
New Second Preimage Attacks on Dithered
Hash Functions with Low Memory Complexity

Muhammad Barham1,?, Orr Dunkelman1,?,
Stefan Lucks2, and Marc Stevens3

1 Computer Science Department, University of Haifa, Israel,
muhammad.barham@gmail.com,

orrd@cs.haifa.ac.il,
2 Bauhaus-Universit̊at Weimar, Weimar, Germany,

stefan.lucks@uni-weimar.de,
3 Centrum Wiskunde & Informatica, The Netherlands,

marc@marc-stevens.nl

Abstract. Dithered hash functions were proposed by Rivest as a method
to mitigate second preimage attacks on Merkle-Damg̊ard hash functions.
Despite that, second preimage attacks against dithered hash functions
were proposed by Andreeva et al. One issue with these second preimage
attacks is their huge memory requirement in the precomputation and the
online phases. In this paper, we present new second preimage attacks on
the dithered Merkle-Damg̊ard construction. These attacks consume sig-
nificantly less memory in the online phase (with a negligible increase in
the online time complexity) than previous attacks. For example, in the
case of MD5 with the Keränen sequence, we reduce the memory complex-
ity from about 251 blocks to about 226.7 blocks (about 545 MB). We also
present an essentially memoryless variant of Andreeva et al. attack. In
case of MD5-Keränen or SHA1-Keränen, the offline and online memory
complexity is 215.2 message blocks (about 188–235 KB), at the expense
of increasing the offline time complexity.

1 Introduction

Cryptographic hash functions have many information security applications, no-
tably in digital signatures and message authentication codes (MACs). The need
for hash functions renders its security as one of the important topics in the design
analysis of cryptographic primitives.

Designing hash function usually consists of two parts:

– Designing a compression function (or a secure permutation, in the case of
sponge functions [4]).

– Designing the mode of iteration (also called domain extension).

? The first and second authors were supported in part by the Israeli Science Foundation
through grant No. 827/12.

These two parts complement one another, and to create a secure hash function,
a secure compression function and a secure mode of iteration are needed.

The most common and used mode of iteration is Merkle-Damg̊ard [6, 14].
Though believed to be secure, the Merkle-Damg̊ard construction was found vul-
nerable to different multi-collision and second preimage attacks [1–3,7–11]. One
of the alternatives that was suggested to replace Merkle-Damg̊ard and to in-
crease Merkle-Damg̊ard security, is the dithered Merkle-Damg̊ard [18]. Dithered
Merkle-Damg̊ard was designed by Rivest to overcome the Expandable Message
attack of [11]. The main idea of dithered Merkle-Damg̊ard is to add a third input
(derived from some sequence) to the compression function to perturb the hash-
ing process. However, dithered Merkle-Damg̊ard was found vulnerable to two
second preimage attacks by Andreeva et al. [1,3]. While taking less than 2n time
to find a second preimage, these attacks consume a huge amount of memory.

1.1 Related Work

Andreeva et al. described in [1, 3] two second preimage attacks on dithered
Merkle-Damg̊ard. The first attack, the “adapted Kelsey-Kohno”, uses a diamond
structure (similarly to our attack). Assume that the dithering sequence z (over
alphabet A) is used, the compression function f : {0, 1}n×{0, 1}b×A → {0, 1}n
and that the target message is 2k blocks. The online time complexity of the first

attack is1 2n−k

Freqz(w
`+1
mc)

+2n−`, and the offline and the online memory complexities

are 2n/2+`/2+1/2 and 2`+1, respectively.
The second attack, the “Kite Generator”, requires 2 · |A| ·2n time complexity

in the offline phase, and max(2k, 2(n−k)/2) time complexity in the online phase.
Its memory complexity is |A| · 2n−k in both the offline and the online phases.

To summarize both attacks require a tremendous amount of memory in the
online phase. In this paper we reduce the memory complexity (of the online and
offline phases) of second preimage attacks on dithered.

1.2 Our Results

This paper describes novel second preimage attacks on dithered Merkle-Damg̊ard
hash function with very low memory complexities. We first explore attacks that
have low online memory complexity with almost no increase in the time complex-
ities compared with the attacks of [1,3]. The online and offline memory complex-
ities of the basic attack are |A|·Factz(`)·(`+1) and Factz(`)·2`+1+2n/2+`/2+1/2,
respectively. For example, the memory time complexity of the attack, in case of
MD5-Keränen for ` = 50 is about 226.7 blocks (about 507 MB).

Then, we introduce ideas and optimizations of the attack that reduce the of-
fline time and memory complexities. Lastly, we use these ideas to present an es-
sentially memoryless attack, again without increasing the online time complexity.

1 Freqz(w) is the frequency of the word w in the sequence z, w`+1
mc is the most common

word of length ` + 1 in the sequence z.

The online and the offline memory complexity of the attack is (`+1)·Factz(`+1)
blocks. However, for this reduced memory attack, the offline time complexity is
increased.

In Table 1, we compare the complexities of second preimage attacks on
dithered Merkle-Damg̊ard. In Table 2, we compare the complexities of the second
preimage attacks on real hash functions with concrete parameters.2

Time Complexity Memory Complexity (blocks)
Offline Online Offline Online

Adapted 2n/2+`/2+2 2n−k

Freqz(w
`+1
mc)

+ 2n−` 2n/2+`/2+1/2 2`+1

Kelsey-Kohno [1,3] +2`+1

Kite Generator [1, 3] 2 · |A| · 2n max(2k, 2(n−k)/2) 2 · |A| · 2n−k 2 · |A| · 2n−k

Basic Attack Factz(`) · 2n/2+`/2+2 2n−k

Freqz(w
`+1
mc)

Factz(`) · 2`+1 |A| · (` + 1) · Factz(`)2

(Section 4) +|A| · Factz(`)2 · 2n−` +2n/2+`/2+1/2

Time Factz(`) · 2n/2+`/2+2 2n−k

Freqz(w
`+1
mc)

Factz(`) · 2`+1 |A| · (` + 1) · Factz(`)2

Optimization I +|A| ·
((

Factz(`)
2

)
+ `

)
· 2n−` +2n/2+`/2+1/2

(Section 5)

Time Factz(`) · 2n/2+`/2+2 2n−k

Freqz(w
`+1
mc)

Factz(`) · 2`+1 |A| · (` + 1) · Factz(`)2

Optimization II +|A| · Factz(`) · 2n−` +2n/2+`/2+1/2

(Section 5)

Time Factz(`) · 2n/2+`/2+2 2n−k

Freqz(w
`+1
mc)

Factz(`) · 2`+1 (` + 1) · Factz(` + 1)

Optimization III +Factz(` + 1) · 2n−` +2n/2+`/2+1/2

(Section 5)

Memory 2 · Factz(`) · 2n/2+`/2+2 2n−k

Freqz(w
`+1
mc)

2n/2+`/2+1/2 (` + 1) · Factz(` + 1)

Optimization +Factz(` + 1) · 2n−` +2`+1

(Section 6)

The Memoryless 2 · Factz(`) · 2n/2+` 2n−k

Freqz(w
`+1
mc)

(` + 1) · Factz(` + 1) (` + 1) · Factz(` + 1)

Attack +Factz(` + 1) · 2n−`

(Section 7)

Table 1: Comparison of the second preimage attacks on dithered hash functions.

1.3 Organization of the Paper

We introduce some terminology, describe the Merkle-Damg̊ard construction, and
the dithered Merkle-Damg̊ard construction in Section 2. We describe the pre-
vious attacks in Section 3. We then present our new basic attack (which has
comparable time complexity to the attack of [1, 3]) in Section 4. We show op-
timizations and improvements for the offline time complexity of this attack in
Section 5. In Section 6, we show offline memory optimizations. We then show an

2 In Appendix A we discuss a compact representation of message blocks both in the
generation of the diamond structure and in the online phase. The results reported
in Table 2 assume these compact representations.

Function - MD5-Keränen SHA1-Keränen SHA256-Keränen SHA512-Keränen
(n, k, `) (128, 55, 50) (160, 55, 50) (256, 55, 50) (512, 118, 110)

Adapted
Time

Offline 291 2107 2155 2313

Kelsey-Kohno

Online 281.5 2113.5 2209.5 2404.3

Memory
Offline 289.5 2105.5 2153.5 2311.5

Online 251 251 251 2111

11259 TB 15763 TB 15763 TB 37530 TB

Kite Generator

Time
Offline 2131 2163 2259 2515

Online 255 255 2100.5 2197

Memory
Offline 276 2108 2204 2397

Online 276 2108 2204 2397

3.778 · 1011 TB 2 · 1021 TB 1.6 · 1050 TB 4.1 · 10108 TB

Basic Attack
Time

Offline 2100.9 2131 2227 2424.6

(Section 4)

Online 281.4 2113.4 2209.4 2404

Memory
Offline 289.5 2105.5 2153.5 2311.5

Online 226.7 226.7 226.7 229.4

519.8 MB 727.8 MB 727.8 MB 9.237 GB

Time
Offline 2100.5 2119.5 2215.5 2412.3

Optimization III
Online 281.4 2113.4 2209.4 2404

(Section 5) Memory
Offline 289.5 2105.5 2153.5 2311.5

Online 215.2 215.2 215.2 217.1

188.2 KB 263.5 KB 263.5 KB 1.976 GB

Offline Time
Offline 2101.5 2119.5 2215.5 2412.3

Memory
Online 281.4 2113.4 2209.4 2404

Optimization
Memory

Offline 251 251 251 2111

Online 215.2 215.2 215.2 217.1

(Section 6) 188.2 KB 263.5 KB 263.5 KB 1.976 GB

Memoryless
Time

Offline 2124.5 2140.5 2215.5 2412.3

Attack
Online 281.4 2113.4 2209.4 2404

(Section 7) Memory
Offline 215.2 215.2 215.2 217.1

Online 215.2 215.2 215.2 217.1

301.1 KB 376.4 KB 602.2 KB 4.495 MB

Table 2: Comparison of the second preimage attacks on dithered hash functions which
uses the Keränen sequence. ` was chosen as an optimal value for “adapted Kelsey-
Kohno”. The analysis in [1, 3] about dithering sequence, showed that for Keränen
sequence and ` = 50 holds FactKeränen(`) ≤ 732, 1

FreqKeränen(w50
mc)

≤ 340 and

1
FreqKeränen(w110

mc)
≤ 1020.

essentially memoryless attack on dithered hash functions in Section 7. Finally,
we conclude the paper in Section 8.

2 Background and Notations

2.1 General Notations

– {0, 1}n — all the strings over ‘0’ and ‘1’ of length n.

– {0, 1}∗ — all the strings of finite length.
– m — a message m ∈ {0, 1}∗.
– |m|b — the length of m in b-bit block units.
– A — a finite alphabet.
– w[i] — the ith letter of w.
– w`mc — the most common word (or factor) of length ` in a sequence z.
– Freqz(w) is the frequency of the word w over the sequence z.
– Factz(`) — the sequence’s complexity of a sequence z, given an integer `, as

the number of different factors in z of length `.
– Pwh

— given a binary tree w, the path Pwh
is the sequence of edges which

connects the leaf h to the root of w.

2.2 Merkle-Damg̊ard

Let f : {0, 1}n × {0, 1}b → {0, 1}n be a compression function, then the Merkle-
Damg̊ard hash function Hf : {0, 1}∗ → {0, 1}n is:

– m1,m2, ...,mL ← padMD(m).
– h0 = IV .
– For i = 1 to L, compute hi = f(hi−1,mi).
– Hf (m) , hL.

Where padMD(m) is the conventional Merkle-Damg̊ard padding function, also
called Merkle-Damg̊ard Strengthening: Given a message m, it pads a single ‘1’
to the end of the message m also up to b−1 zeros, and an embedding the original
length of the message at the end, such that the length of the padded message
will be a multiple of b.

2.3 Dithering Sequence

To overcome the attack of [11], which is based on Expandable Message, Rivest
suggested to add a third input (dithered symbol) to the compression function
derived from an infinite sequence [18]. Rivest proposed to use one of two se-
quences:

– Keränen sequence.3

– His concrete proposal (a combination of the Keränen sequence and a counter) [18].

Let f : {0, 1}n×{0, 1}b×A → {0, 1}n be a compression function that accepts
an n-bit chaining value, b-bit message block, and A dither symbol taken from the
sequence z. The Dithered Merkle-Damg̊ard hash function Hf : {0, 1}∗ → {0, 1}n
is:

– m1,m2, ...,mL ← padMD(m).

3 In 1992, Keränen showed in [12] an infinite abelian square-free sequence over a four
letter alphabet (Hereafter called the Keränen sequence).

– h0 = IV .
– For i = 1 to L, compute hi = f(hi−1,mi, z[i]).
– Hf (m) , hL.

In [2], second preimage attacks were shown on dithered hash functions, and
the conclusion was that the more complex the sequence is, the more secure the
dithered hash function is against second preimage attacks.

2.4 Diamond structure

The diamond structure was introduced in [10]. It was used in the attacks of [2,10],
and also in the second preimage attack on dithered Merkle-Damg̊ard in [1, 3].
A diamond structure is a tree T of depth `, where the 2` leafs are the possible
chaining values, denoted by DT = {h`i}. The nodes in the tree are labeled by
digest values and the edges are labeled by message blocks. The adversary builds
the diamond structure starting from the 2` leafs, she tries to map the 2` leafs to
2`−1 digest values (to the next level in the structure). She does so by generating
about 2n/2+1/2−`/2 message blocks from each leaf, then she detects collisions in
the generated values. She repeats the process until she reaches the root (with
adjusted number of message blocks from each node in each level). The expected
time complexity of building a diamond structure is 2n/2+`/2+2.

The diamond structure has the interesting property that there is a path of
message blocks from any chaining value leaf h`i to the the digest value hT (the
root). See an example in Figure 1.

The diamond structure was introduced at first to attack classic Merkle-
Damg̊ard hash functions [10]. But it can be easily adapted for dithered Merkle-
Damg̊ard, by labeling the tree edges with a dither symbol α ∈ A as well.

We say that a diamond structure “uses” a sequence w′ when all the edges
between level i and level i + 1 in the structure are labeled in addition to the
message block also with w[i]. We denote the diamond structure T that uses the
sequence w′ by Tw′ .

hT

ĥ1
m1,1, w[1]

ĥ2 m1,2, w[1]
m2,1, w[2]

ĥ3
m1,3, w[1]

ĥ4 m1,4, w[1]

m2,2, w[2]

m3,1, w[3]

ĥ5
m1,5, w[1]

ĥ6 m1,6, w[1] m2,3, w[2]

m3,2, w[3]

Fig. 1: A diamond structure that uses the dithering sequence w.

3 Previous Attacks on Merkle-Damg̊ard Hash Functions

3.1 Dean’s Attack

Dean showed in [7] a second preimage attack on Merkle-Damg̊ard hash func-
tions. The idea is to generate an expandable message using a fixed point of
the compression function, to connect to the targeted message. Consider a mes-
sage M = m1m2 . . .mL, an initial value IV , and let H(M) = h. Denote the
intermediate values of processing the message M by h1, h2, . . . , hL = h, i.e.,
f(hi−1,mi) = hi (where h0 = IV).

At the first step of the attack, the adversary generates 2n/2 random block
messages, denoted bymr

1,m
r
2, . . . ,m

r
2n/2 . Then, she computes X1 = {f(IV,mr

j)|∀j ∈
{1, 2, . . . , 2n/2}}. She then generates 2n/2 random fixed points of the compres-

sion function,4 denoted by X2 = {(hfk ,mc
k)|f(hfk ,m

f
k) = hfk}. Due to the birthday

paradox, with non-negligible probability there is mr
j such that f(IV,mr

j) = hfk
(which also means that f(IV,mr

j) = f(hfk ,m
f
k)). Now, she tries to connect hfk to

the message, so she generates 2n/L random message blocks, denoted by mz,
1 ≤ z ≤ 2n/L. With a non–negligible probability, there is a hi, such that

f(hfk ,mz) = hi . At this stage the adversary can output the message M ′ =

m′jm
f
k . . .m

f
k︸ ︷︷ ︸

i− 2 times

mzmi+1 . . .mL as a second preimage for M . Note that |M ′|= |M |,

which means that after processing the messages, the Merkle-Damg̊ard Strength-
ening has a similar affect on the digest value in both messages.

The time complexity of the attack is 2n/2+1 + 2n/L compression function
calls.5

3.2 Kelsey and Schneier’s Expandable Messages Attack

Kelsey and Schneier showed in [11] a second preimage attack on Merkle-Damg̊ard
hash functions. They presented a new technique to build expandable messages
without any assumption about the compression function (unlike in Dean’s at-
tack), the new technique is based on Joux’s multi-collision technique [9], pro-
ducing multiple messages of varying lengths, with the same digest value. The
time complexity of the attack is about k · 2n/2+1 + 2n−k+1, for a 2k-block length
message.

3.3 Adapted Kelsey-Kohno

One of the second preimage attacks presented in [1,3], is against Merkle-Damg̊ard
hash functions. The attack depends heavily on diamond structures which were

4 The attack is efficient when it is “easy” to find fixed points of the compression
function. For example, in Davis-Meyer compression functions.

5 We note that the complexity is for the case where finding a fixed point is trivial, i.e.,
takes one compression function call.

introduced in [10]. The adversary generates a diamond structure of depth ` and
tries to connect the diamond structure to the message by a connecting message
block. After a successful attempt, she generates a prefix P which connects the IV
to the diamond structure of appropriate length. The second preimage message
is the concatenation of the prefix P , the path in the diamond structure (which
connects the prefix to the root) and the remaining of the original message blocks
(what come after the connecting message block). The complexity of the attack
is 2n/2+`/2+2 + 2n−k + 2n−`.

The attack can also be adapted to the dithered Merkle-Damg̊ard hash func-
tions, which we refer to as “Adapted Kelsey-Kohno”. Most of the attack steps
are similar to the original attack. The adversary generates a diamond structure
of depth `. The diamond structure uses the first ` symbols of the most common
factor of length ` + 1 of the dithering sequence z. The last symbol of the most
common factor of length `+1 is used to connect the diamond structure’s root to
the message in appropriate location. The number of possible points to connect
the diamond structure is equal to 1

Freqz(w
`+1
mc)

. So, the time complexity of the

attack 2n/2+`/2+2 + 2n−k

Freqz(w
`+1
mc)

+ 2n−`, and the online memory complexity is

2`+1.

Fig. 2: Illustration of Andreeva’ et al.’s attack: (i) Build the diamond structure T (ii)
Connect the root to the message (iii) Connect the message to the leafs of T.

3.4 Kite Generator and More Second Preimage Attacks

The “Kite Generator” was introduced in [1, 3]. It is a labeled directed graph of
2n−k vertices. Every vertex labeled by a chaining value (including the IV) and
every edge is labeled by a message block and a symbol from the alphabet of
the dithering sequence. For any symbol in the dithering alphabet (i.e., α ∈ A)
there are two edges labeled by the symbol α. The result is that every vertex has
2 · |A| outgoing edges. The structure is highly connected, that is to say, there is
an exponential number of paths for any dithering sequence that starts from a

single vertex. The time complexity of building such a structure is 2 · |A|·2n and
it requires |A|·2n−k memory.

For a given message m of 2k blocks and 2k intermediate digest values, there
is a non-negligible probability that there is an intermediate digest value which is
also a label of a vertex in the kite generator structure. Denote this value by hi.
The adversary picks a path in the kite generator starting from the IV of length
i − (n − k) with the dithering sequence z[0 . . . (i − (n − k))]. Then, from the
last chaining value of the generated path, build a binary tree of depth (n− k)/2
that uses the dithering sequence z[(i − (n − k) + 1) . . . (i − (n − k)/2)] (this is
achieved by traversing all possible routes in the graph corresponding the required
dithering sequence). In the last step, she builds a binary tree from hi of depth
(n − k)/2 that uses the dithering sequence z[(i − (n − k)/2 + 1) . . . i]R. With a
non-negligible probability there is a collision in the leafs of the two trees. The
second preimage is the concatenation the the generated path, the path which
connects the two roots of the trees, and the remaining blocks of the original
message (the message blocks which come after hi). The online time and memory
complexities of the attack are max(2n/2, 2n−k) and |A| · 2n−k, respectively.

4 A New Second Preimage Attack on Dithered
Merkle-Damg̊ard

We now present a new second preimage attack on dithered Merkle-Damg̊ard.
The new attack has a slightly longer precomputation time, but in exchange,
the online memory complexity of the attack is significantly reduced to practical
levels.

Similarly to the attacks of [1, 3], the attack consists of two phases: the pre-
computation (the offline) and the online phase. In the offline phase, we generate
Factz(`) diamond structures, every structure with a unique factor of the se-
quence z of length `. Then, we connect every diamond structure to all diamond
structures (including itself). We then purge unnecessary paths from the mem-
ory. These purged structures are then used in the online phase to find a second
preimage by connecting one of the purged diamond structures to the message,
and starting from the IV traversing through the purged diamond structures
to reach the connecting point. The total amount of memory that is needed for
keeping the purged diamond structures is significantly smaller than the amount
of memory needed for storing a full diamond structure.

4.1 Adapting Diamond structure to dithered Merkle-Damg̊ard

We now give the details of the attack:

– Offline phase:
1. Build Factz(`) diamond structures of depth ` each (denoted by {Ti|1 ≤
i ≤ Factz(`)}), where every Ti uses a different factor of z of length `.
Every diamond structure Ti has a digest value hTi

. Note that the IV is
a leaf in all the generated diamond structures.

2. Connect every diamond structure Ti to every diamond structure Tj (Ti
may be Tj) with all |A| possible dithering symbols. Namely, for every pair
of Ti, Tj and any dithering symbol α, findmα

i→j such that f(hTi ,m
α
i→j , α)

is a leaf of Tj .
3. Prune (reduce) the diamond structures by removing all unnecessary

nodes and edges that do not belong to any path that connects two roots
hTi and hTj . Formally, let Gi = {Pj,i|∃Tj such that Pj,i is a path from a
hTj

to hTi
}. Then, for all Ti′ , remove the nodes {n′ ∈ Ti′ |n′ /∈ Pj′,i′ for

any Pj′,i′ ∈ Gi}.
Between two diamond structures, there are |A| such paths. So overall,
keep |A| · Fact2z(`) paths (of length ` + 1 each, as we also store the
connecting message block mα

j→i).

Fig. 3: Connecting diamond structure Ti to diamond structure Tj

Complexity Analysis: Constructing Factz(`) diamond structures takes
Factz(`) ·2n/2+`/2+2 compression function calls. Connecting one diamond struc-
ture to another takes 2n−` compression function calls for a given dither se-
quence. Therefore, connecting all the diamond structures to each other takes
|A| · Factz(`)2 · 2n−` time. Finally, pruning the diamond structures takes |A| ·
Fact2z(`) · (`+ 1) time and memory.

Therefore, the overall time complexity of the offline phase is Factz(`)·2n/2+`/2+2+
|A|·Factz(`)2·2n−` compression function calls, and it passes |A|·Factz(`)2·(`+1)
memory blocks to the online phase.

– Online phase: In the online phase, given a message m, such that |m| = 2k

blocks. Let w′ = wrα (|w′| = `+ 1) be the most common factor in positions
0, `+ 1, 2(`+ 1), . . . (positions that are multiple of `+ 1) of the sequence z.
Let Range be {i ∈ N|i ≤ 2k ∧ z[i− (`+ 1)] . . . z[i] = w′}, namely, Range is
the set of all indexes of chaining values which were produced of hashing of
any consecutive `+ 1 blocks with wr, perform:
• Find a connecting block Br such that f(hTwr

, Br, α) = hi0 for i0 ∈
Range.
• Traverse the structures and find a path from IV to Br while preserving

the dithering sequence order.

• The second preimage is generated by concatenating the path that was
found in the previous step, with the rest of the original m from the block
after the connecting point till the end.

The complexity of the online phase is 2n−k

Freqz(w′)
+ 2k, which is essentially the

same as the adapted Kelsey-Schneier’s attack [1,3] (we note that the connection
“into” the diamond structure is eliminated).

Fig. 4: Illustration of the attack.

4.2 Generalization

The previous attack worked with the most common factor of length ` + 1 in
positions 0, `+ 1, 2 · (`+ 1), . . . (i.e., a multiple of `+ 1). Traversing the diamond
structures gives always a path whose length is a multiple of `+ 1. Therefore, it
is limited to work with the most common factor in specific positions, which may
not be the most common factor of the whole sequence.

To overcome this issue, we generate from the IV a chain of length `. We pick
at random a message m′ = m′1m

′
2 . . .m

′
` and evaluate h′1 = h(IV,m′1, z[1]), h′2 =

h(IV,m′1m
′
2, z[1, 2]), h′3 = h(IV,m′1m

′
2m
′
3, z[1, 2, 3]). etc. until h′`. We then, use

h′1 as one of the leafs in Tz[1...], h
′
2 as one of the leafs in Tz[2...], etc.

In the online phase, let w′ be the most common word of length ` + 1. We
connect Tw′ to the message in position t. Let d = t mod (` + 1), and use
m′1m

′
2 . . .m

′
d to connect the IV to the diamond structure Tz[d..(d+`)], then tra-

verse from Tz[d..(d+`)] to Tw′ .

Complexity Analysis: The additional complexity of the new algorithm is `
compression function calls (generating h′1, h

′
2, . . . , h

′
`). This amount of complexity

is negligible, and does not affect the offline time complexity. However, it does
improve the online time complexity, as we now use the global most common
factor in the sequence, which may allow for more connecting points, instead of a
most common factor in specific positions. Therefore, the new complexity of the

online phase is 2n−k

Freqz(w
`+1
mc)

+ 2k.

5 Optimizations and Improvements

In this section, we present several optimizations and improvements. Some ideas
reduce the offline time complexity, while other ideas reduce the offline memory
complexity. All these improvements do not increase the online time and memory
complexities.

5.1 Reducing Offline Time Complexity

Optimization I - Use the Diamond Structure Roots as Leafs A ma-
jor factor in the offline phase is connection of the diamond structures to each
other. We now present a simple way to reduce the time to connect the dia-
mond structures by about half: After generating a structure, let its root and all
other previous structures’ roots be part of the 2` leafs of the following generated
structures.

Namely,

– Set D1 = {IV }.
– For i = 1 to Factz(`):

• Generate the diamond structure Ti, such that Di is a subset of the leafs
of Ti, i.e., make sure that Di ⊆ DTi .

• Set Di+1 = Di ∪ {hTi
}.

As the IV is a leaf in all the diamond structures, one can start the exploration
of the dither sequence factor from it, independently of the first factor. Similarly,
when generating a new diamond structure, if all the roots of the previously
generated diamond structures are leafs in the new diamond structure, then they
are already connected to it, and there is no need in connecting the previous
diamond structures to the new one.

After the generation of the diamond structures, every pair of different dia-
mond structures is already connected in one direction, but needs to connect in
the other direction. This reduces the connection time from |A| · Fact2z(`) · 2n−`
to |A| ·

((
Factz(`)

2

)
+ `
)
· 2n−`, and the total offline time complexity to Factz(`) ·

2n/2+`/2+2 + |A| ·
((
Factz(`)

2

)
+ `
)
· 2n−`.

Optimization II - All the Diamond Structures have the Same Leafs
Another simple optimization which reduces the offline time complexity by a fac-
tor of Factz(`), is to let the leafs of all the diamond structures be the same. In
other words, choose 2` random values, and let those values be the leafs of all the
diamond structures. This way, when connecting a diamond structure to another,
it connects the diamond structure to all the other diamond structures.This re-
duces the diamond structures connection time complexity to |A| ·Factz(`) ·2n−`,
and the total offline time complexity to Factz(`)·2n/2+`/2+2+|A|·Factz(`)·2n−`.

Optimization III - Validate the Connections between the Diamond
Structures Another simple observation that reduces the time complexity of
the offline phase is that not all the factors of length ` (or any length greater
than 1) are sequential. Meaning, if a factor x of length ` in sequence z, does not
appear before another factor y of length `, then there is no need to connect Tx
to Ty. In fact, the number of the needed connections is Factz(`+1) (the number
of the factors of length `+1). So the overall diamond structures connection time
complexity is Factz(`+ 1) · 2n−`.

Note that as a result of this improvement (together with optimization II),
the online memory complexity is also reduced to Factz(`+ 1) · (`+ 1).

5.2 Treating (Almost)-Regular Sequences

Our attacks were designed for any possible sequence z over a dithering alphabet
A. However, some sequences, such as the Keränen show some regular behav-
ior. Namely, the Keränen sequence is built by taking a sequence over a 4-letter
alphabet {a, b, c, d} and replacing each character by its own 85-character se-
quence.6 We now show how to use the “regularity” of this sequence in reducing
the complexities of attacking the sequence.

The basic idea is that if ` ≤ 84, the most frequent factor necessarily starts
at the beginning of one of the 85-character chunks. Moreover, the sequence itself
is divided into four such chunks, and thus, one can build in advance only four
diamond structures (of depth ` ≤ 84) and connect each of them to the others by
paths of length 85−`. We note that the online time complexity is not affected by
this change (as one of the most frequent factors starts at the first character of the
chunk), whereas the offline time complexity is reduced to 4 · 2n/2+`+2 + 12 · 2n−`
(compared with 732 · 2n/2+`/2+2 + 2928 · 2n−` for the best general attack).

The idea also reduces the memory complexities (both offline and online). For
example, the attack of Section 5.1 takes (`+1)·Factz(`+1) which are 732·(`+1)
blocks of memory (for ` < 85), or merely 12 · 85 = 1020 blocks of memory when
the regularity of the sequence is used.

For 84 < ` < 169, the attack spans over two dither chunks. The offline time
complexity is thus 12 · 2n/2+`+2 + 132 · 2n−`, and the memory complexity is
36 · 170 = 6120 blocks of memory.

6 Memory Optimizations

In this section, we discuss how to reduce the increased memory complexity in
the offline phase in exchange for additional offline computations.

6.1 Reducing Memory in the Offline Phase

The offline memory complexity could be reduced from storing Factz(`) diamond
structures to only one diamond structure. The basic idea is to generate only

6 We refer the interested reader to [12] for the full specification of the sequence.

one diamond structure at a time, and reconstruct it in the preprocessing when
needed. The improvement is based on optimization methods II and III, where
all diamond structures share leafs. Below we describe the algorithm and then
explain it:

– Let D be the leafs of the diamond structures with cardinality of 2`.
– For i = 1 to Factz(`):
• Generate the diamond structure Ti.
• Find and save (hTi

,Mi), whereMi = {mα
hTi
→D|∀α ∈ A, h(hTi

,mα
hTi
→D, α) ∈

D and wiα is a factor of z }.
• Delete Ti.

– For i = 1 to Factz(`):
• Regenerate the diamond structure Ti.
• Compute and save Gi (recall that Gi are the paths from the leafs con-

nected to the root from other diamonds).
• Delete Ti.

After the offline phase, pass the paths (Gi’s) to the online phase.
We first note that when generating a diamond structure Ti, the leafs of other

diamond structure Tj should be predictable to allow the connection from Ti to Tj .
By fixing the leafs of all the diamond structures to be the same, we can overcome
this obstacle, and we also reduce the time complexity, because connecting Ti to
Tj is also connecting Ti to all other diamond structures under the same dithering
symbol.

To enable regenerating the same diamond structure twice independently, we
can use a fixed pseudo-random sequence (e.g., by seeding some PRNG) to de-
termine the message blocks used (and their order) along with any randomness
needed for other decisions.

This reduces the offline memory complexity to Factz(`+1)·2n−`. In exchange,
the diamond structure generation time complexity is increased to 2 · Factz(`) ·
2n/2+1/2+`/2, and the total offline time complexity to 2 · Factz(`) · 2n/2+`/2+2 +
Factz(`+ 1) · 2n−`.

6.2 Time-Memory Trade-off

It is possible to balance the offline memory complexity with the offline time
complexity. One could store in memory x diamond structures that are computed
only once. The offline memory and time complexities are x·2`+1 and (2·Factz(`)−
x) · 2n/2+`/2+2 + Factz(`+ 1) · 2n−`, respectively.

7 Memoryless Diamond Structure Generation

We now show that it is possible to essentially eliminate the memory used in the
offline phase: By building the diamond structure as a Merkle hash tree [15] (i.e.,
deciding in advance which leaf collides with which leaf), and using memoryless

collision search [13, 16, 17], we can reduce the offline memory completely to the
online complexity.

Each diamond structure has 2`+1 − 1 collisions, each can be found in time
O(2n/2) without additional memory, allowing for a memoryless diamond struc-
ture generation in time 2n/2+`+1. Obviously, the randomness in the generation
needs to be replaced with a pseudo-random sequence (the same as in Section
6.1). The total offline time complexity of the attack is 2 · Factz(`) · 2n/2+` +
Factz(` + 1) · 2n−`. The online time complexity does not change, and remains
at (` + 1) · Factz(` + 1). The total (offline and online) memory complexity is
(`+ 1) · Factz(`+ 1).

8 Summary

In this work we present a series of second preimage attacks on dithered Merkle-
Damg̊ard hash functions. The proposed attacks have the same online time com-
plexity as the previous works of [1,3], but enjoy a significantly reduced memory
complexity.

The first set of attacks concentrate on reducing the memory complexity in
the online phase (while maintaining, or slightly increasing, the offline memory
complexity). This set is motivated by the fact that an adversary may be willing
to spend some extra memory (or time) in the offline phase, so the online phase
could use a smaller amount of memory (which may be more suitable for FPGA-
based cryptanalytic efforts). We believe that this line of research (reducing online
memory complexity, possibly at the expense of an increased offline complexities),
would open up a new way to look at cryptanalytic problems.

The last attack we present offers an essentially memoryless attack on dithered
hash functions which is still considerably better than generic attacks. To con-
clude, it seems that any dithered hash function should use as complex sequences
(namely, with as many different factors) as possible.

Acknowledgements

The authors would like to thank the anonymous referees for their constructive
comments that have improved the results of the paper. In addition, the interac-
tion of the authors during the Dagstuhl seminar on symmetric cryptography in
January 2016, have contributed significantly to improving the results.

References

1. Andreeva, E., Bouillaguet, C., Dunkelman, O., Fouque, P., Hoch, J.J., Kelsey,
J., Shamir, A., Zimmer, S.: New Second-Preimage Attacks on Hash Functions. J.
Cryptology 29(4), 657–696 (2016)

2. Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, Second Preim-
age and Trojan Message Attacks beyond Merkle-Damg̊ard. In: Jr., M.J.J., Rijmen,
V., Safavi-Naini, R. (eds.) Selected Areas in Cryptography, 16th Annual Interna-
tional Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 5867, pp. 393–414.
Springer (2009)

3. Andreeva, E., Bouillaguet, C., Fouque, P., Hoch, J.J., Kelsey, J., Shamir, A., Zim-
mer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart, N.P.
(ed.) Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Istan-
bul, Turkey, April 13-17, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4965, pp. 270–288. Springer (2008)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of
the sponge construction. In: Advances in Cryptology - EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings. pp. 181–197 (2008)

5. Brassard, G. (ed.): Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, Lecture Notes in Computer Science, vol. 435. Springer (1990)

6. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [5], pp. 416–427
7. Dean, R.D.: Formal aspects of mobile code security. phd thesis, princeton university

(1999)
8. Hoch, J.J., Shamir, A.: Breaking the ICE - Finding Multicollisions in Iterated

Concatenated and Expanded (ICE) Hash Functions. In: Robshaw, M.J.B. (ed.)
Fast Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria,
March 15-17, 2006, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 4047, pp. 179–194. Springer (2006)

9. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M.K. (ed.) Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, California, USA, Au-
gust 15-19, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3152, pp.
306–316. Springer (2004)

10. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings. Lecture Notes
in Computer Science, vol. 4004, pp. 183–200. Springer (2006)

11. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings. Lecture
Notes in Computer Science, vol. 3494, pp. 474–490. Springer (2005)

12. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Automata, Languages
and Programming, 19th International Colloquium, ICALP92, Vienna, Austria,
July 13-17, 1992, Proceedings. pp. 41–52 (1992)

13. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Al-
gorithms. Addison-Wesley (1969)

14. Merkle, R.C.: A certified digital signature. In: Advances in Cryptology - CRYPTO
’89, 9th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 1989, Proceedings. pp. 218–238 (1989)

15. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [5], pp. 428–446

16. Nivasch, G.: Cycle detection using a stack. Inf. Process. Lett. 90(3), 135–140 (2004)

17. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. J. Cryptology 12(1), 1–28 (1999)

18. Rivest, R.L.: Abelian Square-Free Dithering for Iterated Hash Functions. Presented
at ECrypt Hash Function Workshop, June 21, 2005, Cracow, and at the Crypto-
graphic Hash workshop, November 1, 2005, Gaithersburg, Maryland (August 2005)

A Compact Representations of Message Blocks in the
Considered Attacks

We now turn our attention to a small constant improvement in the memory con-
sumption of both the generation and the online storage of the diamond structures
(similar ideas can be applied to the kite generator, though we do not discuss these
in detail). Recall the generation of a diamond structure: 2` chaining values are
chosen (or given). For each such chaining value, we compute n/2−`/2+1/2 calls to
the compression function using different message blocks. To find collisions among
the 2n/2+`/2+1/2 chaining values one can use several data structures, where the
easiest one is a hash table (indexed by the chaining value). Such a hash table
can store all the (chaining value, message block) pairs, and allow for an easy and
efficient detection of collisions.

The main question is what is the entry size that needs to be stored in such a
table. The trivial solution requires n bits for the chaining value and b bits for the
message block, i.e., a total of n+b bits (e.g., 640 for MD5). One can immediately
note that as there are only 2` different chaining values, it is possible to assign
to each chaining value an index of ` bits, and store only the index. Another
trivial improvement is to note that one can use the same message blocks for all
chaining values (or determine given the chaining values the message blocks in a
pseudo-random manner), and thus, one needs to store only n/2− `/2 + 1/2 bits
for describing the message block in use. Hence, one can easily use a simpler and
more compact representation of n/2 + `/2 + 1/2 bits (i.e., 90 bits in our attacks
on MD5).

We devise an even more compact representation, which is based on storing
only the chaining value in the hash table. Then, once a collision is found, one can
try all message blocks sequentially to recover the message blocks that led to the
collision. While this doubles the computational effort of the generation of the
diamond structure, by storing a few additional bits of the message block along
the chaining value, is sufficient to make this approach quite computationally
efficient. Hence, one can use ` + t bits, where even a small t (of 3–4 bits) can
ensure the reconstruction does not affect the time complexity by much.

We note that when ` > n/2− `/2 i.e., when 3 · ` > n, it is possible to store in
the table the message blocks themselves, and then in the reconstruction try all
possible message blocks. The resulting representation in this case is n/2−`/2+ t
bits.

Finally, we briefly discuss the online data structure. For that structure one
needs to store only the message block that connects the current chaining value
to the next one. Hence, in the online phase, the memory block size is n/2− `/2.

