
Efficient Doubling on Genus Two Curves over
Binary Fields

Tanja Lange1,� and Marc Stevens2,�

1 Institute for Information Security and Cryptology (ITSC),
Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany

lange@itsc.ruhr-uni-bochum.de
http://www.ruhr-uni-bochum.de/itsc/

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
m.m.j.stevens@student.tue.nl

Abstract. In most algorithms involving elliptic and hyperelliptic curves,
the costliest part consists in computing multiples of ideal classes. This
paper investigates how to compute faster doubling over fields of charac-
teristic two.

We derive explicit doubling formulae making strong use of the defining
equation of the curve. We analyze how many field operations are needed
depending on the curve making clear how much generality one loses by
the respective choices. Note, that none of the proposed types is known to
be weak – one only could be suspicious because of the more special types.
Our results allow to choose curves from a large enough variety which
have extremely fast doubling needing only half the time of an addition.
Combined with a sliding window method this leads to fast computation
of scalar multiples. We also speed up the general case.

Keywords: Hyperelliptic curves, fast arithmetic, explicit group opera-
tions, binary fields.

1 Introduction

Hyperelliptic curves of low genus obtained a lot of attention in the recent past
for cryptographic applications. It is a rather recent result that they can compete
with elliptic curves in terms of efficiency of the group law [Ava03, Lan04a]. The
security of low genus hyperelliptic curves is assumed to be similar to that of
elliptic curves of the same group size. Here, low really means genus g ≤ 3
by [Gau00, Thé03, GT04, Nag04], and even for g = 3 some care has to be taken.

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 170–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:lange@itsc.ruhr-uni-bochum.de
http://www.ruhr-uni-bochum.de/itsc/
mailto:m.m.j.stevens@student.tue.nl


Efficient Doubling on Genus Two Curves over Binary Fields 171

The main operation in protocols based on the discrete logarithm problem in
an additively written group is the computation of scalar multiples of a group ele-
ment. Using standard scalar multiplication methods this boils down to additions,
doublings, and perhaps some precomputations.

In this paper we concentrate on genus two curves over fields of characteristic
two and in detail on doubling formulae for the different types of curves. Obvi-
ously, choosing curves defined over F2 allows very efficient scalar multiplication
as shown in the publications on Koblitz curves [GLS00, Lan04b]. However, there
are only 6 different isogenie classes and, hence, the choice of curves is rather
limited. So there is a trade-off between speed-up and special parameters.

In this article, we give a complete study of all cases of defining equation of
the curve where we allow the curve to be defined over the extension field. In
combination with a windowing method the best case achieves a performance
only twice as slow as for Koblitz curves, the reason being that additions remain
costly in both cases and there are more of them in the Koblitz curve setting.
Clearly, this again is a special choice but the number of non-isomorphic curves
has grown considerably.

So far only one very special type of curves has been considered [PWP04] and
shown to lead to efficient doubling formulae. Our results improve their formulae
and provide clear tables with all types of defining equations together with the
number of operations and also give the doubling formulae.

After the submission of this paper the authors found a further work in special
curves [BD04]. They obtain less efficient doublings, but also do a complete study
of all kinds of curves. Even more recently, Duquesne (see [ACD+04]) made
improvements for the case where deg h = 2 and h0 �= 0.

We now briefly state the background needed on hyperelliptic curves and then
give a complete study of the doubling formulae. Section 7 provides timings for
the different cases giving evidence that the claimed speed up can actually be
obtained. We end with some remarks on side channel attacks.

2 Basic Notations and Preliminaries

We refer the interested reader to [FL03, Lor96, MWZ98, Sti93] for mathematical
background. For the scope of this paper we only try to motivate the representa-
tion of the group elements and the group law as this is what we concentrate on
in the remainder of the paper.

Let Fq, q = 2�, be a finite field of characteristic 2 and let C be a hyperelliptic
curve defined over Fq. In cryptography one usually deals with curves C given by

C : Y 2 + h(X)Y = f(X)
h, f ∈ Fq[X], f monic, deg f = 2g + 1, deg h ≤ g (1)

for which no point (x, y) ∈ C satisfies both partial derivative equations. For
characteristic 2 one needs to have a non-zero h to achieve this quality. The
integer g appearing in (1) is called the genus of C. We concentrate on curves of
genus 2.



172 T. Lange and M. Stevens

The group one uses for cryptographic applications is the ideal class group
Cl(C/Fq) of C over Fq. This is the quotient of the group of fractional ideals of
Fq[X, Y ]/(Y 2 +h(X)Y +f(X)) by the group of principal ideals. Like in the case
of quadratic imaginary fields in each ideal class one finds an ideal generated by
two polynomials 〈u(X), v(X) + Y 〉.

There is a unique ideal of minimal degree in each class. Actually, each el-
ement D of Cl(C/Fq) can be represented by an ordered pair of polynomials
D = [u(X), v(X)], with u, v ∈ Fq, deg v < deg u ≤ g and u monic satisfying
u|v2 + hv + f .

3 Group Law

The group operation in Cl(C/Fq) is performed by first computing the product of
the ideals and then reducing it modulo the principal ideals. This is the principle
behind Cantor’s algorithm [Can87, Kob89].

Obviously, this algorithm has to depend on the properties of the input –
to derive explicit formulae one needs to study additions independently from
doublings. For a complete study of all possible inputs together with formulae we
refer to [Lan04a]. In this paper we concentrate on doublings for genus 2 curves
in the most frequent case where the input [u, v] has full degree and u and h do
not have a root in common. Accordingly, we assume from now on

D = [u, v], deg u = 2, res(h, u) �= 0.

Put u = x2 + u1x + u0, v = v1x + v0. Composing [u, v] with itself should result
in a class [unew, vnew], where

unew = u2,

vnew ≡ v mod u,

unew | v2
new + vnewh + f.

Then this class is reduced to obtain [u′, v′] = 2[u, v].
We fix the notation to refer to the coefficient of Xi in a polynomial p(X) as

pi.
The following expressions follow those in [Lan04a] and are explained there.

We slightly modified them for the way we will apply them.

ṽ ≡ h mod u

r = res(ṽ, u)
inv′ ≡ rṽ−1 mod u ≡ ṽ1x + ṽ0 + u1ṽ1 mod u

k = (f + hv + v2)/u = k′ + u(x + f4), with k′ ≡ k mod u

s′ ≡ k′ inv′ mod u

s′′ = s′ made monic
l′′ = s′′u
u′ = s′′2 + (kr2/s′

1
2 + hs′′r/s′

1)/u

v′ ≡ h + (l′′s′
1/r + v) mod u′



Efficient Doubling on Genus Two Curves over Binary Fields 173

Remark 1. In the actual formulae we do not follow these steps literally. It turns
out to be more efficient to perform the inversion of r and s′

1 jointly using Mont-
gomery’s trick.

Going into the details of these expressions one notices that the actual ex-
ecution of the steps depends on the coefficients of the curve. We will present
formulae for three different cases: deg h = 1, deg h = 2 with obtainable h0 = 0
and deg h = 2 in general. In the two first cases we have h0 = 0 and r will simplify
(to the form r = u0r̃ for some r̃). This allows us to cancel r in the expressions,
so its inverse is not needed anymore. This is how the major speedup is obtained
in the formulae. In the case of general h we need the inversion of r and perform
the inversion of r and s′

1 jointly as explained above.
We now study the different expressions for h separately, always performing

isomorphic transformations first to achieve as many zero coefficients as possible.
In characteristic 2, curves with constant h are known to be supersingular. This
makes them weak under the Frey-Rück attack [FR94, Gal01] and, hence, they
should be avoided for DL systems.1 Note, that in any case one needs to make
sure that the extension field of Fq the Tate pairing maps to has large enough
degree to avoid this attack.

4 Case deg h = 1

In this section we assume deg h = 1. One can obtain an isomorphic curve where
f4 = h0 = 0 and h1 is divided by any cube a3. In this case it is much more useful
to have h0 zero (at the cost of a non-zero f3) as mentioned above. It is suggested
to choose the cube a3 such that a3

h1
is ’small’. This allows the multiplications

with it to be performed via additions and thus they are almost for free. If, as
usual, one chooses F2n with n odd there are no non-trivial cube roots of unity.
Hence, there is always an a such that a3 = h1. For even n this happens with
probability 1/3. This isomorphic curve is obtained using the following change of
variables and dividing the equation by a10:

Y ← a5Ỹ + a4

√
f4 +

h0

h1
X̃2, X ← a2X̃ +

h0

h1

Hence, we obtain a curve of the form Y 2+h1XY = X5+f3X
3+f2X

2+f1X+f0,
usually with h1 = 1. Adding a linear factor to the substitution of Ỹ one can
achieve f2 = 0 with probability 1/2. A constant term leads to f1 = 0. Hence,
there are only two free parameters f3, f0 as opposed to three in the general case
showing that the type is indeed special.

1 These curves have found an application in pairing based cryptography. The explicit
formulae for this case together with information necessary to compute the pairing
are the topic of an upcoming paper.



174 T. Lange and M. Stevens

Table 1. Doubling deg h = 1, deg u = 2

Doubling deg h = 1, deg u = 2
Input [u, v], u = x2 + u1x + u0, v = v1x + v0; h2

1, h−1
1

Output [u′, v′] = 2[u, v]
Step Expression h1 = 1 h−1

1 small h1 arbitrary
1 compute rs1: 3S 3S 3S

z0 = u2
0, k′

1 = u2
1 + f3;

w0 = f0 + v2
0(= rs′

1/h3
1);

If w0 = 0 see below
2 compute 1/s1 and s′′

0 : I, 2M I, 2M I, 2M
w1 = (1/w0)z0(= h1/s1);
z1 = k′

1w1, s′′
0 = z1 + u1;

3 compute u′: 2S S, 2M S, 2M
w2 = h2

1w1, u′
1 = w2w1;

u′
0 = s′′2

0 + w2;
4 compute v′: S, 3M S, 3M S, 5M

w3 = w2 + k′
1;

v′
1 = h−1

1 (w3z1 + w2u
′
1 + f2 + v2

1);
v′
0 = h−1

1 (w3u
′
0 + f1 + z0);

total I, 6S, 5M I, 5S, 7M I, 5S, 9M
Special case s = s0

2′ compute s and precomputations: 1M 1M 2M
s0 = (1/h1)k′

1, w1 = u0s0 + v0;
3′ compute u′: S S S

u′
0 = s2

0;
4′ compute v′: 2M 2M 2M

w2 = s0(u1 + u′
0) + v1 + h1;

v′
0 = u′

0w2 + w1;
total 4S, 3M 4S, 3M 4S, 4M

With the new curve coefficients the expressions r and s will simplify to:

r = h2
1u0,

s′
1 = h1k

′
0,

s′
0 = u1s

′
1 + h1u0u1.

Since f + hv + v2 = uk′ + u2x we also have that

f0 + v2
0 = u0k

′
0 (= rs′

1/h3
1)

f1 + u2
0 + h1v0 = u1k

′
0 + u0k

′
1

f2 + v1(h1 + v1) = k′
0 + u1k

′
1

u2
1 + f3 = k′

1



Efficient Doubling on Genus Two Curves over Binary Fields 175

making it very cheap to calculate rs′
1 as the exact coefficients of k′ are not nec-

essary. We present the doubling formulae for this case in Table 1. The operations
are counted for the case that h1 = 1, h−1

1 is ’small’ (multiplications with h−1
1

are not counted), and arbitrary h1. Both h2
1 and h−1

1 are precomputed. In Step
2 the inversion and multiplication with z0 can also be replaced by a division as
the inverse is not used later on.

5 Case deg h = 2

If h is of degree two then in general we cannot make any of its coefficients zero,
however, it is possible to make a change of coordinates to obtain h2 = 1 and
f3 = f2 = 0. The case h0 = 0 allows for a significant speedup, however, we can
only obtain h0 zero if there exists a b such that b2 + bh1 = h0 and this will be at
the cost of a non-zero f4. If there is no such b, i. e. Tr(h0/h2

1) �= 0, then choose
b = f4 making f4 zero. This can be done by the following change of variables
and dividing the resulting equation by h10

2 .

Y ← h5
2Ỹ + f3h2X̃ +

f3(f3 + h1h2 + f3h
2
2) + f2h

2
2

h3
2

, X ← h2
2X̃ + b

5.1 Case deg h = 2, h0 = 0

First, we assume that we have obtained h0 = 0 leading to an equation

Y 2 + (X2 + h1X)Y = X5 + f4X
4 + f1X + f0,

Using a quadratic term in the transformation of Y , one can additionally obtain
f4 = 0 with probability 1/2, namely if Tr((b + f4)/h2

2) = 0, with b as above. If,
as usual, one chooses F2n with n odd then one can always obtain either f4 = 0
or f4 = 1. Accordingly, one has three free parameters h1, f1, f0.

Then the expressions for r and s will simplify to:

r = u0(u0 + h2
1 + h1u1)

s′
1 = h1k

′
0 + u0k

′
1 + u1k

′
0

s′
0 = u1s

′
1 + u0k

′
0 + h1u0k

′
1

And since f + hv + v2 = uk′ + u2(x + f4) we also have that

f0 + v2
0 + h0v0 + f4u

2
0 = u0k

′
0

f1 + u2
0 + h1v0 + h0v1 = u1k

′
0 + u0k

′
1

v0 + v1(h1 + v1) + f4u
2
1 = k′

0 + u1k
′
1

u2
1 + v1 = k′

1.



176 T. Lange and M. Stevens

Table 2. Doubling, deg h = 2, h0 = 0, deg u = 2

Doubling, deg h = 2, h0 = 0, deg u = 2
Input [u, v], u = x2 + u1x + u0, v = v1x + v0; h2

1

Output [u′, v′] = 2[u, v]
Step Expression h1 small h1 arbitrary

1 compute k′
1 and precomputations: 3S, M 2S, 3M

z0 = u2
0, z1 = u2

1, w0 = v1(h1 + v1);
k′
1 = z1 + v1, z2 = h1u1, z3 = f4u1;

2 compute resultant r =res(ṽ, u):
r̃ = u0 + h2

1 + z2 = (r/u0);
3 compute s′

1 and almost s′
0: M 3M

w2 = u1(k′
1 + z3) + w0, w3 = v0 + h1k

′
1;

s′
1 = f1 + z0 + h1w2;

m0 = w2 + w3(= (s′
0 − u1s

′
1)/u0);

If s′
1 = 0 see below

4 compute s′′ = x + s0/s1 and s1: I, S, 3M I, S, 3M
w2 = 1/(s′

1)(= 1/rs1), w3 = u0w2;
w4 = r̃w3(= 1/s1), w5 = w2

4;
s′′
0 = u1 + m0w3;

5 compute u′: S, 2M S, 2M
z4 = f4w4, u′

1 = w4 + w5;
u′

0 = s′′2
0 + w4(s′′

0 + h1 + u1 + z4);
6 compute v′: S, 5M S, 6M

z5 = w2(m2
0 + k′

1(s′
1 + h1m0));

z6 = s′′
0 + h1 + z4 + z5;

v′
0 = v0 + z2 + z1 + w4(u′

0 + z3) + s′′
0z6;

v′
1 = v1 + w4(u′

1 + s′′
0 + f4 + u1) + z5;

total I, 6S, 12M I, 5S, 17M
Special case s = s0

3′ compute s and precomputations: I, 2M I, 2M
w1 = 1/r̃, s0 = m0w1;
w2 = u0s0 + v0 + h0;

4′ compute u′: S S
u′

0 = s2
0 + s0;

5′ compute v′: 2M 2M
w1 = s0(u1 + u′

0) + u′
0 + v1 + h1;

v′
0 = u′

0w1 + w2;
total I, 4S, 6M I, 3S, 10M

Table 2 presents the operations for the case of h0 = 0. In the formulae
there are two counted multiplications with f4 and five with h1 which are
cheaper or for free when f4 resp. h1 is ’small’. Furthermore, h2

1 is
precomputed.



Efficient Doubling on Genus Two Curves over Binary Fields 177

Table 3. Doubling, deg h = 2, deg u = 2

Doubling, deg h = 2, deg u = 2
Input [u, v], u = x2 + u1x + u0, v = v1x + v0; h2

0
Output [u′, v′] = 2[u, v]
Step Expression h1, h0 small h1 small hi arbitrary

1 compute k′
1 and precomputations: 3S 3S 2S,2M

z0 = u2
0, z1 = u2

1, w0 = v1(h1 + v1);
k′
1 = z1 + v1, w1 = h1u0;

2 compute resultant r =res(ṽ, u): 1M 2M 2M
w2 = h0u1, r = h2

0 + z0 + (h1 + u1)(w1 + w2);
3 compute s′

1 and almost s′
0: 1S,2M 1S,4M 1S,5M

s′
1 = f1 + z0 + h0z1 + h1(u1k′

1 + w0);
m0 = f0 + w1k′

1 + h0w0 + v2
0(= s′

0 − u1s′
1);

If s′
1 = 0 see below

4 compute s′′ = x + s0/s1 and s1: I, 2S, 5M I, 2S, 5M I, 2S, 5M
w1 = 1/(rs′

1)(= 1/r2s1), w2 = rw1(= 1/s′
1);

w3 = s′2
1 w1(= s1);

w4 = rw2(= 1/s1), w5 = w2
4 , s′′

0 = u1 + m0w2;
5 compute l′: 2M 2M 2M

l′2 = u1 + s′′
0 , l′1 = u1s′′

0 + u0, l′0 = u0s′′
0 ;

6 compute u′: S, M S, M S, M
u′

0 = s′′
0

2 + w4(s′′
0 + u1 + h1);

u′
1 = w4 + w5;

7 compute v′: 4M 4M 4M
w1 = l′2 + u′

1, w2 = u′
1w1 + u′

0 + l′1;
v′
1 = w2w3 + v1 + h1 + u′

1;
w2 = u′

0w1 + l′0, v′
0 = w2w3 + v0 + h0 + u′

0;
total I,7S,15M I,7S,18M I, 6S, 21 M

Special case s = s0

3′ compute s and precomputations: I,2M I,2M I,2M
w1 = 1/r, s0 = m0w1, w2 = u0s0 + v0 + h0;

4′ compute u′: S S S
u′

0 = s2
0 + s0;

5′ compute v′: 2M 2M 2M
w1 = s0(u1 + u′

0) + u′
0 + v1 + h1, v′

0 = u′
0w1 + w2;

total I,5S,7M I,5S,10M I,4S,13M

5.2 Case deg h = 2, h0 �= 0

For completeness we include the formulae for the general case deg h = 2, h2 =
1, h0 �= 0. Compared to the doubling formulae in [Lan04a] we manage to trade
one multiplication for a squaring which is usually more efficient in characteristic
2. To this aim we need to include one fixed precomputation h2

0 to the curve
parameters.

For h of full degree with non-zero h0 we can transform to

Y 2 + (X2 + h1X + h0)Y = X5 + f1X + f0.

Accordingly h2 and f4 are not mentioned in the formulae.
If one is willing to choose either (or both) h1 or h0 ’small’, we can get much

more operations for free.
Here we only used that f +hv + v2 = uk′ +u2(x+ f4) to calculate s′ cheaper

and that s′
0 = u1s

′
1 + m0 for some relatively simple m0:



178 T. Lange and M. Stevens

s′
1 = f1 + u2

0 + h0u
2
1 + h1(u1k

′
1 + v1(h1 + v1))

m0 = f0 + h1u0k
′
1 + h0v1(h1 + v1) + v2

0

6 Summary

The previous sections showed a complete study of doubling formulae depending
on the type of h. We summarize the findings in Table 4 listing only the general
cases; for h of degree 1 and general h the case f4 not small does not apply since
then f4 = 0.

Table 4. Overview

h = X h = h1X h = X2 + h1X h = X2 + h1X + h0

h−1
1 small h1 small h1, h0 small h1 small

f4 small I, 6S, 5M I, 5S, 7M I, 5S, 9M I, 6S, 10M I, 5S, 15M I, 7S, 15M I, 7S, 18M I, 6S, 21M
f4 arb. n. a. n. a. n. a. I, 6S, 12M I, 5S, 17M n. a. n. a. n. a.

7 Experimental Results

We implemented our new formulae using the NTL library. We used a simple
sliding windows method with window size 3 to perform the scalar multiplication
in all tests. The extension fields over F2 were all defined by means of a trinomial.
Magma was used to create good random curve equations.

We tested the different cases for F = F283 and F = F297 and we used 1 as
synonym for ’small’ which means that for deg h = 1 the two cases h1 = 1 and h1
’small’ were combined. We also included the elliptic curve case where the field
is twice as big to have comparable security, here we also used the same sliding
windows method.

Field size * genus

226

199

194

191

179

173

163

157

149

139

131

126

M
ea

n 
tim

e 
(s

)

,010

,008

,006

,004

,002

0,000

Curve type

deg2 arb

deg2 nc arb f4

deg2 nc small

deg1 arb

ecc

deg1 monic

Timings on GF(2^n), n=63

deg1 m
onic

deg1 arb

ecc (n=127)

deg2 nc sm
all

deg2 nc sm
all f4

deg2 nc arb

deg2 nc arb f4

deg2 arb

M
ea

n 
tim

e 
(s

)

,0024

,0022

,0020

,0018

,0016

,0014

,0012

,0010

,0008

,0006

,0004

,0002

0,0000



Efficient Doubling on Genus Two Curves over Binary Fields 179

Timings on GF(2^n), n=81

deg1 m
onic

ecc (n=157)

deg1 arb

deg2 nc sm
all

deg2 nc sm
all f4

deg2 nc arb

deg2 nc arb f4

deg2 arb

M
ea

n 
tim

e 
(s

)

,005

,004

,003

,002

,001

0,000

Timings on GF(2^n), n=97

deg1 m
onic

ecc (n=193)

deg1 arb

deg2 nc sm
all

deg2 nc sm
all f4

deg2 nc arb

deg2 nc arb f4

deg2 arb

M
ea

n 
tim

e 
(s

)

,008

,007

,006

,005

,004

,003

,002

,001

0,000

All tests were performed on a AMD Athlon XP 2500+ laptop running Gen-
too linux. We used the NTL library to perform the field arithmetic. For all
field extensions we used a trinomial or a pentanomial for the field arithmetic.
Specifically for n = 63, 81, 97, 127, 193 we used a trinomial and for n = 157 a
pentanomial. For the three bar graphs we have chosen field sizes for HEC and
ECC such that the group orders were very close and that the arithmetic could
be done with a trinomial to make a fair comparison. However for n = 81 there
was no such comparable field extension for ECC. Therefore we have chosen for
a smaller group order (n = 157) and arithmetic based upon a pentanomial. The
cases included in the graphs are:

deg2 arb: The case where deg h = 2 and h0 �= 0
deg2 nc arb f4: The case where deg h = 2, h0 = 0, f4 �= 0;
deg2 nc arb: The case where deg h = 2, h0 = 0, f4 = 0;
deg2 nc small f4: The case where deg h = 2, h0 = 0, f4 �= 0 and h1 small;
deg2 nc small: The case where deg h = 2, h0 = 0, f4 = 0 and h1 small;
deg1 arb: The case where deg h = 1;
deg1 monic: The case where deg h = 1 and h1 = 1;
ecc: ECC on the according field extension.

8 Conclusion and Outlook

We have given a complete study of doubling formulae reaching the minimal
number of field operations in the respective cases and achieving a lower operation
count compared to the special cases [PWP04, BD04] published so far.

The addition formulae depend far less on the equation of h and not on that
of f . One can save one multiplication in case of h1 ∈ {0, 1}; all other special
choices allow to save at most some additions.

Accordingly, the operation counts for addition and doubling differ quite sig-
nificantly, especially in the case of h = X, making sidechannel attacks feasible.



180 T. Lange and M. Stevens

Following Coron’s double-and-always-add countermeasure would lead to includ-
ing many of the costly additions.

We assume first the setting of rather low storage capacities such that pre-
computations cannot be made. Then one uses the NAF of the scalar to minimize
the Hamming weight. This means that every addition (ADD) is followed by at
least two doublings. As doublings have become rather cheap now, we propose to
follow the strategy of putting the fixed sequence of . . . DBL, ADD, DBL, DBL,
DBL, ADD, DBL, DBL, DBL, . . . (or even four doublings following an addition).
This can be achieved by inserting several dummy doublings and only very few
dummy additions.

The situation looks much more friendly if we are allowed to store precomputed
multiples of the base class D. Möllers windowing method [M0̈1] allows to obtain
a uniform side channel by using only non-zero coefficients in the expansion.

In this article we restricted our attention to affine coordinates as in binary
fields an inversion is not prohibitively expensive. It is planned to extend the
formulae to inversion-free coordinate systems as well; our findings give new in-
sight in even more efficient choices of the additional coordinates. Furthermore,
the lower operation count obtained here for the special choices applies also to
other coordinate systems. Projective and new coordinates bear the additional
advantage that randomization techniques [Ava04] can be applied to avoid DPA,
e. g. all coordinates can be multiplied by (powers of) a random integer leading
to a different representation of the same ideal class. For affine coordinates one
can randomize the curve equation by making a transformation to an isomorphic
curve. This leaves invariant the classes of deg h = 1 and deg h = 2 but one cannot
keep all best choices made above and hence, cannot achieve the lowest number of
operations. As our publication details all possible cases one now has the choice
to trade efficiency for a larger class of curves and hence better randomization.

References

[ACD+04] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren. The Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC, 2004. to appear.

[Ava03] R. M. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields in
Software Implementations. Cryptology ePrint Archive, Report 2003/253,
2003. to appear in CHES 2004.

[Ava04] R. M. Avanzi. Countermeasures Against Differential Power Analysis for
Hyperelliptic Curve Cryptosystems. In Proceedings of CHES 2003, volume
2779 of LNCS, pages 366–381, 2004.

[BD04] B. Byramjee and S. Duqesne. Classification of genus 2 curves over F2n

and optimization of their arithmetic. Cryptology ePrint Archive, Report
2004/107, 2004. http://eprint.iacr.org/.

[Can87] D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math.
Comp., 48:95–101, 1987.

[FL03] G. Frey and T. Lange. Mathematical Background of Public Key Cryptog-
raphy. Technical Report 10, IEM Essen, 2003.



Efficient Doubling on Genus Two Curves over Binary Fields 181

[FR94] G. Frey and H. G. Rück. A remark concerning m-divisibility and the dis-
crete logarithm problem in the divisor class group of curves. Math. Comp.,
62:865–874, 1994.

[Gal01] S. D. Galbraith. Supersingular Curves in Cryptography. In Advances in
Cryptology – Asiacrypt 2001, volume 2248 of Lect. Notes Comput. Sci.,
pages 495–513. Springer, 2001.

[Gau00] P. Gaudry. An algorithm for solving the discrete log problem on hyper-
elliptic curves. In Advances in Cryptology – Eurocrypt’2000, Lect. Notes
Comput. Sci., pages 19–34. Springer, 2000.

[GLS00] C. Günther, T. Lange, and A. Stein. Speeding up the Arithmetic on Koblitz
Curves of Genus Two. In Selected Areas in Cryptography – SAC 2000,
volume 2012 of Lect. Notes Comput. Sci., pages 106–117. Springer, 2000.

[GT04] P. Gaudry and E. Thomé. A double large prime variation for small genus
hyperelliptic index calculus. Cryptology ePrint Archive, Report 2004/153,
2004.

[Kob89] N. Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1:139–150, 1989.
[Lan04a] T. Lange. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves.

http://www.itsc.ruhr-uni-bochum.de/tanja/preprints.html, 2004. to
appear in J. AAECC.

[Lan04b] T. Lange. Koblitz curve cryptosystems. Finite Fields and Their Applica-
tions, 2004. to appear.

[Lor96] D. Lorenzini. An Invitation to Arithmetic Geometry, volume 9 of Graduate
studies in mathematics. AMS, 1996.

[M0̈1] B. Möller. Securing elliptic curve point multiplication against side-channel
attacks. In Proc. of ISC 2001, pages 324–334, 2001.

[MWZ98] A. J. Menezes, Y.-H. Wu, and R. Zuccherato. An Elementary Introduc-
tion to Hyperelliptic Curves. In N. Koblitz, editor, Algebraic Aspects of
Cryptography, pages 155–178. Springer, 1998.

[Nag04] K. Nagao. Improvement of Thériault Algorithm of Index Calculus for Ja-
cobian of Hyperelliptic Curves of Small Genus. Cryptology ePrint Archive,
Report 2004/161, 2004.

[PWP04] J. Pelzl, T. Wollinger, and C. Paar. Special Hyperelliptic Curve Cryp-
tosystems of Genus Two: Efficient Arithmetic and Fast Implementation. In
Embedded Cryptographic Hardware: Design and Security, 2004. to appear.

[Sti93] H. Stichtenoth. Algebraic Function Fields and Codes. Springer, 1993.
[Thé03] N. Thériault. Index calculus attack for hyperelliptic curves of small genus.

In Advances in cryptology – Asiacrypt 2003, volume 2894 of Lect. Notes
Comput. Sci., pages 75–92. Springer, 2003.


	Introduction
	Basic Notations and Preliminaries
	Group Law
	Case deg h = 1
	Case deg h=2
	Case deg h=2, h0=0
	Case deg h=2, h0=0

	Summary
	Experimental Results
	Conclusion and Outlook

