance Support EUS
Evaluation ' Rollout Operation
CNF ver.1
General Available Full Support Maintenance Support EUS
Evaluation | Rollout Operation
m Maintenance Support EUS
4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months

Example life cycle between OpenShift and CNF

Kubernetes releases a new major version three times a year, with 14 months of updates provided. Based on this, Red Hat offers the
OpenShift Container Platform, achieving up to 24 months of support. However, this is short compared to the long-term support at the
enterprise level and the 4-year support provided by the Red Hat OpenStack Platform.
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1.3.1 Solution Overview

This short lifecycle facilitates the addition of new features and the abolition of old ones, accelerating the turnover of software. While this is
effective for environments and content providers where change is intense, it poses challenges in the communications field where stable
infrastructure is required.

Mobile systems undergo major changes about every 10 years, and updates are made carefully to avoid service interruptions. Therefore,
adapting to the short lifecycle of Kubernetes and updating the software version every two years is a significant challenge for telecom
application vendors and telecom operators.

TIGHT COUPLING BETWEEN KUBERNETES AND CNF VERSIONS

Upgrading software versions to cope with Kubernetes' short lifecycle is a significant challenge. Furthermore, network operators demand
high performance and availability requirements from telecom applications. To meet these, telecom application vendors need to tune
Kubernetes and the operating system.

Telecom application vendors thoroughly verify CNF software in their labs and require the replication of these settings in the operator
environment. However, this poses a challenge in constructing a core network with multiple vendors, as the Kubernetes or OpenShift
versions and parameters used vary by vendor and product.

Therefore, to standardize the container platform layer and construct a core network with multiple vendors, it is necessary to absorb the
differences in versions and settings for each CNF and align the interfaces. However, realizing this requires substantial energy, and it is a
practical challenge that not all operators can adopt.

COMPLEX NETWORK REQUIREMENTS

Implementation of General Container Implementation of Complex CNF

Client ‘ Client

SBI .
| http/https (http/https) N3, N6, Diameter,,,
LB/ LB A \ntp - i .
Ingress Contrpller | «— Automatically Recognize Ingress Coftroller Zloiile «— Routing/BFD Specific to Each CNF
Service via K8s API
NIC g W NG ||| e [NIC — Interfaces Specific to Each CNF
I . .
oNL [ ] Automatically Assign PrimarICNI CNI/Network Resources
1] Addresses to Pod/Service Multus H Specific to Each CNF
N 5 - Secondary §NI
Service Automatically Detect Servife Due to diverse Sablsnns
Addition/Removal/Failure of SracS =S &l de oln INeele
RodS Address/Routing Specific to Each CNF
Composed Only of Network NF Pod Due to workload sbe e y—
Worker Interfaces Worker Jlisigo]volele) Kelo a e no NA Ppo Pods ofte
Abstracted/Concealed by K8s e SEEE (o (e @il mEme

Compared to general containers, CNFs require more complex implementation

The network requirements of Cloud-Native Network Functions (CNFs) used in core networks significantly differ from those of typical web
applications. Particularly, CNFs that require rapid application redundancy switching employ L2 redundancy such as VRRP, or L3 redundancy
combined with BGP and BFD. Also, multiple IP addresses may be necessary to utilize SCTP's multihoming.

In the case of data plane CNFs, SR-IOV and DPDK might be used. Utilizing these technologies requires handling PCI-E devices directly within
the CNF container.

Given these characteristics and operational requirements of telecom applications, when using Kubernetes in telecom, a single Pod needs to
be able to use multiple networks, such as VLAN and SR-IOV, in addition to the primary CNI. However, as of now, Kubernetes only manages
addresses as IPAM and performs service discovery for the primary CNI.

Therefore, to meet the complex network requirements of telecom applications and telecom operators, other automated or manual
operations are necessary.
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1.3.1 Solution Overview

CNF AND VNF MIXED WORKLOAD

New generation network functions are increasingly being deployed as Cloud-Native Network Functions (CNFs) using cloud-native
technologies. However, many network functions, such as those based on older standards or those with little change, are still not being
converted into CNFs. This is because containerization requires not just the use of container technology, but also the transformation of the
system architecture to a cloud-native one, and converting monolithic applications into microservices is not an easy task. Therefore, for these
less dynamic traditional network functions, it may not be necessary to fully adopt cloud-native technologies. Instead, it's important to
continue providing services with minimal effort and cost. Consequently, telecom operator platforms are required to accommodate both
CNFs and Virtual Network Functions (VNFs).

MORE DETAILS

For more detailed information regarding these challenges, please refer to Appendix A.

Solving Our Challenges with "Shift on Stack"

From the next chapter onwards, we will discuss the details of these challenges. We will demonstrate the effectiveness of the solution,
"Openshift on OpenStack (Shift on Stack')", which combines OpenStack as a private cloud and Kubernetes as a cloud-native platform.

Basic Concept and Strategy

MAXIMIZING THE VALUE OF OPENSHIFT/KUBERNETES WITH OPENSTACK

Container Platform

Container Platform (OpenShift/Kubernetes)
(OpenShift/Kubernetes) Telecom Grade High sn.
Quality performance
TeIecom_Grade High Short life
Quality performance Abstraction and Automation

. OpenStack
Complex requirements Cloud / Virtualized Infrastructure

Simplification
Bare Metal Servers /

Bare Metal Servers /

Networking

Networking

Benefits of inserting an abstraction layer through OpenStack

In general, having OpenStack reside between OpenShift and bare metal servers can introduce various overheads. These overheads include
OpenStack services, hypervisor QEMU/KVM processing, software required to run as a hypervisor such as Open vSwitch, and controller nodes
that provide the OpenStack database and APIs. However, these overheads do not merely create waste; they also facilitate a higher rate of
bare metal utilization (maximizing return on investment), high degree of automation and simplify management by abstracting the hardware
and physical networking layers.

By leveraging the benefits of OpenStack, such as abstraction, we can address the challenges that Telco operators face.

In this white paper elucidates how value can be maximized through the integration of virtualization and private clouds with Red Hat
OpenStack Platform, alongside cloud-native platforms utilizing OpenShift.

Using Shift on Stack yields the following benefits.
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1.3.1 Solution Overview

EFFICIENT INTEGRATION

NEP vendors offering NFs can choose the optimal Kubernetes/OpenShift version and surrounding ecosystem for each NF individually.
Additionally, by leveraging virtualization, they can freely select hardware configurations and network setups. This enables them to replicate
configurations close to their own validation environments on operators' actual networks without being constrained by specifications
imposed by other vendors' NFs or being influenced by hardware and network configurations specific to operator environments.

SIMPLE OPERATIONS

The greatest advantage of Kubernetes/OpenShift lies in the ability to focus on application operation. Therefore, simplifying the construction
and upgrade of Kubernetes/OpenShift clusters becomes extremely important as it does not provide intrinsic value from an application
perspective. Creating and deleting server and network resources on demand is the most crucial and effective aspect of cloud infrastructure.
The existence of infrastructure that allows Kubernetes/OpenShift to be easily rebuilt and reconfigured enables the operation of Kubernetes/
OpenShift clusters in an immutable manner, similar to container applications. Consequently, these operations can be greatly simplified.

PROMOTING AUTOMATION

OpenStack enables all operations on the infrastructure via a RESTful API. Moreover, utilizing these APIs, infrastructure automation tools such
as OpenStack CLI, OpenStack Heat, Ansible, and Terraform/OpenTofu can automate the management of infrastructure components beyond
virtual servers and primary networks for Kubernetes/OpenShift clusters. These components may include secondary networks, DNS records,
load balancers, container registries, bastion servers, monitoring servers, and more, which are sometimes required externally by Kubernetes/
OpensShift. OpenStack can address these challenges with its services, templates, virtualization including networking and others.

RESOLVING THE ABOVE CHALLENGES WITH SHIFT ON STACK

No.1: Short lifecycle / Frequent upgrade
» OpenStack APIs for virtual servers, virtual storage, and virtual networking enhance the automation of OpenShift setup using
Infrastructure as Code (IaC) tools.

» OpenStack's infrastructure abstraction streamlines operations such as the creation and deletion of OpenShift clusters. This makes it much
easier to deploy and support different versions of OpenShift clusters as required by each tenant, as ease of life-cycle management of the
OpenShift clusters easily redeploying the newer cluster versions and suspending and/or removing the of older version clusters once the
change is complete.

* By handling persistent data from OpenShift clusters, OpenStack facilitates resource lifecycle management of persistent and stateful
resources (such as Persistent Volumes), simplifying the process of replacing OpenShift clusters.

» OpenStack can offer abstract and consistent infrastructure resources for OpenShift deployments such as compute and networking.

« Furthermore, hardware abstraction via virtualization conceals the presence of physical hardware from virtual machine instances.

This enables the lifecycle of the actual physical hardware to be decoupled from the lifecycle of the virtual machine, except for features like
SR-IOV, which utilize PCIe pass-through capability.

No.2: Tight coupling between Kubernetes and CNF version

» With infrastructure isolation and abstract delivery via OpenStack, network application vendors offering Cloud Native Functions (CNF) can
deploy their own validated OpenShift versions and configurations in the operator's environment, mitigating concerns about conflicts with
other vendors.

No.3: Complex network requirements

* The on-demand creation of independent virtual networks for each tenant is facilitated by Neutron's virtual networking capabilities within
OpenStack.

» Neutron's capacity to create and segregate virtual networks ensures the necessary network isolation for each Cloud Native Function (CNF)
and OpenShift cluster.

+ All Neutron networking can be fully automated through the APL.
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1.3.1 Solution Overview

No.4: CNF and VNF mixed workload

» OpenStack's management capabilities for virtual machines are robust.

* Given OpenStack's comprehensive and proven functionality in managing Virtual Network Functions (VNFs), leveraging this capability
enables treating the OpenShift cluster for CNFs akin to a virtual machine.

1. In this white paper, we may refer to OpenShift on OpenStack as "Shift on Stack" for brevity. €
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1.3.2 Efficient Integration

1.3.2 Efficient Integration
Hardware Abstraction

Generally, the lifecycle of hardware is longer than that of Kubernetes, but they do not necessarily align. Also, to enhance the network to cope
with increasing traffic, it is necessary to expand server resources according to demand. However, it is conceivable to procure different
generations of hardware depending on the procurement timing. Also, you may want to select better hardware each time, so you may want
to change the hardware product by conducting an RFP.

In such situations, if you use bare metal servers directly, Kubernetes/OpenShift and CNF may need to tune each setting or change the design
to match these servers, depending on factors such as which side of the NUMA Node the fast NIC PCle card used is located.

Virtualization by OpenStack can hide this from CNF. This allows you to reduce the verification man-hours from the CNF perspective, such as
dealing with hardware replacement and heterogeneous hardware configurations, by using abstracted paravirtualized devices.

Flexible Infrastructure Selection Using Virtualization

Generally, by using Kubernetes/OpenShift, software can be freed from the construction of its operating environment and the management
of network connectivity, allowing it to focus more on application development and operation.

However, in operating NF for mobile core networks, it is not enough to just have the vanilla Kubernetes/OpenShift configuration. For these
NFs, which require high reliability and high performance, Kubernetes is often required to absorb complex network requirements and tune
CNF-specific parameters. Furthermore, these requirements may vary depending on the vendor providing the CNF and the type of CNF.
Therefore, it is a significant challenge to absorb these different requirements in Kubernetes on bare metal servers.

Therefore, by utilizing virtualization, you can divide the large bare metal server into clusters divided according to different Kubernetes/
OpenShift requirements for each CNF, optimize each cluster for the CNF it carries, and deploy it, allowing you to flexibly choose the
Kubernetes configuration.

Absorption of Environmental Differences through Abstraction

Also, the abstraction of server resources, network resources, storage resources, etc. through virtualization can absorb and hide
environmental differences.

For example, by using paravirtualized devices such as virtio, you can provide virtual hardware with high-performance software
implementation that does not depend on the type of hardware used to the Kubernetes/OpenShift controller node and worker node.

Furthermore, you can match detailed parameters such as the number of vCPUs, the capacity of memory, the number of NICs connected to
the worker node, the capacity and number of storage, etc. in each environment.

This allows you to match the NF vendor's verification environment with the operator's production environment and different operator
environments, and because it is hardware-independent, you can also reduce the verification patterns when using different hardware.

Economic Benefits

By preparing the optimal Kubernetes/OpenShift application operating environment for each CNF in this way, you can generate the following
economic benefits:

* You can shorten the hardware verification man-hours by hiding the hardware replacement and the selection of heterogeneous hardware
through virtualization.

* By preparing the optimal integrated Kubernetes/OpenShift for CNF, you can save time and resources for CNF integration.

* You can match the lab environment of the NF vendor and the production environment.
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1.3.3 Simple Operations
Unified Operation of CNFs and VNFs

Even with the advent of CNFs, there remains numerous use cases where virtual machines are necessary. This necessity extends not only to
NF but also to peripheral equipment such as O&M nodes and OSS/BSS in telecommunications carriers. There are also NF implementations
that run on virtual machines, not on containers or Kubernetes. Additionally, many legacy nodes, such as those for 4G and earlier or voice
service, continue to operate as VNF.

In such situations where there is a need for virtual machines, you can unify the operation of the infrastructure for both CNFs and VNFs by
introducing an OpenStack layer on top of hardware. This also makes it easier to allocate hardware resources between CNF and VNF.

Furthermore, for large-scale VM-based VNFs, there are operations such as server redundancy with HA (high availability) function due to
hardware abstraction, as well as live migration at the time of hardware failure. Therefore, network operators can unify the handling of these
hardware between CNF/containers and VNF/VMs by using the Shift on Stack configuration.

Definition of the Decomposition Point of Responsibility through Resource Partitioning

There are some limitations to using Kubernetes/OpenShift in a multi-vendor configuration. Generally, partitioning using Namespace is used
to take multi-tenancy in Kubernetes. However, there are some limitations to this method.

The first issue relates to a conflict in security and configuration. For CNFs, where high availability and performance are required, there may
be a need to specifically tune the Linux Kernel parameters of the operating system where the container operates. To achieve higher
performance, there may also be a need to directly leverage hardware technologies such as SR-IOV. In these cases, privileged user rights in
Kubernetes might be required, and there is a possibility that the changes in the Linux Kernel parameters used by each CNF vendor may
conflict.

The second issue is the division of network resources. Kubernetes has a feature called CNI that dynamically configures networks and
services, etc., without being aware of the network infrastructure, but these networks are different from technologies that strictly divide
networks, such as virtual networks provided in public cloud VPCs or OpenStack Neutron. Therefore, it is not possible to divide or connect the
network for each container request, and the network connecting the container to the outside must be treated flatly.

Against these challenges, by introducing OpenStack as IaaS and actively dividing Kubernetes/OpenShift clusters, responsibility
decomposition points can be clearly decomposed.

Simplification of Kubernetes/OpenShift Cluster Upgrade

In the Kubernetes upstream, a new major version is released three times a year, and Red Hat OpenShift Container Platform, a downstream
distribution of Kubernetes, follows this. OpenShift enhances this upstream support period, providing 6 months of full support and 12
months of maintenance support, and realizing up to 24 months of support for specific versions as Extended Update Support (EUS).

In this way, Kubernetes needs to be regularly upgraded to new versions, and at the same time, CNF must also follow these Kubernetes
versions and upgrade the CNF version. For network operators who are required to provide communication without interruption, it is
important in operation to be able to perform these regularly occurring version upgrades with high quality and quickly.

However, in-place upgrading the OpenShift/Kubernetes cluster is very challenging as it requires considering the mixed state of CNF and
OpenShift versions during the upgrade process and adjusting the timing of container restarts.

Also, fundamentally, Kubernetes platforms such as OpenShift don't support version downgrades today. Therefore, if a problem occurs
during the upgrade, it will also be difficult to revert the cluster back to its original version.

In contrast, the Shift on Stack configuration makes it easier to realize simple version upgrades by facilitating blue-green updates through
automation. Generally, creating or deleting virtual servers is simpler than creating or deleting bare metal servers. Since you can use
OpenStack, a system that has already been completed, there is no need to create a new bare metal server provisioning system or network
orchestrator.

By launching a new version of the OpenShift cluster and a new version of CNF, and switching on the network side, you can realize a very
simple version upgrade.
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1.3.4 Promoting Automation
Cloud Computing with OpenStack

The essence of the value provided by OpenStack is not just the provision of virtualization. OpenStack is cloud infrastructure software for

realizing cloud computing. This allows users to use the resources they need through the RESRful API provided by the cloud infrastructure,
not just hardware abstraction through virtualization.

By using these APIs, resources such as virtual machines and virtual networks can be managed by software. This allows complex network
requirements needed for network functions to be software-defined using various tools such as Red Hat Ansible Automation Platform,
OpenStack Heat, and other automation software.

In particular, these automations are powerfully effective in the following use cases in Telco Cloud.

Automation of Infrastructure Resource Management with IaC

With OpenStack, server resources, network resources, storage resources, and other server information can be defined through OpenStack's
APIs. This allows not only the configuration information of CNF (such as Helm and Helm Values) to be manages in Git, but also the
configuration information about server, network, and storage resources for Kubernetes/OpenShift clusters to be managed in Git using
OpenStack Heat, Ansible, Terraform/OpenTofu, and so on.

Automation of Infrastructure Deployment/Scaling

Infrastructure managed by IaC can easily create copies of the same configuration by changing its parameters. Generally, mobile core
networks are deployed on a large scale and multiple times, and are expanded to meet increasing demand.

Containerized CNFs following various Kubernetes practices can easily deploy and scale their network functions. However, this also requires

Kubernetes/OpenShift worker nodes to operate the CNF. If you have cloud infrastructure like OpenStack, you can automate the deployment
and scaling of these OpenShift clusters.
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1.4 Practice of "Shift on Stack"

1.4.1 Technical Overview
In this chapter, we will introduce the practical aspects of OpenShift on OpenStack.

Using OpenShift on top of OpenStack is a long-supported and common configuration in OpenShift. However, in the telecommunications
industry, where bare metal OpenShift is gaining attention, there are not many examples of building communication applications with Shift
on Stack.

In this white paper, we will describe considerations and precautions for using communication applications.

Consideration from Multiple Perspectives

In practicing Shift on Stack, it is necessary to consider both the perspective of OpenStack, which is the infrastructure, and OpenShift, which is
the cloud-native platform.

From the OpenStack perspective, the first thing needed is a general perspective as Network Function Virtualization (NFV). Virtual machine-
based NFV systems, called Virtual Network Functions (VNFs), are very popular in terms of tuning and setting perspectives for running VNFs.
In addition to this, OpenStack also needs to care about the features of OpenShift/Kubernetes.

Kubernetes is not just about providing various functions on its own, but it is very good at combining various plugins according to the
environment. To make it easy to introduce various plugins, interfaces called Container Network Interface (CNI) for networks and Container
Storage Interface (CSI) for storage are defined, and various external components can be used. There is a collection of plugins called Cloud
Provider OpenStack that makes the most of OpenStack's features, and you will use this. At this time, it is necessary to consider the
characteristics of the communication application, which is CNF, and to consider from the perspective of which components should be
prepared on the OpenStack side in addition to when VNF is used.

Of course, there are also tuning and considerations for handling communication workloads in OpenShift. The tuning from the perspective of
OpenShift/Kubernetes is basically the same as bare metal OpenShift, so you can use this knowledge as it is. However, there are some
considerations for running CNF workloads on OpenShift on OpenStack. For example, in the case of normal workloads, IPI (Installer
Provisioned Infrastructure) installation is used, but in the case of CNF workloads that require a large number of network divisions, it may be
necessary to choose UPI (User Provisioned Infrastructure). In addition, there is a perspective to effectively use very large bare metal servers
in bare metal, but a different way of thinking is required on OpenStack where resources can be cut out by virtualization. Furthermore, in
bare metal servers, management such as division of SR-IOV NICs needs to be done by OpenShift, but in Shift on Stack, SR-IOV management
is done by OpenStack.

The items mentioned above are just examples, but in this way, it is necessary to consider from the perspective of OpenStack, the perspective
of OpenShift, and the perspective of the parts where each intersects.
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Basic Strategy

LARGE OPENSTACK CLUSTER AND OPENSTACK MULTI-TENANT OPERATION

EMS
UPF SMF IMS-VNF

OpenShift Total
OpenShift Cluster #0 MANO Cluster #4 1200vCPUs
Total 1500vCPU Total 100vCPU
OpenShift
Cluster #3
Total 100vCPU

0SS UPF SMF

OpenShift Cluster #1 UDR 0ocs
Total 500vCPU : OpenShift Cluster #5
OpenShift Cluster #2
Total 1500vCPU Total 1000vCPU

Partitioning a Large OpenStack Resource Pool

Creating a dedicated OpenStack cluster for one OpenShift cluster cannot be said to be an effective measure.
As already introduced, the benefits of using OpenStack are as follows:
« Efficient integration
+ Simple operation
* Promotion of automation
In order to unify the infrastructure operations of telecommunications carriers, including not only CNFs but also VNFs and IT workloads, and

to reduce operating costs, it is necessary to scale the OpenStack cluster to a certain size. Therefore, it is first necessary to realize a unified

and consistent private cloud with OpenStack by operating it in multi-tenant, and the efficient deployment and operation of CNFs by
OpenShift is based on this foundation.

REALIZE BY DIVIDING THE DEPLOYMENT OF OPENSHIFT CLUSTERS TO ABSORB THE DEMAND DIFFERENCES FOR EACH
CNF

As mentioned earlier, the benefits of virtualization are hardware abstraction and the realization of automation by IaC. The hardware
requirements and network requirements required by CNFs differ depending on the CNF or CNF vendor. One of the things that OpenStack is
most good at is absorbing these differences and flexibly assigning resources. Taking advantage of the advantage of easy resource division
and flexible resource assignment, we will divide the OpenShift cluster according to the requirements.

DIVIDE THE RESPONSIBILITY RANGE OF OPENSTACK AND OPENSHIFT

OpenStack and OpenShift clearly separate their roles.

OpenShift/Kubernetes also has functions to configure the infrastructure, but it is effective to clearly define which of these functions to
enable in OpenStack and OpenShift.
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Details will be described later, but in general, the functions are divided as follows.

Category

Computing

Computing

Computing

Computing

Networking

Networking

Networking

Networking

Storage

Storage

Storage

Storage

Setting

CPU Pining

Hugepage

NUMA
management

Reserve HA

Resources

High Speed NW

NIC partitioning
with SR-IOV

Network
redundancy

Network QoS
setting

Assign Volume

Volume

Redundancy

Volue QoS settin

RWX Volue assign

OpenStack

\
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Description

CPU pinning should
be done on both
OpenStack and
OpenShift

Hugepage should
be provided ob both
GuestVM and
container

Openshift uses
single NUMA
isolated for each
virtual machine

OpenStack provides
compute resources
for HA

High speed virtual
network with OVS-
DPDK or SR-IOV

SR-IOV VF is isolated
and attached to VM
by OpenStack.
OpenShift worker
node uses a host-
device

OpenStack provides
network
redundancy except
SR-IOV attached
VvNIC

OpenStack provides
bandwidth
limitation and DSCP
marking

Persistent Volume is
provided by
OpenStack Cinder

OpenStack Cinder
backend provides
Persistent volume

IOPS and
Bandwidth
limitation is
provided by
OpenStack Cinder

Select OpenStack
Manilla or
OpenShift Data
Faundation
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Category Setting OpenStack OpenShift Description

depends on
requirement

Others DNS record \ \ Using OpenStack
managemen Designate

As such, functions and redundant configurations such as networks and storage are provided by OpenStack as cloud infrastructure, so by
effectively using Cloud Provider OpenStack 2, you can reduce the resources managed by OpenShift.

Use and Features of Red Hat Products

Red Hat's telco cloud solutions offer the ability to run VNF and CNF-based network functions side-by-side. Red Hat OpenStack Platform gives
service providers the ability to deploy networks at scale and deliver services and applications based on changing customer demand. Telco
network functions are placed in the most optimal locations to deliver necessary performance. Red Hat OpenShift helps service providers
adopt a cloud-native approach for their telco cloud for accelerated application development and consistency across hybrid cloud
environments.

RED HAT OPENSTACK PLATFORM

It's been over a decade since the creation of the OpenStack project. Since then, Red Hat OpenStack Platform has become a leading
technology for service provider cloud environments that propels innovation and is one of the top NFV infrastructure for service providers.
Red Hat service provider customers running Red Hat OpenStack Platform are estimated to have more than 2.5 billion mobile subscribers in
2022.

» Red Hat OpenStack Platform is the leading commercial distribution

+ Red Hat OpenStack Platform provides a scalable, flexible telco cloud environment based on proven, integrated technologies that extend
from the core datacenter to edge devices

» Red Hat OpenStack Platform provides a proven foundation for telco cloud’s critical workloads
RED HAT OPENSHIFT

Red Hat OpenShift empowers service providers in modernizing their network infrastructure and accelerates their ability to deliver 5G
services faster. OpenShift is an enterprise-ready Kubernetes application platform with a choice of deployment options that give service
providers complete flexibility to deploy in various locations and environments to build their distributed 5G networks.

» Red Hat OpenShift is the leading commercial Kubernetes solution
» Red Hat OpenShift delivers low and predictable latency, high bandwidth, and distributed architectures needed by telco cloud architectures

* A container-based platform offers a scalable and flexible way to evolve telco cloud infrastructure
OTHER SOFTWARES

» Red Hat Ceph Storage
» Red Hat OpenShift Data Foundation

Practice

In this white paper, we will introduce the details of the practice in Shift on Stack for the following items in the following chapters.
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OPENSTACK CLUSTER DESIGN

We will show the design of OpenStack required to practice Shift on Stack. Here is an overview.

* Selection of components to use in OpenStack

OpenStack Components to Use
Keystone - Identity Service

Glance - Image Service

Nova - Compute Service

Placement - Placement Service
Neutron(ML2/0OVN) - Network Service
Cinder - Block Storage Service
Designate - DNS Service

Heat - Orchestration Service

Octavia - Load balancer Service

Swift/Ceph - Object Storage Service

Purpose

Necessary for authentication and authorization
Necessary for image management

Necessary for running virtual machines
Necessary for running virtual machines
Necessary for managing virtual networks

Used for RWO Persistent Volume

Used as a DNS server for Ingress

Used for UPI installation/automation

Used for UPI LB/Service type: LoadBalancer, etc.

Used for data backup destinations, etc.

* Compute settings
« Divide server types that require overcommitment, server types that require CPU Pinning, etc. to increase server utilization efficiency
« Perform placement design considering the use of NUMA nodes and SR-IOV

+ Setting of availability zones
+ Divide the availability zones to increase fault tolerance, and deploy OpenShift with awareness of the availability zones
* Set availability zones for compute, network, storage, and load balancer respectively

» Network tuning
* Implement high-speed networking that does not rely solely on SR-IOV by utilizing ML2/OVN and Open vSwitch - DPDK
« Introduce effective use of SR-IOV

* QoS design
* Design for storage and network QoS to mitigate the noisy neighbor problem

* Scaling
+ Design for scalability that can manage many OpenShift clusters

* Advance

* Introduce more effective usage methods, including KDDI's practical examples
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OPENSHIFT CLUSTER DESIGN

We will show the design of OpenShift required to practice Shift on Stack. Here is an overview.

+ Installation
* Perform installation by UPI

« Introduce infrastructure creation by OpenStack Heat and installation automation by Ansible and OpenShift-Installer to simplify UPI
installation

* Introduce the use of Octavia for LBaaS and Designate for DNSaa$S
« Virtual machine design pattern
» Analyze CNF use cases and narrow down the configuration patterns of OpenShift clusters and worker nodes

* Use Neutron's trunk

1. Only for SR-IOV €
2. https://github.com/kubernetes/cloud-provider-openstack €<
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1.5 Conclusion

1.5 Conclusion

This white paper aims to provide best practices for integrating the Red Hat OpenShift Container Platform with the Red Hat OpenStack
Platform in telecom cloud environments, a configuration we refer to as "Shift on Stack".

The advent of open technologies has increased the degree of freedom in choice, leading to a fragmented telecom cloud landscape. From the
perspective of Red Hat's products, we introduced various options and released this white paper at an early stage, hoping it would serve as a
reference for telecom operators worldwide.

In this white paper, we have:

* Shared the challenges faced by telecom operators, such as the increasing complexity of integration and the shortening product lifecycle in
the wave of cloud-native trends.

» Demonstrated that by combining the Red Hat OpenStack Platform for private cloud and Red Hat OpenShift for realizing multi-cloud and
hybrid cloud, we can leverage these to solve these challenges.

* Introduced an overview of best practices on how to use these products more specifically, and what tuning considerations exist in the "Shift
on Stack" configuration where OpenShift is used on OpenStack.

Moving forward, Red Hat and KDDI plan to expand the content of this white paper around the fourth quarter of 2024, introducing more
practical and specific best practices. This will include a comparison that incorporates the use and performance verification of OpenShift on
bare metal, another option in the telecom cloud. Furthermore, we plan to introduce actual use cases in a major Japanese telecom operator,
KDDI's 5G core system, not just benchmarks and desktop studies.

Red Hat and KDDI will continue to contribute to the acceleration of innovation in the telecommunications industry by utilizing open-source
software and keeping information open. If you have interest in our activities, please feel free to contact us at telco-cloud@kddi.com.
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1.8 Appendix

1.8 Appendix

1.8.1 Appendix A: Details of Challenges
Short lifecycle / Frequent upgrading

. Full Support Maintenance Support Extended Update Support

EUS Release
EUS Release
EUS Release

4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months

Official OpenShift Life Cycle®

In the Kubernetes upstream, a release cycle is adopted where a new major version is released three times a year. This is followed by 12
months of regular support and 2 months of maintenance support, providing a total of 14 months of code fixes. At Red Hat, this support
period is enhanced in the Red Hat OpenShift Container Platform, which is based on Kubernetes. It offers 6 months of full support and 12
months of maintenance support, and provides 6 months of support for specific versions as Extended Update Support (EUS). This achieves a
maximum of 24 months of support as standard.

Even with the long-term support provided by Red Hat OpenShift, this is still very short compared to the 10-year long-term support at the
enterprise level provided by Red Hat Enterprise Linux, or the 4-year support provided by Red Hat OpenStack Platform.

This short software lifecycle makes it easier to incorporate new features, improvements, and deprecations into Kubernetes and Red Hat
OpensShift, which are platform software that run applications, accelerating the metabolism of the Kubernetes software.

This rapid update of platform software is an effective method for web companies, where the lifecycle of the applications providing the
service is overwhelmingly faster than the platform software, due to frequent CI/CD execution in environments where business and
technology are changing rapidly.

However, this short software lifecycle of Kubernetes also presents challenges in the telecommunications domain, where stable infrastructure
is required.

Mobile systems have generations like 4G/5G, and major changes are made about every 10 years. In the mobile core network, which
accomodates many subscribers unitgerruptedly, care is taken to avoid service outage caused by upgrade. Therefore, mobile operators have
traditionally operated by updating hardware and software for problem resolution and maintenance limits set by the hardware and software
vendors they use. Generally, updates were made only a few times a year at most for a single software or system.
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CNF ver.3
General Available

Evaluation | Rollout Operation
CNF ver.2

General Available Full Support Maintenance Support EUS

Evaluation | Rollout Operation
CNF ver.1

General Available Full Support Maintenance Support EUS

Evaluation ' Rollout Operation

m Maintenance Support EUS

4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months

Example life cycle between OpenShift and CNF

For telecom application vendors and telecom operators, adapting to Kubernetes' short lifecycle and upgrading the software version of both
Kubernetes and telecom applications every two years is a very challenging task.

Tight coupling between Kubernetes and CNF versions

As explained in the previous section, upgrading the software version to match Kubernetes' short lifecycle is a significant challenge.

Furthermore, to provide stable communication at a low cost, network operators demand very high performance and availability
requirements from telecom applications, which are network functions. To meet these requirements demanded by network operators,
telecom application vendors providing CNFs need to meticulously tune Kubernetes and the operating system.

Therefore, telecom application vendors thoroughly verify their CNF software in their own labs. They then require operators to reproduce the
configuration content found and verified in the lab as much as possible in the operator environment. Network application vendors often
clearly specify detailed parameter settings, including the versions of Kubernetes and OpenShift, to operators, defining clear operating
conditions for the CNFs. This kind of tuning is more prominent in data plane CNFs (such as UPF) that handle large volumes of mobile
subscriber traffic using DPDK or SR-IOV.

Linux Kernel

Kubernetes C N F

K8s Eco system
(e.g. service mesh)

CNF has many strong dependencies

Given this situation, there is a strong dependency between telecom applications and Kubernetes or OpenShift. For operators, adopting these
versions and settings in line with the application, Kubernetes, and OpenShift versions and parameter tuning verified by the vendor is the
least risky and most reliable method when introducing network functions.

However, this approach presents challenges when constructing a core network with multiple vendors. This is because different vendors and
CNF products may use different versions of Kubernetes and OpenShift, and the parameters and tuning know-how of the products used may
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differ. Therefore, to standardize the container platform layer such as Kubernetes/OpenShift, ensure competitiveness, and construct a multi-
vendor core network to ensure redundancy, it is necessary to absorb differences in versions and settings for each CNF and align interfaces.

In reality, Tier 1 operators leading the telecom industry are strongly promoting these initiatives and achieving results. However, realizing
these requires a great deal of energy, and it is also a realistic challenge that not all operators can adopt the same strategy as them.
Complex network requirements

The network requirements for CNFs used in the core network significantly differ from those of typical web applications, which cnstitue the
most common use cases of Kubernetes.

BSS/SO

Traditional network requirements

In particular, for CNFs that terminate user sessions or handle user plane communication, and other CNFs that require quick application
redundancy switching, L2 redundancy using VRRP or L3 redundancy combining BGP and BFD is implemented to achieve immediate
switching at the application level. In addition, CNFs may need to have multiple IP addresses to use SCTP multihoming, or need to have a
VLAN interface due to application design. Furthermore, in the traditional field of communication, signaling and data plane, OAM traffic, and
service orders from BSS, etc., interfaces, IP addresses, VRF, and network devices have been separated and created according to the type of
communication.

These requirements are significantly different from the cloud-native concept where it is sufficient to connect to one VPC and external traffic

can communicate using NAT/NAPT.

Implementation of General Container Implementation of Complex CNF

Client Client
SBI .
s http/https i | (http/https) N3, N6, Diameter,,,
Ingress Contrpller | — Automatically Recognize Ingress Cohtroller Fabric « Routing/BFD Specific to Each CNF
Service via K8s API
NIC g W MG ||| e [NIC — Interfaces Specific to Each CNF
:| Automatically Assign PrimarylCNI CNI/Network Resources
Addresses to Pod/Service Multus H Specific to Each CNF
| - Secondary §NI
Automatically Detect Servife Due to diverse squireme
Addition/Removal/Failure of S/ACS =S & delninnion INeiels
EACCS Address/Routing Specific to Each CNF
Composed Only of Network NF Pod Due to workload spe = SR.IOV) and
Worker Interfaces W& protocol constra e no NAT support), Pods ofte
Abstracted/Concealed by K8s . STTEET 6 e EdErEl MEEe

Compared to general containers, CNFs require more complex implementation™
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Furthermore, in data plane CNFs, SR-IOV and DPDK may be used. SR-IOV is a technology that handles network interfaces logically divided as
PCI-E devices. DPDK is a technology that handles network interfaces with userland drivers instead of kernel drivers. Therefore, when using
SR-IOV and DPDK, it is necessary to handle PCI-E devices directly inside the CNF container.

Due to these characteristics of telecom applications and operational requirements, when using Kubernetes in telecom, there is a need to use
multiple networks such as VLAN and SR-IOV in addition to the primary CNI for a single Pod. Therefore, many CNFs use Multus as a CNI and
connect multiple network interfaces.

However, as of 2024, Kubernetes only manages addresses as IPAM and performs service discovery for the primary CNL

Also, the primary CNI basically cannot carve out virtual networks and provides a flat network to all containers, filtering access control
between containers using the RBAC mechanism.

In the case of using Kubernetes alone, the networks of the secondary CNI connected by the CNF are provisioned outside of Kubernetes, and
Kubernetes operates on the assumption that the provisioning has been correctly performed for the Deployment or StatefulSet manifest for
the applied CNF.

Therefore, because the complex network requirements of telecom applications and telecom operators cannot be resolved with only the
standard features of Kubernetes, these network requirements need to be met through automated or manual operations.

CNF and VNF mixed workload

The new generation of network functions are often deployed using cloud-native technologies as CNFs. However, there are still many network
functions that are not converted to CNFs.

For example, older standard network functions such as 4G, network functions with little change like IMS, core network functions of fixed
networks, and functions for operation monitoring such as OSS/BSS, often renew their network functions composed of existing physical
servers and virtual servers on stable virtual servers. This is because containerization is not just about using container technology, but also
about transforming the system architecture to become cloud-native, such as microservices.

However, these traditional applications originally adopt a monolithic architecture, which necessiates changes to the application itself to
enable containerization.

However, converting a monolithic application to microservices is not an easy task. The purpose of containerization, cloud-native
transformation, and microservices is to make changes and modifications safer and smaller.

Therefore, for these network functions and systems that have existed from the old days and have little change, it may not be necessary to
fully adopt cloud-native technologies.

Rather, it can be important for business to continue to provide services with minimal changes, less effort, and lower costs.
It's important to be aware that cloud-native is not the only best technology choice, but one of the best options we can take.

Therefore, in telecom operators, VNFs are expected to continue being widely utilized in the future. It is essential that the telecom operators'
platform can accomodate both CNFs and VNFs concurrently.

1. https://access.redhat.com/support/policy/updates/openshift <
2. https://www.redhat.com/it/blog/building-cnf-applications-with-openshift-pipelines ¢
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* Understanding virtualization

* What is NFV?
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* What is telco cloud?
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» Understanding cloud-native applications
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Benefits of inserting an abstraction layer through OpenStack
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Evaluation ' Rollout Operation

m Maintenance Support EUS

4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months 4 months

Example life cycle between OpenShift and CNF
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T T7N—= 3 %&EKubernetesE TLOALT T )= 3> OmAEZRBICEIFTOWS CCIIEEICF v LU VI RBFETT,

Kubernetes /\—< 3 Y ¥ CNF/N— 3 > D38 LR T

Bt 3 THAELIED. KubernetesDBEWS A 7H A IZILICRLTY 7 bz 7N=3 %7 v 7L —RLTITK CCIEKREREBEET
?_O

TEICRY NT—UARL—FERELTCEEZEIIMIRBHL TV EOHIC. XY NT—0 7720023 THBTLALT IV r—>3>
ICHEBICEVWVHREBGCETTAMERDET, CORY N IT—IARL—FZORODIZBHRZELTOIC. INFRIEEHTZFLIALT7IUTSr—23
IRV IE. Kubernetes®PARL —FT 4 VIV RATLICRTB3Fa—Z2 T % ARDITOIHERHD £7,

ZFOABICTLALT V=23 RV AIFEEDIRICEVWTCNFOY 7 b 2 7OFIHEARICITWE S, TLTSRTHRIATNEDIF 5N
BRERNBZARL—FBREBETHWMNBRIZIECEZARL—FIIHLTROEFT, ZDdRY NT—0F7 T )r—2 3 >RV HAE. Kubernetes
POpenShiftd/N— 3 Y EZSHICNFLIBIEYS 5. BIERMEEBREICED. MNBRNSA—FRELEARL -G L CHRICEET 3 %
<HDEFT, COESIBRFa—=>JIIDPDKE AWV DSRIOVEAWD TEZRBREDENTILMAZED NS T4 v IDESR. T—2SL—>
CNF (UPFRY) TIX&LDEBETTY,

Linux Kernel

Kubernetes C N F

K8s Eco system
(e.g. service mesh)

CNF has many strong dependencies

CO&SHBRKRANS. TLIALT TV — 3> L Kubernetes®OpenShiftiCIZEWMKFEBIRNEELE T, TRL—FICE > TRIUAHIREEL
e 7V —< 3> Kubernetes. OpenShiftd/N— 320 NIXA—FDFa—ZVJICEDETINSDN—J 3 U PREERAT DL\
FYRT=0 TPV EBATRICHT->TRDYZIHDERL, ZLTHEERAELERET,
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Traditional network requirements
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Implementation of General Container Implementation of Complex CNF
Client J ‘ Client
http/https SBI N3, N6, Diameter,
LB/ B LB (http'https) ’ ’ 7

Ingress Contrpller| « Automatically Recognize
Service via K8s API

Ingress Coftroller Fabric <« Routing/BFD Specific to Each CNF
INI

NIC NIq W IS ||| b [ C | Interfaces Specific to Each CNF
oNL [ ] Automatically Assign PrimarICNI CNI/Network Resources
1] Addresses to Pod/Service Multus H Specific to Each CNF
- - Secondary @NI
Service Automatically Detect Servife Due to diverse Sebliss
e d are a O O ode

Addition/Removal/Failure of
Rods Address/Routing Specific to Each CNF

Composed Only of Network NF Pod Due to workload sbe e SR_IOV) and
Worker Interfaces Worker Jlsigeiuelele] Kol a e no NA ppo Pods ofte
Abstracted/Concealed by K8s e N cctichaedamnainave

Compared to general containers, CNFs require more complex implementation'™
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1. https://access.redhat.com/support/policy/updates/openshift <
2. https://www.redhat.com/it/blog/building-cnf-applications-with-openshift-pipelines <
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