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Abstract

Game design poses a difficult challenge of adjusting a game in order to
get the gameplay feeling right for the end user. The task of optimizing the
game experience entails the adjustment of a wide range of parameters to
find the optimal game. This can represent a rather impossible task for a
game designer to carry out. Therefore, this thesis explores the possibilities of
solving this task by developing a model to perform automatic game testing.
The motivation behind this automation is to develop a viable replacement
for user testing by estimating the difficulty of a parameterized version
of the game. Different game configurations are randomly generated and
simulated using Monte Carlo simulation with synthetic players. As a side
effect of random level generation, automatic game generation is prone to
the discovery of new game variants of the game. These new game variants
allow game designers to discover new possible ideas and to gather new
inspiration.
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1 Introduction

Game designers and developers need to adjust a vast variety of game
parameters, which drastically affects the game’s difficulty and feel, in order
to achieve a desired gameplay experience. It is very hard to get a sense for
how a developed game plays and therefore to find the right difficulty to
produce a game experience that keeps the user engaged. Game developers
become experts of their own game during the development and testing
and hence have to guess the player’s skill in order to set the parameters
accordingly. This lack of knowledge can only be averted by doing extensive
user testing of the game. Many, especially smaller game studios or indie
developers, do not have the possibility and financial ability to perform these
tests and consequently must completely rely on their guessing. This thesis
explores the possibility of doing automated game testing by simulating
artificial players to reach a sweet spot regarding a game’s difficulty.

This work targets to solve the problem of automated difficulty estimation
using Monte Carlo simulation of a parameterized version of “Line Runner”,
which is implemented using Unity. The content of this work does not only
include an in-depth description of the parameterized level generation, but
also covers the implementation of an Artificial Intelligence designed to play
random generated games. In addition, it also highlights the importance of
finding unique game variants that can serve as a foundation of new game
ideas for designers.

The paper “Measuring the level of difficulty in single player video games”
by Aponte, Levieux, and Natkin provides a way to calculate a games diffi-
culty and tries to relate it to a player’s ability. Isaksen, Gopstein, and Nealen
successfully demonstrate the ability of automated game difficulty estimation
of a parameterized version of the game Flappy Bird using Monte Carlo
simulation (Isaksen, Gopstein, & Nealen, 2015).

While other papers use a complex approach in modeling a game’s diffi-
culty, this thesis tries a more simplified way. The aim is to use a combination
of mean and standard deviation of the player’s scores from a simulation in
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order to model the difficulty.

The following description of the chapters shows how this thesis is struc-
tured. Chapter 2 covers the theoretical background of game space, Monte
Carlo simulation and the pseudo random number generation. Chapter 3
talks about related work in the context of automated gametesting. Chapter
4 describes how the implementation of the automated gametesting is struc-
tured. Chapter 5 explains how the Level Generator, the Simulation and the
Al is built into the game. Chapter 6 analyzes the outcome of the simulation
and highlights unique levels that were found during the random generation.
Chapter 7 discusses issues that arose during the development of this work.
Chapter 8 gives an outlook to possible future additions. Eventually , chapter
9 summarizes and concludes this thesis by explaining the importance of
this work’s approach.



2 Background

This chapter focuses on the theoretical background of this work. Hence, it
provides an overview about Monte Carlo Simulation as well as the pseudo
random generation used in this work.

2.1 Game Space

Games can be partitioned into a set of different parameters that define
a fixed gaming experience. Game space as defined by Isaksen, Gopstein,
and Nealen represents the whole spectrum of possible games that can be
generated by changing the parameters. Each one of these games has its own
difficulty value. The difficulty of selecting a parameter vector for the game
is to assess an assignment that reflects into a game that is neither too easy
nor too hard for people to play.

2.2 Monte Carlo Simulation

Monte Carlo Simulation uses repeated random sampling and statistical
analysis to compute a deterministic result. It only needs to sample a mere
fraction of the complete value space in order to deduce a valid result. Monte
Carlo methods are used to solve difficult or impossible problems (Raychaud-
huri, 2008).

Monte Carlo is typically performed by using the following steps (Raychaud-
huri, 2008):

1. A deterministic model which closely resembles the real scenario is
developed.
2. Identify the underlying distributions which govern the input variables.
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3. Generate multiple sets of random numbers from these distributions
and collect sets of possible output values.
4. Perform statistical analysis on the output values of the simulation.

2.3 Pseudo Random Number Generator

A pseudo random number generator is a deterministic algorithm which
outputs a sequence of numbers which appear to be random. The pseudo
random number generator is initialized with a seed vector that determines
the number sequence generated by the algorithm. Using the same seed value
as initialization, the random number generator is able to always produce the
same sequence of numbers (Karimovich, Turakulovich, & Ubaydullayevna,
2017).

2.3.1 Lehmer Pseudo-Random Number Generator

Lehmer’s Pseudo-Random Number Generator is a simple and efficient
algorithm that satisfies almost any statistical test of randomness and can
produce a virtually infinite sequence of numbers (Park & Miller, 1988).

Formula 2.1 shows how Lehmer’s Generator can be used to calculate a
pseudo-random number, where the modulus m is a prime number and K is
a primitive root for the modulus. Lehmer suggested K = 14%, m = 231 —1
and 0 < Xp < 23! — 1 (Payne, Rabung, & Bogyo, 1969).

Xy11 =K-X, mod m (2.1)



3 Related Work

3.1 Exploring Game Space Using Survival Analysis

“Exploring Game Space Using Survival Analysis.” by Isaksen, Gopstein,
and Nealen describes how to use automated play testing to calculate the
difficulty of variants of a parameterized version of the game Flappy Bird.
The difficulty of a game is calculated using a Monte Carlo simulation and a
player model based on human motor skills. After running the simulation,
the distribution of scores is analyzed using exponential survival analysis
(Isaksen, Gopstein, & Nealen, 2015). The paper “Comparing player skill,
game variants, and learning rates using survival analysis” by Isaksen and
Nealen gives a mathematical overview of survival analysis and analyzes the
impact of learning effects on the score.

The papers (Isaksen, Gopstein, & Nealen, 2015; Isaksen, Gopstein, To-
gelius, & Nealen, 2018) further explore techniques to efficiently find levels
with a certain difficulty using an optimization algorithm.

Exploratory computational creativity is the process of finding playable
game variants that are most different from already discovered versions. This
is helpful for designers to find inspiration, new ideas, and interesting game
variants, as is covered in (Isaksen, Gopstein, Togelius, & Nealen, 2015). A
method to find games of varying difficulty and help designers explore game
space is presented (Isaksen, Gopstein, & Nealen, 2015).

Furthermore, a user study is done to compare the predicted difficulties
to human play testers, showing the model is effective at predicting game
difficulties (Isaksen, Gopstein, & Nealen, 2015).
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3.2 Measuring the Level of Difficulty in Single
Player Video Games

“Measuring the level of difficulty in single player video games” by Aponte
et al. discusses the interest and the need to evaluate the difficulty of games.
The paper shows that by using a simple experiment it is possible to obtain
a difficulty curve for a game whose difficulty can be tuned accordingly to
a parameter. In their experiment a Pacman-like game was used and the
difficulty was calculated using the number of eaten pellets. They used the
speed parameter to analyze the difficulty.

The paper argues that there is a lack of a precise definition of difficulty
in games and further game designers lack of a methodology as well as
tools to measure it. A first step to fill this gap is performed by proposing a
measurable definition of difficulty for challenges and providing a method
to explore the relation between what the player learns and the probability
he has of overcoming a particular challenge (Aponte et al., 2011).

3.3 Procedural Personas for Playtesting

The paper (Holmgard, Green, Liapis, & Togelius, 2018) demonstrates auto-
mated playtesting of the game “"MiniDungeons 2” using artificially intelli-
gent gameplaying agents. The personas are controlled using a variant of
Monte Carlo Tree Search (MCTS). Experiments show that the personas can
help map out the gamespace afforded by game levels while designing it
(Holmgard et al., 2018).

3.4 Exploring Automated Game Testing

“Exploring Automated Game Testing” by Larch builds on top of this thesis
and covers various optimizations to enhance the amount of playable levels
that are generated. The implementation of this work is ported to WebGL and
various webpages to allow easier level tweaking and analysis are created.
Additionally, it conducts a user study to verify the results of the difficulty
calculations done in “Exploring Automated Game Testing.” Larch finds an
accordance between the difficulty calculations and the results of his user
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tests.

Larch further proposes an approach to difficulty prediction of levels by using
regression and demonstrates its capability by validating the predicted values.
By analyzing the relation between parameters and the game’s difficulty
Larch is able to develop two different approaches into achieving dynamic
difficulty adjustment in Line Runner (Larch, 2018).
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The design of the implementation of this thesis orients itself on the previous
work of Isaksen, Gopstein, and Nealen, 2015. The goal of this work is
to analyse a different game and to apply a simpler statistical difficulty
calculation in order to classify all randomly generated games.

4.1 Game Description

The game developed and analysed in this work is a simple 2D platformer
with constant side-scrolling that is called Line Runner. The challenge of the
game is to jump over obstacles and holes in order to get as far as possible
without dying. A screenshot of the final game can be seen in Figure 4.1

Figure 4.1: A screenshot of Line Runner.

Each level of the game consists of a sequence of the three different block
types BlockType.Flat, BlockType.0Obstacle and BlockType.Hole shown in
Figure 4.2. If the user crashes into an obstacle block or falls into a hole block,
the game ends.
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YUY,

(a) BlockType.Flat

L L ] L

(b) BlockType.Obstacle (c) BlockType.Hole

Figure 4.2: Different block types that can be found in the game.

The user interaction of the game is kept very simple as the user is only able
to perform one action to interact with the game. By pressing the "Space Bar’
key on the keyboard the user can apply a vertical force to the player’s rigid
body. This allows the user to leap the player over holes and obstacles in

order to avoid a game over.

4.2 Game Parameters

Liner Runner is a game that is defined by certain rules and parameters that
define a certain game behaviour, whereas each one of the parameters can
be adjusted independently. Table 4.1 lists all the parameters that define the
Liner Runner’s behaviour of the implementation in this thesis.

| Parameter | Symbols | Description

P(flat) P flat Probability of BlockType.Flat blocks

P(hole) Phole Probability of BlockType.Hole blocks

P(obstacle) Pobstacle | Probability of BlockType.0Obstacle blocks

speed v Horizontal speed of the player

force fiump Vertical force applied to the players when jumping

gravity fe Gravity constant of the simulation (in g)

obstacle height | hyps; Height of the obstacle blocks in the game

block length Lbiock Length of the blocks of the game

seed seed Initialisation vector for the random generator used
in the game. Describes a unique sequence of
blocks per seed.

max players Nplayers | Amount of synthetic players used for testing.

10

Table 4.1: Modifiable parameters of Liner Runner




4.3 Pseudo Random Generator

All parameters are chosen randomly before the game starts and are kept
constant during each game session. The game’s definition doesn’t allow
an alteration of the parameters during simulation, due to the fact that it
could lead to a positive or negative influence of the game. It can be used for
dynamic difficulty adjustment (DDA) of the game (Larch, 2018).

4.2.1 Force Parameters

The parameters fj,mp, fo together define the force the player is able to move
in vertical direction and is therefore used to determine the player’s capacity
to jump.

Only the parameter v defines the player’s velocity in horizontal direction,
which is kept constant throughout the simulation of a level.

4.2.2 Block Type Probabilities

Priat, Povstacte and Ppoje are used by the level generator to determine the
distribution of the different block types. The sum of these three probabilities
must be exactly 1, otherwise the level generator would fill up the blocks
not covered by any probability with type BlockType.Flat. Depending on
the block placement of this distribution the game can result in a different
difficulty.

4.2.3 Seed

The seed allows to regenerate the exact same sequence of block types. It
initializes a separate random generator, which allows to change seed and
keep the same parameters. In addition, this gives the opportunity to change
other parameters (except block type probabilities) but retain the seed and
therefore the block sequence.

4.3 Pseudo Random Generator

At the beginning of the simulation process, a pseudo random number gen-
erator randomizes the block types. The pseudo random number generator

11
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generates block sequences that only appear random. Its “pseudo” random-
ness is sufficient enough for the usage in this thesis. The Lehmer Pseudo
Random Number Generator is used in the implementation. It allows to have
better control over the number generation as well as the reconstruction of
the same number sequence by initializing the generator with a seed value.
This trait becomes useful since it allows to reconstruct and replay the exact
same game, which can be used for a more thorough analysis.

4.4 Player Model

For game testing to get the best results the game must be tested by real
human players. This process poses a challenge for small game development
studios, since it is highly cost and time-consuming to realize. The following
section of this thesis explores the possibility of automating this process, by
replacing human players with synthetic ones. Using such a virtual player
model to repliacte human behaviour, the results of human testers can be
approximated. In order to develop this player model a reaction time test
and a hits-per-second test were carried.

4.4.1 Reaction Time Test

The first test conducted for this thesis is the reaction time test. For this
purpose five people between 18 and 35 years were selected. They had to
perform the task of interacting with a python script to measure their reaction
time. The listing below shows an outline how the test program, that was
used, works. The test’s measurements resulted in a average reaction time of
treact = 327 milliseconds.

e State 1: ,Ready?” text gets shown to the user

e State 2: When the user hits the return key of the keyboard, the scripts
waits between 1-2 seconds and then outputs the text ,Hit return!”

e State 3: The user hits the return key again and the program moves
back to the first state. When this process has been repeated for 10
times the program prints the average reaction time and exits.

12
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Person Reaction time [s]
Testperson 1 0.327
Testperson 2 0.328
Testperson 3 0.332
Testperson 4 0.336
Testperson 5 0.311
Average 0.327

Table 4.2: The average reaction time of each user summarized in the overall average reaction
time.

4.4.2 Hits Per Second Test

A further advantage machines have over humans is their ability to trigger
an action repeatedly in a fraction of a second. Humans are not able to press
a button at a steady interval at a high speed. This disadvantage is subject
to another user study in order to measure the exact hits humans are able
perform per second. The test users were asked to continuously press the
return key of the keyboard as fast as they could for 10 seconds. The test
persons were able to perform an average number of 1y, = 7.257 hits per
second. This value does not include an estimation of human fatigue, since it
does not influence the outcome of a Line Runner game.

Person Hits per second
Testperson 1 8.007
Testperson 2 7.005
Testperson 3 7.734
Testperson 4 6.657
Testperson 5 6.884
Average 7.257

Table 4.3: The hits-per-second scores for each user and the average score

13
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4.5 Simulation

A Monte Carlo simulation paired with an actor system is used for player
simulation. During each update of the simulation each player calculates
its next ideal jump position. This ideal jump position will be offset by a
randomly chosen value between —I,,4c¢/2 and lyeact /2, where Ireqc¢ denotes
the distance traveled by the player in the reaction time #,.4c¢. This approach
allows the program to simulate human players and calculate the difficulty
of the game in the game space.

The results of the simulation are dependent on the amount of players
used. If this number is too low, the result of the simulation will be highly
variable and therefore the results would not be accurate. On the other
hand the exaggeration of the amount of players also would not deliver any
better results, because the simulation would start to lag and consequently
become unusable. Hence, the amount of players should not be too low
while at the same time also not too high that the simulation machine is
still able to maintain the calculations and the framerate. For this thesis a
2014 MacBook Pro was used as test device. The best results on this testing
device were achieved with 100 players, which is high enough to eliminate
any inaccuracies of the calculated game difficulty and the simulation still
runs smoothly.

4.6 Game Difficulty

In order to describe how challenging a game is the variables d, 0; S and
Nsyrvivors Shown in Table 4.4 are calculated accordingly during simulation
time. The two variables difficulty d and difficulty standard deviation o, are
used to describe the difficulty of a game and stand for the average death
position of all players.

The difficulty d is computed by calculating the mean of the difficulty for
each player. The difficulty for a player d ., is calculated using the player’s
death position Sy, and the maximum reachable score Syax, as illustrated
in Formula 4.1.

Spl
dplayer =1- e il (41)

Smax

14



4.7 Survival Diagram

The difficulty d shows how long players were able to survive on an average
basis, with d = 0 being an easy game where every player made it to the
end position S, and d = 1 being an impossible game, where every player
died instantly at the beginning. In contrast, the difficulty standard deviation
shows the distribution of the positions of each player’s death. In a game
with 0; = 0, all users finished the game at the same position, which also
indicates that the level is only playable until that position. Games with
04 > 0 have a wider distribution of player’s death position and are therefore
more likely to be playable.

| Name | Symbol | Description |
difficulty d The calculated difficulty of the game.
difficulty_standard_deviation | o Standard deviation of
difficulties per player
Score S The score of the best player
(time in seconds)
Survivors Nsurvivors | HHOW many players made it to
the end position Sy

Table 4.4: Variables describing the difficulty of each level.

4.7 Survival Diagram

The individual scores of the players are used to create the survival diagram.
The diagram shows how many players were alive at each point in time of
the game simulation. It allows for a detailed analysis of the player’s survival
rate and provides a quick overview of a game’s playability. An example of a
survival diagram for one level is shown in Figure 4.3.

15
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[ # of alive player

100

SRS HE A BARSURNAKEIRHHAHAF RS

Figure 4.3: The survival diagram shows the number of alive players for each point in time
during a game.

16



5 Implementation

The Line Runner is implemented using the Unity Game Engine (version
2017.2.0f3) as it already includes a physics engine that can be used for the
development of the game. Unity also allows to export the game for different
platforms such as Android, iOS, WebGL etc. and thus, allows to broaden
the target group of players the game can be developed for.

Figure 5.1 shows a screenshot of the Unity editor which was used for
developing and debugging the game. It shows labels displaying the current
level parameters, the score, the current calculated difficulty and debug
rays. The rays were used for debugging the calculated jump positions and
estimating the landing positions.

G Collab ~ | '{ & | [ Account ~

© Inspector

¥ Scripts
LevelGenerator
Simulation et
Al P(hole) :
» Ul Canvas cle)
v Game Objects
flag
Camera

Directional Light

EventSystem
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone) I
» Player(Clone)
» Player(Clone) [ | ‘))
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone)
» Player(Clone)

[ Console
[ ctar || Collapse | Cear on Piay | rror

@ ;> =0l x
UnityEngine.Debug:Log(Object)
——-> maxDist: 21. 7 ight: 5.2801

UnityEngine.Debug:Log(Object)

(1) o> maxDist 21. 7 5.2801
UnityEngine.Debug:Log(Object)

@ —--> maxDist: 21. ight: 801
UnityEngine.Debug:Log(Object)

(1) > maxDist 21. ight: 5.2801
ityEngine.Debug:Log(Object)

Figure 5.1: A screenshot of the game inside the Unity Editor.
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5 Implementation

This implementation of the game Line Runner can be configured by various
parameters. A modification to one of these parameters can alter the game’s
experience and lead to a complete different level, yet consisting of the
same rules. In order to prevent useless configurations, each one of these
parameters is clamped between a minimum and a maximum value as shown
in Table 5.1.

| Parameter | minimum | maximum |
P(flat) 0 0.8
P(hole) 0 1
P(obstacle) 0 1
speed 5 20
force 4 20
gravity 0.6 3.6
obstacle height 1 10
block length 2 40
max players 1 100

Table 5.1: The parameters along with their correlating minimum and maximum values,
that are used to prevent useless level generation.

5.1 Structure of the Implementation

The implementation of the game is split into the three parts Simulation,
Level Generation, and the Player’s Al In the following sections this thesis
will go more into detail on how each one of them is implemented.

5.2 Simulation

The Simulation, as illustrated in Figure 5.2, subsists of four subsequent
steps. It starts by randomizing the parameters of the Level Generator and
the players. The Level Generator then generates the game based on these pa-
rameters and places the different blocks into a specific order. Consequently,
the simulation adds the previously defined amount of players to the scene
and finally starts the actual game simulation.

18



5.3 Level Generation

The game ends when all players are either game over or reached the maxi-
mum score Syy. Then the difficulty value is calculated and the simulation
is restarted.

'

Choose parameters

!

Level Generator places blocks

All players
¢ are dead

Add Players to the scene

'

Simulate

Figure 5.2: A flow diagram of the functionality of the simulation

5.3 Level Generation

The simulation passes the randomly generated parameters into the Level
Generator. Afterwards the Level Generator initiates its work by starting
to place a sequence of chunks in the scene. Chunks are the outermost ab-
straction layer used internally by the Level Generator. Each chunk consists
of a sequence of 40 blocks. Every block is I, sprites long and has ei-
ther BlockType.Flat, BlockType.0Obstacle or BlockType.Hole as type. The
smallest component in the Level Generator’s hierarchy is a sprite. The
hierarchy used by the Level Generator is visualized in Figure 5.3.

Level generation chunks are generated on the fly, which means that the
chunk generation is dependent on the player’s position. As soon as a
player reaches the middle of the newest previously generated chunk, a new
chunk is generated. This on demand generation allows the game to gain
performance and minimize the loading overhead, while still enabling an
endless game experience.

19
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O Vi Vi I | |

(a) Sprite (b) Block (c) Chunk

Figure 5.3: The hierarchy used by the Level Generator. Chunks consist of blocks and blocks
consist of sprites.

A BlockType.Flat block consists of a number of Iy, horizontally ar-
ranged sprites where the player can move along. The BlockType.Hole block
does not contain any sprites, which results in the game over whenever
the player falls through the gap. A BlockType.Obstacle block consists of a
BlockType.Flat block and /s, Sprites vertically placed in the center of
the block. If the player crashes into the obstacle at the center of the block,
he goes game over.

To prevent the generation of unplayable games and to give human players
time to become familiar with the parameters, the first four blocks of the
tirst chunk placed always include the type BlockType.Flat. The types of all
other blocks are chosen by the pseudo-random number generator using the
defined block probabilities Prjas, Phore and Popsacte-

An issue that can lead to the generation of impossible games are consecu-
tive BlockType.Hole blocks. Therefore, the generation is prohibited to gen-
erate a BlockType.Hole block followed by another BlockType.Hole block.
In such a case the random number generator generates a new block type in
a loop until a block type different than BlockType.Hole is found. To prevent
the uncertain possibility of having an endless loop, after chunk_length itera-
tions, BlockType.Flat is chosen automatically. In the rare case of generating
a game that has py,. = 1, this will result in alternating BlockType .Hole and
BlockType.Flat blocks.

5.4 Al

During the simulation each player is controlled by an Al, which imitates an
ideal player limited by human motor functions. In every FixedUpdate the
Al checks whether an obstacle appears on the screen, in which case the next
jump position of the player is calculated.
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5.4 Al

There are four particular cases that need to be taken into account by the Al
when calculating the next jump position.

e When a player lands between the next calculated jump position and its
obstacle he would jump as soon as he touches the ground. A human
player isn’t able to do this and therefore the jumping is delayed by a
random value between 0 and f,¢4.¢.

e When approaching a BlockType.Hole block, the player must always
jump on a block prior to the hole or he would fall into them. For
obstacles this is not the case, as the player can also move onto the
obstacle block and jump over the barrier at the center of the block.

o If the player already passed the center of an obstacle block and lands on
the same block, he suppresses the jump and continues by calculating
the next jump position.

e If a player lands on an obstacle, he is allowed to jump.

5.4.1 Obstacle Observation Range

To simulate the limited amount of obstacles human players are able to see
on screen, the Al is also only able to see a specific amount of blocks ahead.
This amount of blocks is dependent on Iy;,., which means the more sprites
per block the fewer blocks are visible on the screen at the same time. This
value is calculated using formula 5.1. The value 35 is chosen for the usage
on a 13” MacBook Pro and it means that 35 sprites are able to fit on the
screen simultaneously.

blocks_visible = max( {135 J ,2) (5.1)
block

5.4.2 Jumping Range

When the Al sees an obstacle it calculates the perfect jump position Pjyp
for each player in order to pass the obstacle. Since human players are not
able to constantly meet the perfect jumping position, the Al calculates the
theoretical prefect jumping position and adds an offset that is randomly
selected in the range between —1j;,,,/2 and ljyyp /2. Ljymp which is the dis-
tance traveled by the player in the reaction time f,,. It is calculated by
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5 Implementation

multiplying the speed of the player in horizontal direction by the human
reaction time t,,c+ (Formula 5.2).

ljump = U * treact (5-2)

By changing the reaction time teqct, ljump adjusts in a directly proportional
manner, which allows the Al to simulate an better or a worse player respec-
tively.

5.4.3 Perfect Jump Position

An ideal player would always jump at the perfect position in order to safely
jump over an obstacle. Perfect position means, that it aligns the highest
point of the jump trajectory at the center of the obstacle block in order
to maximize the probability to make it past (Figure 5.4). Formula 5.3 and
5.4 can be used to calculate the perfect position for the current parameter
assignment. vy denotes the initial speed at the jump origin and « the launch
angle of the player. Formula 5.4 calculates the center of the obstacle block by
adding Iy, /2 to obstacle_positiony, the origin of the block, and subtracts
half the jumping range calculated in 5.3.

03 * sin(2a)

2 (5-3)

ljump -

lblock * ls rite l'um
P __ jump
2 2

P, = obstacle_position, + (5.4)
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L] L 1] 1]

_ L L |
1jump ljump /2 ljump /2
(a) BlockType.Hole (b) BlockType.Obstacle

Figure 5.4: The perfect jump position to make it past a hole block (a) and an obstacle block
(b)

5.4.4 End Position

To force the Al from playing trivial levels endless, the game contains a
winning position S;,x. Once the players surpasses that position, the level
is automatically won. While a too small end position comes with a higher
loss of accuracy, a high end position implies longer simulation times and
therefore an unnecessary additional effort.

To find Sjax, 20 randomly selected levels were examined on their impact
to the overall game difficulty. Figure 5.5 shows that the derivation of the
difficulty standard deviation 0; comes very close to 0 at an end position
Smax of 30. This position perfectly balances the ratio between simulation
time and accuracy of the final result of the simulation.
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Figure 5.5: The derivation of o; when sampling Sax.
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6 Analysis

The Analysis chapter of this thesis analyses the data of 500 randomly
generated levels. It explores the correlations between different parameters in
the 2D parameter space of the game. Furthermore, it discusses the difficulty
distribution of the levels generated by the Level Generator and why some
levels are unplayable. Section 6.3 “Unique Levels” discusses certain outliers
that were generated during the random level generation and levels that were
created by changing parameters over their limits. The last section compares
different games with the same difficulty and analyses them.

6.1 Game Parameter Analysis

This section discusses how different game parameters are affecting the
resulting game difficulty.

The graph shown in Figure 6.1 compares the parameters Iy, and v to
d. The data clearly shows that a channel can be drawn across the graph,
reaching from bottom left to top right. This graph can be used to partition
the set of levels into a set of too easy playable games as well as too hard to
play. It also shows that the combination of /3, and v can be used to adjust
the game difficulty. Most levels with a small /;,« have a high difficulty
and the influence of speed is very small. When evaluating games with a
higher I;,.k, one can see that the speed clearly influences a game’s difficulty.
Furthermore, games with a higher I, value, can be transformed into a
more difficult ones by raising the speed parameter.
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Figure 6.1: This graph shows the impact of the parameters I, and v on the difficulty 4
which is visualized using the radius of the points.

A similar result emerges when comparing /.. and v to 0;. Most of the
games with a 0; > 0 are in the lower right section of the graph in Figure 6.2.
Meaning the higher the speed v, the bigger [;,.x can be without creating a
game with ¢; = 0. This graph perfectly shows that I, and v have to be
balanced in order to create a playable and challenging game with ¢; > 0.
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Figure 6.2: This graph shows the impact of the parameters I, and v on the difficulty
standard deviation o; which is visualized using the radius of the points.

Figure 6.3 shows that at a higher speed v most of the games that are
generated result in a higher difficulty d. In contrast low speed leads to a
more uniform distribution of the difficulties amongst the generated levels.

The graph in Figure 6.4 shows that games with a lower p ;s mostly have
a higher difficulty while games with a higher Pj,; have a more uniform
distribution of the difficulties and tend to be easier.

Of the 135 games with Py, = 0, only 11.11% have d = 0. Of the 187
games with P, = 0.8 on the other hand, 30.48% have d = 0.
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Figure 6.4: This graph shows the impact of p_flat on the difficulty d

6.2 Game Difficulty Probability

The game difficulty probability distribution allows to measure the efficiency
of the level generation. The graphs of this section show the distribution of d
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and o; among the games generated in the random level generation.

The game difficulty has a peak at d = 0 with 10.5% as can be seen in
Figure 6.5, these are levels where every player made it to the end position
Smax- This means that 78.8% of all generated games are either impossible or
playable.

The graph in Figure 6.6 shows that no level has reached a difficulty value
of d = 1. Upon closer inspection of the generated data, a upper difficulty
boundary of d = 0.98 becomes visible, where no game has reached a
difficulty above this boundary. This can be explained due to the way the
levels are generated. A difficulty of d = 1 would only occur in the case of
all players dying immediately at the starting position. This is not possible
because the first four blocks of a game are predefined to always be of type
BlockType.Flat and therefore the players need time t > 0 to reach the first
possible death position.
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Figure 6.5: This graph shows the distribution of game difficulties generated by the level
generator.
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Figure 6.6: This graph shows the distribution of game difficulties generated by the level
generator with a logarithmic scale.

Figure 6.7 shows that 89.3% of the randomly generated games have a
difficulty standard deviation 0; = 0, which means that for all players the
game ended at the same position. This can happen in the cases where either
all players die at the same position or all players win the game. Therefore,
these levels are either impossible to complete or too easy to be played.
Hence, the remaining 10.7% of the generated levels are the ones, which are
the most interesting levels to play.

Figure 6.8 shows that the amount of games with ¢; = 0 peaks atd = 0
and has a slight increased amount of games in the upper half of 4.
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Figure 6.8: This graph shows the distribution of d with ¢; = 0 generated by the level

generator with a logarithmic scale.

When looking at the difficulty probabilities of games with ¢; > 0, Figure

6.9 shows that the amount of games generated for each difficulty has only a
slight increase in the amount of games in the upper half of d. Furthermore,
no game was generated with d > 0.86 and o; > 0.
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Figure 6.9: This graph shows the distribution of d with ¢; > 0 generated by the level
generator with a logarithmic scale.

6.3 Unique Levels

The random generation of the games provided not only a number of inter-
esting data, but also many unique parameter configurations were found
by coincidence. These unique configurations demonstrate the creativity
of the random parameter selection, which allows game designers to find
inspiration and possible new level variations of the same game. This section
of the paper highlights these kind of games and further discusses games
that emerged when changing parameters over their defined limits.

6.3.1 Random Generated Games

The game with the parameters as described in Listing 6.1 has a moon-like
feeling to it because of the relatively low gravity. The game has a difficulty
d = 0.47 and 0; = 0.14 and is quite difficult to play, because the player
jumps over multiple blocks.

Listing 6.1: The so called “Moon Game” with a low gravity.

,’p_f]_at,’:”o.40”,

"

"p-hole”:”0.50",

7o

"p_obstacle”:”0.10",
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6.3 Unique Levels

"speed”:”12.8",
"force”:”10.1",
“gravity ”:”70.6",
“obst_height”:3,
“block_length”:7,

"seed”:103454134
}

Figure 6.10 shows a game where a human player would not be able to
predict the landing position and therefore has to be lucky. This makes the
game hard to play and therefore it has a difficulty of 4 = 0.71 and ¢; = 0.1.
The parameters of this game are described in Listing 6.2.

Listing 6.2: The so called "Monte Carlo Game”. A human player is not able to predict
where the player will land.

"p-flat”:”0.00”,

7o

“p-hole”:”1.00",
“p-obstacle”:”0.00",
"speed”:”10.9”,
"force”:”20",
“gravity ”:”70.8”,
“obst_height”:4,
“block_length ”:3,
"seed”:111841765

}

Figure 6.10: The so called “Monte Carlo Level” needs a lucky hand to be won.
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A game with a low level of interest emerges if low speed is combined with
a high Iy,x, as described in Listing 6.3. In this game neither a hole nor an
obstacle can be passed, which results in making the level pointless to play
for human players.

Listing 6.3: A game with small v and high I};,.. No hole or obstacle is reached.

"p-flat”:”0.10”,

7o,

“p-hole”:”0.80",
"p_-obstacle”:”0.10",
"speed”:"5"”,
"force”:”9.9”,
"gravity ”:72.8",
“obst_height”:1,
"block_length”:25,
"seed”:107467817

}

In the following level the Al is able to jump onto an obstacle and continue
the game by jumping from obstacle to obstacle. This level is impossible
for human players because it they aren’t able to jump from the top of one
obstacle to the next one. Figure 6.11 shows this game being played by the
Al Listing 6.4 contains the configuration of this game.

Listing 6.4: A game where the Al is able to jump from obstacle to obstacle.

{

"p_tlat”:”0.00",

7”7,

“p-hole”:”0.10”,
"p_obstacle”:”0.90",
"speed”:"6.37",
"force”:”6.09",
"gravity”:"1.91”7,
“obst_height”:1,
"block_length ”:2,

”seed ”:93542070
}

The next type of games that emerged during game generation, were games
with optional user input, such as the one described in Listing 6.5. These
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6.3 Unique Levels

Figure 6.11: This game contains only obstacle blocks and is impossible for human players
because it is too difficult to jump from obstacle to obstacle

games can be easily played by humans without pressing any button. The Al
on the other hand is not smart enough to detect games that do not need any
user input, and consequently will perform much worse than a user. Because
the Al is not able to learn from past mistakes it repeats the same tries.
Humans on the other hand can learn from their mistakes and try the game
again. This means they have another clear advantage over machines. In the
context of playability, these kinds of levels should be avoided to ensure a
satisfying user experience. A game of this type can be seen in Figure 6.12.

Listing 6.5: In this game no player input is needed since the player moves so fast that he
jumps over holes anyway.

“p-flat”:”0.60",

7,77

“p-hole”:”0.40",
“p-obstacle”:”0.00",
“speed”:"19.13",

/A

"force”:”13.39”,
“gravity ”:"1.1"7,
“obst_height”:2,
“block_length ”:2,
"seed”:74131239

}
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Figure 6.12: In this game the player would jump over holes without any action because
Ipiock is small and v is high. The Al doesn’t detect this and jumps anyway.

6.3.2 Changing Parameters Over Its Limits

When exceeding the defined limits for parameters, new interesting games
can be created. However, the amount of unplayable levels also augment.

Games with [y, = 1 can be quite intriguing, for example Figure 6.13
(a) shows a game with Py, = 1 and a low gravity, making it look as if the
players are moving in a herd. A similar behaviour is observable for games
with Pypsacre = 1, as seen in Figure 6.13 (b), where players continuously
jump on the obstacles.

Listing 6.6: Game where players move in a herd like fashion.

{

"p-flat”: o,
“p-hole”: 1,
"p_obstacle”: o,
"speed”: 8.82,
"force”: 1,
"gravity”: o.1,
“obst_height”: 5,
“block_length”: 1,
"seed”: 46839795
}

Games with a negative gravity parameters are not possible to complete. The
player could never jump over obstacles because he never touches the ground
yet floats in the space.
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Figure 6.13: Two games with [, = 1, looking as if the players are moving in a herd.

6.4 Comparison Of Games With Identical
Difficulty d

Games with an identical difficulty do not necessarily need to have the
same parameters e.g. Iy can differ between minimum and maximum
possible value while keeping the same difficulty. This section discusses the
differences and similarities of levels with d = 0, d = 098, d = 0.5 and
04 = 0.33.

6.4.1 Games With Difficulty d =0

For games with d = 0 the survival diagram, as shown in Figure 6.14, is
always identical — a flat line, since all players win the game. Therefore, all
of these games have ¢; = 0. Furthermore, most of these games have a high

Ipiock-

6.4.2 Games With Difficulty d = 0.98

Games with d = 0.98, the highest achieved value of d, have an identical
survival diagram, the line goes to 0 survivors immediately at the start since
all players go game over already at the first obstacle, as seen in Figure 6.15.
The block length Iy, is 2 for all games with d = 0.98, because only with
Ipiock = 2 and a high speed the players are able to reach the first obstacle
tast, which results in such a low score. This is also backed by the fact that
04 is 0 for every game.
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Figure 6.14: A survival diagram of a game with d = 0. All players won the game.
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Figure 6.15: A survival diagram of a game with d = 0.98. All players reached a low score.

6.4.3 Games With Difficulty d = 0.5

Such a consistency as with d = 0 or d = 0.98 cannot be observed for games
with d = 0.5. Games with this difficulty can be quite contrasting, parameters
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like Ipjock and v can range from their minimum to their maximum value.

Games With 0; =0

There exist games with 0; = 0, for example the game described in Listing 6.7,
where all players die in the middle of the game at one point, as the survival
diagram in Figure 6.16 shows. This game is playable until half into the level,
where after jumping over an obstacle all players directly fall into a hole and
lose the level.

Another reason why games with ¢; = 0 and d = 0.5 exist is, due to the fact
that at the middle of the game the players encounter an impossible block
sequence. This could be an obstacle that is too high, a hole that is too wide
or a combination of both, where no player has a chance to overcome them.

Listing 6.7: JSON of a game with d = 0.5and 0y =0

“p-flat”:”0.60",

7 7

“p-hole”:”0.20"
P ’
“p-obstacle”:”0.20",
“speed”:”11.10",

i

"force”:"16.72",
“gravity ”:”2.29",
“obst_height”:5,
“block_length ”:11,

"seed”:41062718
}

Games With ¢; > 0

Games with a 0; > 0 can have a different survival diagram and conse-
quently have a completely different gameplay feeling. The game described
in Listing 6.8 has a relatively uniform distribution of scores as is indicated
by the survival diagram shown in Figure 6.17. On the other hand the game
described in Listing 6.9 has two points in the game where many players
die, as can be seen in the survival diagram in Figure 6.18. About 50% of the
players die at a score of 8 and the other half dies at a score of 23, yet the
game still has a 0; = 0.26.
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Figure 6.16: A survival diagram of a game with 0; = 0 and d = 0.5. All players die in the
middle of the game.

Listing 6.8: JSON of a game with d = 0.5 and a uniform player score deviation

{

"p-flat”:”0.10",

/a7

“p-hole”:”0.00",

oo

"p_obstacle”:”0.90",
"speed”:”10.91”,
"force”:"14.57",
"gravity 7:70.84",
“obst_height”:1,
"block_length ”:9,

"seed”:63320135
}

Listing 6.9: JSON of a game with d = 0.5 and two difficult points

{

"p-flat”:”0.30",

i

“p-hole”:”70.30",
v

“p-obstacle”:”0.40",
"speed”:”15.60",
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Figure 6.17: A survival diagram of a game with o; > 0. The scores are distributed relatively
uniform.

/i

"force”:”16.10",
“gravity ”:”0.95",
“obst_height”:4,
“block_length ”:21,
”"seed ”:9109592

}

This shows that the survival diagram does not only enable game designers
to tell the difficulty of a game, but also allows to get an overall feel on how
the level behaves.

6.4.4 Games with difficulty ¢; = 0.33

The maximum o, of the games simulated for this work was ¢; = 0.33 and
was achieved by two different games. While one game has Py, = 1 and the
other one Py, = 0.2, they both have in common that most players jump just
far enough to make it over holes, leading to some players dying at every
hole. The game with Py, = 1 has a BlockType.Flat block as every second
block because of the rule that a BlockType.Hole cannot be immediately
followed by another BlockType.Hole (Figure 6.19).
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Figure 6.18: A survival diagram of a game with ¢; > 0. There are two main points where
players die.

Figure 6.19: A game with P(hole) = 1 has an alternating block sequence, because two
subsequent BlockType.Hole aren’t allowed by the game.
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7.1 Simulation Speed Inaccuracies

In an optimal simulation the simulation speed does not have an influence
on the calculated game difficulty. In the case of this work the simulation
speed is changed by altering the Unity variable Time.timeScale. When the
simulation speed is raised too high, the game starts to drop frames and
inaccuracies start to occur.

To further analyze this observation 20 games with an average difficulty
d = 0.5 and a standard deviation of s; = 0.31 and an average difficulty
standard deviation 0; = 0.15 with a standard deviation s,, = 0.11 were
selected. Each game was simulated 15 times with different simulation speed
values ranging from o.5 to 8.0.

Figure 7.1 shows that with an increased simulation speed the average
calculated difficulty d, visualized by the red line, starts to decrease. The area
surrounding the red line depicts the average calculated difficulty standard
deviation 0, which is as well decreasing on increased simulation speed. The
average calculated difficulty d drops from d = 0.47 at a simulation speed of
0.5 to d = 0.35 at a simulation speed of 8.0. The average difficulty standard
deviation ¢ drops from ¢; = 0.15 at a simulation speed of 0.5 to 7; = 0.06
at a simulation speed of 8.0. This implies that simulations with a higher
simulation speed are inaccurate and therefore all simulations in this work
are done using a simulation speed of 1.

Figure 7.2 shows how much the simulation speed affects the difficulty d
for each simulated game. The average standard deviation of the difficulty d
in this test is 0.08, demonstrating the inaccuracies caused by the simulation
speed.
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Figure 7.1: Game difficulty changes with varying simulation speed. The line shows the
average difficulties d calculated and the area around the line indicates the

average o, calculated.
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Figure 7.2: The deviation of d for each tested game when sampling the simulation speed.

The lines show the average difficulty and difficulty deviation.
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7.2 End Position Variation

The quest of finding the perfect end position in subsection 5.4.4 revealed
an interesting behavior of the difficulty d regarding the variation of the end
position. If the end position S,y is increased, the average difficulty d also
increases, as seen Figure 7.3. This can be explained due to the property that
in a game with an infinite end position, players would always achieve a
similar score, therefore altering the end position does only scale the difficulty
d. Meaning the larger Sy, the less player win the game and therefore d
increases. Assuming that for a game with a fixed end position and ¢; > 0,
at least one player did not reach the end position, the amount of players
not reaching the end position approximately doubles if the end position is
doubled. If the end position approaches infinity no player reaches the end
position and therefore d approaches 1. Nevertheless, this does not imply
that the average difficulty d, as seen in Figure 7.3, would approach 1 if
the end position approaches infinity because of games with ¢; = 0, which
might retain d = 0 even if the end position approaches infinity.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
50 89 129 16.8 20.7 24.6 28.6 32.5 36.4 40.4 443 48.2 52.1 56.1 60.0

end position

difficulty

Figure 7.3: This graph shows how the average difficulty d behaves if the end position is
varied. The area around the line represents ;.
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8 Future Work

This work parameterizes the game Line Runner and analyses the randomly
generated levels. It serves as an introduction to automated playtesting using
an implementation of Line Runner as an example to illustrate the process.

8.1 Improved Difficulty Calculation

The definition of difficulty in this thesis consists of the two values d and ¢;.
This limits the ability to sort the levels by its difficulty, as it is only possible
to sort the list of levels either by d and disregarding o, or the other way
around. The thesis “Exploring Automated Game Testing” approaches this
issue by introducing a single difficulty value for each game.

8.2 Dynamic Difficulty Adjustment

This thesis analyses games with constant parameters. In order to achieve
a game that becomes increasingly challenging over time, the parameter
vector must also change. The sequence of used parameter vectors need to
have a rising difficulty. “Exploring Automated Game Testing” modifies Line
Runner to add dynamic difficulty adjustment (DDA) to it. It demonstrates
two different approaches on how DDA can be applied to endless runner
games (Larch, 2018).

1. By analyzing how each parameter influences the game’s difficulty a
rising difficulty adjustment can be achieved. For example the speed
parameter can be increased over time and the game becomes more
difficult to play.

2. By chaining different levels with different parameter vectors and
different difficulties, difficulty adjustment can also be reached.
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8 Future Work

8.3 Al Improvements

Figure 8.1 illustrates the problem of having two subsequent obstacle blocks.
The Al is able to observe the first obstacle block and calculates the perfect
jumping position accordingly. When the players jump at this position they
crash into the second obstacle block, leading to a game with ¢; = 0. Human
players on the other hand are able to observe both obstacle blocks and guess
the perfect jumping position to make it past both obstacles.

The Al should be able to do the same as human players and try to center
the trajectory path at the center of both obstacle blocks. Since this does not
happen frequently during the random generation of the levels, it has been
neglected in this work.

V4 L] ]

Figure 8.1: Human players can jump over two sequential obstacles, while the AI cannot.

8.4 Level Generation Improvements

The Level Generator developed in this thesis generated 89.3% games where
04 = 0, which means that in all these levels all players either died at the same
position or made it to Sy, and won the game. Both cases are unwanted,
since levels are either too easy or impossible. Due to this high percentage,
the conclusion can be made that it is very inefficient to create playable
levels when using random generation. The thesis “Exploring Automated
Game Testing” explores the possibilities of enhancing the level generation
efficiency in order to get more playable levels (Larch, 2018).

8.5 Difficulty Validation

The difficulty is calculated using the average of all scores of the players
of a simulated level. These difficulties are only an estimation of the real
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8.6 General Survival Analysis

difficulty of a level. Therefore, the difficulties calculated in this thesis should
be further validated by making a comparison to the scores of human players.
For this purpose Larch conducts a user study on said issue and validates
the results of the calculations (Larch, 2018).

8.6 General Survival Analysis

This type of research can be applied to other endless runners, where the
objective is to come as far as possible. The more complex the game becomes,
the more complex the whole analysis as well as the Al becomes. Simple one
tap games like Line Runner, Flappy Bird (Isaksen, Gopstein, and Nealen,
2015) etc. can be driven by a rather simple Al that calculates the next best
game move to be carried out. This is done by imitating human behavior in
the decision-making.

While it would be interesting to apply such an approach to a completely
different and more complex games like chess, it would need a completely
different approach to automated game testing. In chess the sequence of
consecutive moves is the key criteria to winning the game. It needs a
completely different approach in modeling the player interaction with the
game.

8.7 Computational Creativity

Computational creativity targets to find novel and appropriate solutions
using computational means (Duch, 2013). The analysis chapter in this the-
sis yields interesting game configurations of Line Runner. This questions
whether it is possible to explore the game space to find interesting types
of levels which share the same game mechanics, but appear like a different
game. Isaksen et al. solved this task by searching the parameter space to
find a subset of games that maximizes the minimum euclidean distance
between all points in the 2D point cloud of all generated games.
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9 Conclusion

This thesis presents and analyzes the automated difficulty estimation of a
parameterized version of Line Runner by using Monte Carlo simulation and
player score analysis.

It demonstrates how the level generation of a parameterized version of Line
Runner is implemented and explains the mechanics of the developed Al, that
is able to play these games. Using the results of 500 randomly generated and
simulated games, the Level Generator’s abilities to the difficulty prediction
is analyzed.

Even though the games used for analysis were generated completely

random, the influence of the parameters is still visible in the graphs. For
example, the faster speed of the player in the generated level, the higher the
probability that the game will be more difficult.
Despite the simplicity of the difficulty estimation the results indicate their
validity. The capability of the Level Generator is analyzed using a difficulty
probability analysis, showing that 10.7% of the generated games have a
oz > 0. These games are subject to the analysis because they provide the
best playability.

This paper further shows unique game configurations, found using the
random level generation, such as the Moon Level. This level has a low
gravity parameter and therefore gives a moon-like feeling to the game.

In addition, the similarities and differences of game parameters and
the survival diagram of games with identical difficulties are discussed.
While games with d = 0.98 have an identical [y, and survival diagram,
games with d = 0.5 can have completely different parameters and survival
diagrams. The survival diagram allows game designers to easily interpret a
game’s properties such as the overall difficulty and get an overview of the
playability.

The Al in this work calculates the jump position depending on the next
visible obstacle. It could be improved by observing multiple subsequent
obstacles to calculate a better jump position.
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9 Conclusion

Automated playtesting is a powerful method for game designers to ease
the process of finding the optimal game experience of their game, while
also finding new ideas by exploring the whole game space.
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