
M4GB: An e�icient Gröbner-basis algorithm
Rusydi H. Makarim

Cryptology Group, Centrum Wiskunde en Informatica

Amsterdam, Netherlands

Mathematical Institute, University Leiden

Leiden, Netherlands

makarim@cwi.nl

Marc Stevens

Cryptology Group, Centrum Wiskunde en Informatica

Amsterdam, Netherlands

marc.stevens@cwi.nl

ABSTRACT
�is paper introduces a new e�cient algorithm for computing

Gröbner-bases named M4GB. Like Faugère’s algorithm F4 it is an

extension of Buchberger’s algorithm that describes: how to store

already computed (tail-)reduced multiples of basis polynomials to

prevent redundant work in the reduction step; and how to exploit

e�cient linear algebra for the reduction step. In comparison to F4

it removes further redundant work in the processing of reducible

monomials. Furthermore, instead of translating the reduction of

many critical pairs into the row reduction of some large matrix,

our algorithm is described more natively and is e�cient while pro-

cessing critical pairs one by one. �is feature implies that typically

M4GB has to process fewer critical pairs than F4, and reduces the

time and data complexity ‘staircase’ related to the increasing degree

of regularity for a sequence of problems one observes for F4.

To achieve high e�ciency, M4GB has been designed speci�cally

to operate only on tail-reduced polynomials, i.e., polynomials of

which all terms except the leading term are non-reducible. �is

allows it to perform full-reduction directly in the computation of a

term polynomial multiplication, where all computations are done

over coe�cient vectors over the non-reducible monomials.

We have implemented a version of our new algorithm tailored

for dense overde�ned polynomial systems as a proof of concept

and made our source code publicly available. We have made a

comparison of our implementation against the implementations

of FGBlib, Magma and OpenF4 on various dense Fukuoka MQ

challenge problems that we were able to compute in reasonable

time and memory. We observed that M4GB uses the least total CPU

time and the least memory of all these implementations for those

MQ problems, o�en by a signi�cant factor.

In the Fukuoka MQ challenges, the starting challenges of Type

V and Type VI have 16 equations which was chosen based on an

extrapolated computational runtime of more than a month using

Magma. M4GB allowed us to set new records for these Fukuoka

MQ challenges breaking Type V (F
2

8) up to 18 equations and Type

VI (F31) up to 19 equations, each can be computed within up to 8

days on our dual Xeon system.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

preprint,
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Gröbner basis algorithm, multivariate polynomial systems, quantum-

safe public key crypto

ACM Reference format:
Rusydi H. Makarim and Marc Stevens. 2017. M4GB: An e�cient Gröbner-

basis algorithm. In Proceedings of preprint, , 2017, 9 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
For several decades, the design of trapdoor functions in public-key

cryptography mostly relied on hardness of integer factorization and

discrete logarithms in �nite �elds and algebraic curves. However, as

Shor’s algorithm [14] yields a polynomial-time quantum algorithm

for integer factorization and discrete logarithm, several alternative

computational hard problems have been proposed to design new

public-key and digital signature schemes that are more resistant

against quantum a�acks. In this paper we focus on one of these,

namely the multivariate polynomial (MP) problem.

Problem 1 (MP-problem). Let n,m ∈ Z>0 and let F be a �eld.
Givenm polynomials f1, . . . , fm ∈ F[x1, . . . ,xn], �nd (s1, . . . , sn) ∈
Fn such that fi (s1, . . . , sn) = 0 for all i = 1, . . . ,m.

�e special case when all fi are quadratic is called the multivari-

ate quadratic (MQ) problem, and both the MP and the MQ problem

are well known to be NP-hard.

A generic method to solve these polynomial equations is by

computing a Gröbner basis of the ideal generated by f1, f2, . . . , fm .

�e notion of Gröbner bases and the classical algorithm to compute

them were introduced by Bruno Buchberger in 1965 [3]. �e F4

algorithm from Faugère [8] is signi�cantly more e�cient than

Buchberger’s as it converts the classical reduction step for many

polynomials to the row reduction of a single sparse matrix, which

can be performed by optimized linear algebra packages. Another

practical algorithm to solve MQ-problems is the XL algorithm [4, 6]

that, similar to F4, uses linear algebra on large matrices involving

polynomialsmj · fi with all monomialsmj up to a given degree.

Since the MQ-problem is one of the candidate problems to build

quantum-safe public-key cryptographic primitives, it is essential

to analyze its practical di�culty as a hard computational problem.

Public challenges for several other computational hard problems

have been publicly announced such as the RSA challenge [13], the

La�ice challenge [15], and the ECC challenge [7]. With a similar

goal in mind, Yasuda et al. [16] started public challenges for MQ-

problems
1

in April 2015. �ey pose random MQ challenges of six

types, namely for two modes combined with three �nite �elds, and

1
h�ps://www.mqchallenge.org/

https://www.mqchallenge.org/

preprint, 2017, Rusydi H. Makarim and Marc Stevens

for increasing security parameter (i.e., number of variables). Types

I, II, and III are Encryption-type problems, where the number of

equations is twice the number of variables, with randomly-chosen

coe�cients in F2,F256 and F31, respectively. Types IV, V, and VI are

Digital-Signature-type problems, where the number of equations

is two-thirds the number of variables, with the same respective

base �elds F2,F256,F31. For each problem type, the MQ-Challenge

organizers chose the starting number of variables as the smallest

number that expectedly takes at least a month to solve using Magma

version 2.19-9 running on four 6-cores Intel Xeon CPU E5-4617

2.9GHz with 1TB of RAM.

Our contribution. In this paper we introduce the M4GB al-

gorithm as a special version of Buchberger’s algorithm. M4GB

was designed with the speci�c aim to perform all computations

on tail-reduced polynomials. To that end, it stores not only the

monic intermediate basis polynomials, but also monomial multiples

thereof in one large set M of tail-reduced polynomials. �e inten-

tion is to store these polynomials as pairs consisting of a Leading

Monomial and a non-reducible tail, in order to facilitate e�cient

linear algebra over these tails. More speci�cally, using a global

ordered set of necessary non-reducible monomials one can ensure

every Tail can be stored as a dense sequence of �eld coe�cients.

�ence one can view this set M as one large matrix, where columns

are labeled by non-reducible monomials, each row contains the Tail

of a polynomial and is labeled by the Leading Monomial of that

polynomial. �is has the bene�t that for the multiplication of a

non-reducible Tail д with a monomial u one can directly compute

the full-reduced outcome. Namely, for cimi ∈ д either the term

cimiu is a non-reducible term and thus can be directly added to the

outcome, or is reducible and then instead cih is subtracted from

the outcome, where h is the Tail belonging to the polynomial with

Leading Monomialmiu retrieved fromM.

We have implemented a proof-of-concept of M4GB in C++11 in

a �exible framework. It features fast order-preserving encoding

and decoding of monomial into integers, a simple small �nite �eld

implementation based on log/exp-tables, special postprocessing of

new basis polynomials and multi-threading as discussed in Section 5.

We have made our source code publicly available for the bene�t of

the community, as well as to verify our results.

Results from benchmarking our M4GB implementation against

several existing implementation of Gröbner basis algorithms such

as FGbLib[9], OpenF4[5], and MAGMA[2] using MQ-problems

show a signi�cant improvement in both total CPU time and total

memory usage. Moreover, with M4GB we were able to solve several

sizes of the signature-type MQ challenges for F
2

8 and F31. Even

using one desktop machine with an Intel i7-2600K CPU and 16

Gigabytes of RAM, we managed to solve the smallest challenge

(m = 16 equations) for type V and VI within 9.3 hours and 1.2

hours, respectively. Furthermore, we were able to solve Type V

challenges withm = 17 andm = 18 number of equations, as well

as type VI challenges for m = 17, 18, 19. All these parameters are

broken in far less than a month, the designed runtime form = 16

from the MQ challenge organizers. A summary of these results is

available in Table 3.

Outline. �is paper is organized as follows. First, we introduce

notations and preliminaries in Section 2. We present the high-level

description of M4GB algorithm in Section 4, followed by further

M4GB implementation details and features in Section 5. Section 5

also discusses the result from benchmarking our M4GB implemen-

tation against several existing implementation of Gröbner basis

algorithm.

2 PRELIMINARIES
In this section, we recall some basic notions and results related to

Gröbner bases. Even though the concepts and notions related to

Gröbner bases work over any �eld, in this paper we restrict our

discussion over a �nite �eld Fq .

Let R = Fq [x1, . . . ,xn] be the polynomial ring over �nite �eld

Fq with n variables. We call xa1

1
· · · xann with a1, . . . ,an ∈ Z≥0 a

monomial and a1 + . . . + an is its degree. Let

M = {xa1

1
· · · xann : a1, . . . ,an ∈ Z≥0}

be the set of all monomials. A term is a product cu with c ∈ Fq ,u ∈
M and T = {cu : c ∈ Fq ,u ∈ M} is the set of all terms. Given a

non-zero polynomial f =
∑
i ciui ∈ R, with ci ∈ Fq and ui ∈ M,

we de�ne Term(f) = {ciui : ci , 0} and Mono(f) = {ui : ci , 0}

as the set of all terms, respectively monomials, of f .

Let ≺ be an admissible monomial ordering overM, e.g., the de-

gree reverse lexicographical order. �e leading monomial LM(f) =
max≺Mono(f) = ui is the largest monomial ui of f with non-zero

coe�cient ci , then f ’s leading coe�cient is LC(f) = ci and leading

term is LT(f) = LC(f)LM(f) = ciui . We call Tail(f) = f − LT(f)
the tail of f . �e polynomial f is monic if LC(f) = 1.

We extend the functions Mono(f), Term(f), LM(f), LT(f) and

Tail(f) on polynomials also to sets of polynomials S as follows:

Func(S) =
⋃
f ∈S Func(f).

Let I ⊆ R be a polynomial ideal. Let G = {д1, . . . ,дt } ⊂ R
be a �nite set of polynomials. �en G is a basis for I if and only

if I = 〈G〉 is generated by G. Furthermore, G is called a Gröbner
basis of I if and only if for all f ∈ I there exists д ∈ G such that

LM(д) | LM(f).
We call a monomial u reducible by G if ∃д ∈ G : LM(д) | u, i.e.,

there exists a д ∈ G whose leading monomial divides u, and u is

non-reducible by G if no such д exists. We assume a deterministic

function ReduceSel(G,u) → д that for a monomial u reducible by

G outputs a д ∈ G such that LM(д) | u.

We call a polynomial f ∈ R lead-reducible by G if LM(f) is

reducible by G. We call f full-reducible by G if there exists u ∈
Mono(f) that is reducible by G. Furthermore, we de�ne that f is

tail-reducible by G if Tail(f) is full-reducible by G.

To lead-reduce f by G we de�ne:

LeadReduce(f ,G) =
0 if f = 0;

f if LM(f) non-reducible by G;

LeadReduce(f −
LT(f)
LT(h)h,G) where h ← ReduceSel(G, LM(f)).

It thus either returns f if it is not lead-reducible or calls itself on a

polynomial with smaller leading monomial obtained by canceling

the leading monomial of f with a multiple of some д ∈ G.

M4GB: An e�icient Gröbner-basis algorithm preprint, 2017,

Algorithm 1: Algorithm Buchberger

Input: A �nite subset F of R

Output: A Gröbner basis G of 〈F 〉.

1 G ← ∅; P ← ∅; // Basis G, set P of critical pairs (f ,д)
2 for f ∈ F do
3 f ← FullReduce(f ,G);

4 (G, P) ← Update(G, P , f);

5 while P , ∅ do // Process a Critical Pair until P is empty
6 (f ,д) ← Select(P);

7 P ← P \ {(f ,д)};

8 h ← FullReduce(Spoly(f ,д),G);
9 if h , 0 then

10 (G, P) ← Update(G, P ,h);

11 G ← {TailReduce(д,G) : д ∈ G}; // Interreduce

12 return G;

To full-reduce f by G we de�ne:

FullReduce(f ,G) =
0 if f = 0;

LT(f) + FullReduce(Tail(f),G) if LT(f) non-reducible by G;

FullReduce(f −
LT(f)
LT(h)h,G) h ← ReduceSel(G, LM(f)).

Finally, we de�ne the tail-reduction of f by G as

TailReduce(f ,G) = LT(f) + FullReduce(Tail(f),G).

Note that LeadReduce, FullReduce and TailReduce are deter-

ministic as ReduceSel is. Also, they terminate as for all inputs f
any recursion is called on a polynomial д with LM(д) ≺ LM(f) and

this monotonic decreasing sequence of leading monomials is �nite

and has a smallest element, because ≺ is a well-ordering.

A basis G is called minimal if for all д ∈ G the polynomial д is

monic and д is not lead-reducible by G \ {д}. We say that a basis G
is tail-reduced if every polynomial in G is monic and for all д ∈ G
the polynomial д is not tail-reducible by G \ д. Finally, G is called a

reduced basis if it is both minimal and tail-reduced.

3 GRÖBNER BASIS ALGORITHMS
Buchberger [3] proved that a basis G for an Ideal is a Gröbner basis

if and only if LeadReduce(Spoly(f ,д),G) = 0, for all f ,д ∈ G,

where Spoly(f ,д) is the so-called S-polynomial of f and д:

Spoly(f ,д) =
u

LT(f)
· f −

u

LT(д)
· д, u = LCM(LM(f), LM(д))

He then proposed an algorithm to compute a Gröbner basis from

a given basis G by repeatedly adding new non-zero polynomials to

G that are found by lead-reducing Spoly(f ,д) for all pairs f ,д ∈ G
until this is not possible anymore. It maintains a list of critical pairs

P ∈ G×G of pairs f ,д ∈ G to be tried, where some pairs can already

be eliminated based on criteria that imply that the corresponding

S-poly lead-reduces to 0. Buchberger proved this process always

terminates and that the resulting G is a Gröbner basis.

In algorithm 1 we give a description of a well-known variant

of Buchberger’s algorithm that maintains a tail-reduced basis G.

Selection of a critical pair (f ,д) ∈ P is given by a deterministic

function Select(P) → (f ,д). A common good choice is to always

selects a critical pair (f ,д) with smallest LCM(LM(f), LM(д)). To

update the basis and list of critical pairs, it uses the function

Update(G
old
, P

old
, f) → (Gnew, Pnew).

It is recommended to use the Gebauer-Möller Installation [12] that

maintains a minimal basis G . In this paper we assume that Update

does not reduce basis elements itself and therefore operates strictly

on the leading monomials of the basis elements, more speci�cally

using the embedding ofM in R we assume that:

(LM(Gnew), LM(Pnew)) = Update(LM(G
old
), LM(P

old
), LM(f)),

(1)

where LM(P) = {(LM(f), LM(д)) : (f ,д) ∈ P} denotes the exten-

sion of LM to a set of pairs of polynomials.

An improvement by Faugère in his seminal paper on the F4

algorithm [8] gave a new direction in the development of Gröbner

bases algorithms. It performs polynomial reduction using e�cient

linear algebra, by translating the reduction of many S-polynomials

into the row reduction of a coe�cient matrix corresponding to the

S-polynomials and necessary reductor polynomials. Also, it tracks

full-reduced polynomials in these row-reduced matrices so it can

reuse these in subsequent steps using a ‘Simplify’-function thereby

removing a lot of redundant computations between iterations.

3.1 Cryptographic problems
Note that many cryptographic problems can be wri�en as a system

of equations f1 = 0, . . . , fm = 0 for f1, . . . , fm ∈ Fq [x1, . . . ,xn].
If this has a unique solution then one can directly read the solu-

tion from a computed Gröbner basis for the ideal 〈f1, . . . , fm〉. In

more general se�ings, for a zero-dimensional ideal one normally

computes a Gröbner basis w.r.t. an e�cient monomial ordering

to minimize computational cost, typically the degree-reverse lexi-

cographic ordering. �en, using FGLM algorithm [10] which has

polynomial complexity in the number of solutions, the Gröbner

basis can be converted to another Gröbner basis w.r.t. lexicographic

monomial ordering, allowing us to obtain the set of solutions.

4 M4GB ALGORITHM
We introduce our M4GB algorithm presented in algorithm 2 as an

extension of Buchberger’s algorithm, designed with the speci�c

aim to perform all computations on tail-reduced polynomials. It

performs the same essential steps as algorithm 1. However, M4GB

has the following modi�cations compared to algorithm 1.

First, the tail-reduced basisG is replaced by (L,M), whereG ⊂ M
and L = LM(G), that satisfy the M4GB-invariant:

De�nition 4.1 (M4GB Invariant). A pair (L,M) with L ⊂ M,

M ⊂ R is said to satisfy the M4GB-invariant if and only if:

• ∀f ,д ∈ M : LM(f) = LM(д) ⇔ f = д, i.e., every leading

monomial occurs once;

• L ⊆ LM(M);
• Every f ∈ M is lead-reducible by L, thus any monomial is

reducible by M if and only if it is reducible by L.

• No f ∈ M is tail-reducible by L;

In this section we o�en refer to the basis G = {д ∈ M : LM(д) ∈ L}
implied by (L,M). �e set M not only contains this tail-reduced

preprint, 2017, Rusydi H. Makarim and Marc Stevens

Algorithm 2: Algorithm M4GB

Input: A �nite subset F of R

Output: A Gröbner basis G of 〈F 〉.

1 L,M ← ∅, ∅; // G = {д ∈ M : LM(д) ∈ L} is tail-reduced basis
2 P ← ∅; // Set of critical pairs (fLM ,дLM)
3 for f ∈ F do
4 (M, f) ← MulFullReduce(L,M, 1, f);

5 (L,M, P) ← UpdateReduce(L,M, P , f);

6 while P , ∅ do // Process Critical Pair
7 (fLM ,дLM) ← Select(P);

8 P ← P \ {(fLM ,дLM)};

9 (f ,д) ← (M[fLM],M[дLM]);

10 u ← LCM(fLM ,дLM);
11 (M,h1) ← MulFullReduce(L,M,u/LT(f), Tail(f));
12 (M,h2) ← MulFullReduce(L,M,u/LT(д), Tail(д));
13 h ← h1 − h2; // Full-reduction of Spoly(f ,д)
14 if h , 0 then
15 (L,M, P) ← UpdateReduce(L,M, P ,h);

16 return G = { f ∈ M : LM(f) ∈ L};

Algorithm 3: Algorithm UpdateReduce

Input: L ⊂ M,M ⊂ R, P ⊂ M ×M, f ∈ 〈M〉, where (L,M)
satis�es the M4GB-invariant (Def. 4.1) and f is

full-reduced by G.

Output: Updated (L̂, M̂, P̂), such that f ∈ M̂ , LM(f) ∈ L̂ and

(L̂, M̂) satis�es the M4GB-invariant.

// Compute tail-reduced set H to tail-reduceM ∪ H by G ∪ { f }
1 H ← {(LC(f))−1 · f };

2 while ∃u ∈ (Mono(Tail(M ∪ H)) \ LM(H)) : LM(f) | u do
// LM of largest multiple of f we still need to insert to H

3 u ← max{u ∈ (Mono(Tail(M ∪H)) \LM(H)) : LM(f) | u};
4 (M,h) ← MulFullReduce(L,M,u/LT(f), Tail(f));

// u + h is tail-reduced (by G) multiple of f with LT u
5 H ← H ∪ {u + h};

// Cancel all terms in tails inM ∪H that are multiples of LM(f)
6 while H , ∅ do
7 Take h ∈ H with LM(h) = min LM(H);
8 H ← {д − ch : д ∈ H , c coe�cient of LM(h) in Tail(д)};
9 M ← {д − ch : д ∈ M, c coe�cient of LM(h) in Tail(д)};

10 (M,H) ← (M ∪ {h},H \ {h})

// Call Update function over leading monomials
11 (L̂, P̂) ← Update(L, P , LM(f));
12 return L̂, M̂, P̂ ;

basis G, but is meant to also contain tail-reduced multiples of the

basis that have been used to reduce terms in intermediate computa-

tions. Due to Equation 1, we can directly use the (Gebauer-Möller)

Update function on L instead of G. By the M4GB-invariant, every

f ∈ M has a unique leading monomial, thus for u ∈ LM(M) we will

denote by M[u] the unique f ∈ M with LM(f) = u. We use a new

Algorithm 4: Algorithm MulFullReduce

Input: L ⊂ M,M ⊂ R, t ∈ T , f ∈ 〈M〉, where (L,M) satis�es

the M4GB-invariant.

Output: (M̂,h) such that h = FullReduce(t · f ,G), (L, M̂)
satis�es the M4GB-invariant and M ⊆ M̂ .

1 h ← 0;

2 for s ∈ Term(f) do
3 r ← t · s;

4 if r reducible by L then
5 (M,д) ← GetReductor(L,M, r);

6 h ← h − (r/LT(д)) · Tail(д);
7 else

// r is non-reducible
8 h ← h + r ;

9 return (M,h);

Algorithm 5: Algorithm GetReductor

Input: L ⊂ M,M ⊂ R, r ∈ T , where (L,M) satis�es the

M4GB-invariant and r is reducible by L.

Output: (M̂,h) such that h is a tail-reduced multiple of some

f ∈ G with LM(h) = LM(r), (L, M̂) satis�es the

M4GB-invariant and M ⊆ M̂ .

1 if LM(r) ∈ LM(M) then
2 return (M,M[LM(r)]); // Desired reductor present inM

3 f ← M[ReduceSel(L, r)]; // f ∈ M that can reduce r
// Reductor has LM r and full-reduced Tail h

4 (M,h) ← MulFullReduce(L,M, r/LT(f), Tail(f));
5 return (M ∪ {r + h}, r + h);

Update-function UpdateReduce which performs the Update, but

also modi�es M to be tail-reduced by the new basis G to satisfy the

M4GB-invariant again.

Second, all intermediate computations are done on polynomi-

als that are tail-reduced by G, o�en only on the full-reduced tail

part. As seen in MulFullReduce (algorithm 4) that multiplies a

polynomial with a term and full-reduces it, the output is directly

computed as a sum over non-reducible terms and full-reduced poly-

nomials. Speci�cally, instead of adding a reducible term r to the

output to later cancel it again, it �rst obtains a tail-reduced basis

multiple д with LM(д) = LM(r) by calling GetReductor (algo-

rithm 5). It then subtracts the full-reduced tail Tail(д) of д multi-

plied with the correct scalar r/LT(д). In turn, GetReductor either

simply returns the desired reductor if it’s present in M , or com-

putes it by calling MulFullReduce and includes it in M . Note

that GetReductor(L,M, r) calls MulFullReduce(L,M, t , f) with

LM(t · f) ≺ r , which in turn calls GetReductor(L,M,u) only for

u ≤ LM(t · f). �us the sequence r1, . . . of monomials r input to

GetReductor in any recursion is monotonic decreasing and as ≺

is a well ordering any recursion is �nite. We refer to Appendix A

for a treatment of the correctness of M4GB.

M4GB: An e�icient Gröbner-basis algorithm preprint, 2017,

4.1 Performance
In algorithm 2 we have presented a slightly simpli�ed version for

ease of exposition. For any e�cient implementation of M4GB one

should consider the following necessary improvements:

In our description, UpdateReduce proactively tail-reduces the

entire M by any new basis element f . It is much more e�cient to

implement this in a lazy manner, e.g., as follows. By numbering

each call to UpdateReduce, one tracks for every element of M
between which two UpdateReduce calls it was last tail-reduced.

�e function GetReductor is modi�ed in step 2 such that before

returning an element of M , it �rst updates it by tail-reducing with

the current basis.

Operations on tails of f ∈ M are scalar multiplications and addi-

tions which are more e�cient to compute if these tails are stored

as truncated (or sparse) coe�cient vectors relative to a global list of

non-reducible monomials. �is will also bene�t the implementation

of step 2 and 3 of UpdateReduce.

M4GB performs computations on leading terms and tails sepa-

rately and frequently retrieves polynomials by their leading mono-

mial. �e most e�cient data representation of M is a hash-map

mapping the leading monomial to the leading coe�cient and tail.

�e computation of a critical pair half is identical to computation

of a reductor. �is allows two improvements for a critical pair (f ,д)

with LCM u. First, if for all h ∈ M one remembers LM(ˆf) of the

ˆf it was computed from then one can detect whether the critical

pair half of f or д is identical to h, namely when LM(h) = u and

LM(ˆf) equals fLM or дLM , respectively. Secondly, if no h ∈ M with

LM(h) = u exists, one can insert either critical pair half in M (with

leading monomial u) to avoid this being computed again.

4.2 Comparison with F4
M4GB has improvements to Buchberger’s algorithm that are similar

to those of F4. Namely both use e�cient linear algebra to full-reduce

S-polynomials. F4 achieves this by translating the full reduction of

many S-polynomials to the row reduction of a particular matrix,

while M4GB performs addition and scalar multiplication of tails

stored as coe�cient vectors.

Furthermore, both keep track of prior reduced elements to speed

up computations. In F4 this is achieved by keeping all row reduced

matrices and uses a function Simplify in building the next matrix

that can reuse reduced rows of the previous matrices. In M4GB,

this is clearly achieved by the set M that not only contains the

tail-reduced basis elements, but tail-reduced multiples thereof as

well that have been used as reductors.

It should be noted that M4GB has a more native description

instead of translating desired computations into an external linear

algebra computation. However, there are even more important

di�erences between M4GB and F4 that would indicate M4GB is

more computational and memory e�cient.

Firstly, M4GB operates on single critical pairs in contrast to

F4 that selects many critical pairs. In fact for F4, the best known

selection of critical pairs is to select all critical pairs with the same

lowest degree of the LCM. �is seems to be the most e�cient

even if more critical pairs are selected than necessary, because it

reduces the overhead associated in translating to and from matrices.

Also, reducing the number of critical pairs may not signi�cantly

A
B

C D

(a) F4 matrix

A B

D

(b) M4GB’s M

Columns represent monomials, with non-reducible monomials last.

Rows represent polynomials, with S-polynomial halves at the

bo�om (CD) and reductor polynomials at the top (AB).

Figure 1: Visualization of F4’s matrix and M4GB’sM

decrease matrix size anyway. Unfortunately, when a relatively

small number of these critical pairs would be su�cient, F4 wastes

a signi�cant amount of computation and memory. �is is easily

seen in the complexity graph for a growing set of problems where

there are signi�cant ’jumps’ whenever the degree of regularity (the

largest LCM degree of critical pairs that was processed) increases.

By operating on single critical pairs, M4GB does not have this

disadvantage as can be seen from our experiments.

Secondly, M4GB operates mostly on coe�cient vectors over

non-reducible monomials, which in e�ect eliminates unnecessary

computations and memory use involving reducible monomials. In

Figure 1 we have visualized M4GB’s M against matrices used by

F4 to showcase this bene�t. One can directly see that F4 works

with a upper-triangular matrix A as well as larger matricesC and D.

Note that for M4GB’s M , instead of representing A as a diagonal

matrix, we represent A as a single column of leading terms (instead

of coe�cients), or equivalently as the labels for the coe�cient rows

in B. It is well known that matrices generated by F4 have special

structure and most pivots for the row reduction are known before-

hand, namely those inA related to the reductor polynomials. Linear

algebra so�ware can take advantage of this special structure, but

inherently must spent computation and memory in keeping track of

coe�cients related to reducible monomials. It contrast, whenever

a reducible term arises, M4GB directly acts on this and reduces it

without ever having to store the reducible term in the result.

5 IMPLEMENTATION
5.1 M4GB for dense over-de�ned systems
As a proof-of-concept we have implemented our Gröbner basis

algorithm M4GB for a speci�c type of inputs, namely for dense

overde�ned systems over small �nite �elds. �ese type of sys-

tems have at most one solution with overwhelming probability.

In particular we will assess our implementation on the subset of

MQ-problems, which are one of few options for the next genera-

tion of cryptographic public key systems that are resistant against

quantum a�acks, and for which Yasuda et al. [16] started public

challenges. We like to stress that our design choices for this imple-

mentation are not inherent to M4GB and we aim to also provide

more variations that are more suitable for more generic (sparse)

systems in future work.

We are strong supporters of open-source implementations for

numerous reasons for the bene�t of the research community includ-

ing the public veri�ability of our results, availability and enabling

preprint, 2017, Rusydi H. Makarim and Marc Stevens

further research and improvements by the community. Our source-

code, wri�en in C++11, is available under the GPLv3 license at:

https://github.com/cr-marcstevens/m4gb.

In the remainder of this section we will explain some important

design choices for this particular implementation of M4GB, followed

by a performance comparison against some available closed-source

and open-source so�ware, and a description of our e�orts to break

some of the MQ-challenges.

5.2 Design choices
Here we list our main design choices, we will refer to our source

code page for more details. Our implementation consists mainly

of the following components: a library implementing basic com-

ponents (�nite �eld, monomials, polynomials, threadpool, parser), a

templated ’solver’ implementing the main algorithm, and a command-

line front-end that instantiates the solver and handles input, output

and runtime statistics. We also provide two other ’solvers’ that

are simple wrappers around the publicly available closed-source

FGBlib library and the open-source OpenF4 library to facilitate

comparisons with these libraries. Our implementation is con�g-

ured compile-time as it is intended to run on problems where the

run-time is signi�cantly larger than compile-time, it allows simpler

code and it results in more e�cient compiled code.

We limited our implementation to the typically most performant

monomial ordering, namely the degree reverse lexicographical or-

dering. It is more convenient to store and compare machine-size

integers than exponent vectors representing monomials, therefore

most implementations perform order-preserving translations be-

tween monomials and integers. OpenF4 and some other known

implementations use a look-up table listing all monomials up to

some degree, however this uses a signi�cant amount of memory.

Instead, we implemented a fast order-preserving encoder/decoder

for monomials that utilizes small look-up tables that �t CPU caches.

For cryptographic MQ-problems the underlying �nite �eld Fq
is typically small with q ≤ 256. We have therefore chosen to

implement �nite �eld operations in a relatively simple way by

using log and reverse log look-up tables, which remains performant

at least up to q ≤ 65536. For q ≤ 256 we use a multiplication

look-up table that easily �t CPU cache. For odd q ≤ 31 we further

use a 3-to-1 multiply-and-add look-up table, as vector multiply-

and-add with a �xed scalar can use a 2-to-1 look-up subtable of

this. It is well-known that SIMD CPU instructions can provide

signi�cant speed improvements to vector operations, we hope to

provide further optimized implementations and wrappers around

open-source �nite �eld libraries in the near-future.

Tails of д ∈ M are represented by coe�cient vectors relative to

a global list of non-reducible monomials in increasing order and

are truncated by removing trailing zeros. As our implementation

aims at very dense systems, this list is the exhaustive list of non-

reducible monomials up to the largest LCM of critical pairs. �is

choice enables a simpler implementation that does not have to

deal with ad-hoc column insertions, but also allows a faster way

to determine all reducible and non-reducible monomials using an

approach comparable to the sieve of Eratosthenes. Finally, we

process critical pairs in small batches to facilitate multi-threading

Table 1: Benchmark for them = 2n testcases over F31.

Total CPU time (sec)

n m OpenF4 FGb Magma (projected) M4GB

20 40 206 470 232.17 57

21 42 472 1002 500.26 170

22 44 1145 3118 1616.73 424

23 46 2274 6849 3184.82 1060

24 48 10293 64700 31167.61 2556

25 50 - 151653 77678.58 5575

26 52 - 360055 183628.74 15517

27 54 - 767543 409451.87 46548

Memory (MB)

20 40 4240 112 361.84 73

21 42 6640 165 577.34 121

22 44 14368 525 853.84 226

23 46 26135 918 1324.16 395

24 48 161945 1561 8872.94 663

25 50 - 2765 19718.78 1471

26 52 - 4607 25197 3328

27 54 - 8180 39844.84 6799

Table 2: Benchmark for them = n + 1 testcases over F31.

Total CPU time (sec)

n m OpenF4 FGb Magma (projected) M4GB

10 11 2.99 5 3.29 0.98

11 12 8.73 21 11.172 2.6

12 13 36.76 134 59.08 13.92

13 14 172.49 642 286.4 58.18

14 15 1258 5850 2810.75 393.19

15 16 7225 36361 17265.5 2424

Memory (MB)

10 11 101 33 32.09 17

11 12 341 50 64.12 16

12 13 1463 112 113.59 31

13 14 7622 323 281.53 74

14 15 33460 1098 1104 250

15 16 117396 4118 3320 837

and to amortize the cost of column removals when previously non-

reducible monomials become reducible.

5.3 So�ware performance comparison
We have compared our proof-of-concept implementation of M4GB

against the following state-of-the-art Gröbner basis implementa-

tion: (1) FGBlib version 1.68 [9], (2) Magma version 2.20-6 [2], and

(3) OpenF4 version 1.0.1 [5]. FGBlib and Magma are arguably the

most e�cient known implementations of the F4 and F5 algorithms,

but are closed-source, and Magma even requires a paid license.

OpenF4 is a recent open-source implementation of the F4 algorithm

using SIMD CPU instructions, which makes it also an a�ractive

competitor to other existing closed-source implementation.

Two di�erent machines have been used for benchmarking: (1)

our dual Intel Xeon E5-2650v3 system with 128GiB RAM, (2) an

https://github.com/cr-marcstevens/m4gb

M4GB: An e�icient Gröbner-basis algorithm preprint, 2017,

20 22 24 26

10
2

10
3

10
4

10
5

10
6

D
o

R
5

D
o

R
6

No. of variables

Total CPU time (sec)

OpenF4

FGb

Magma

M4GB

20 22 24 26

10
2

10
3

10
4

10
5

10
6

D
o

R
5

D
o

R
6

No. of variables

Memory usage (MB)

OpenF4

FGb

Magma

M4GB

Figure 2: Results form = 2n

10 11 12 13 14 15

10
0

10
1

10
2

10
3

10
4

10
5

D
o

R
7

D
o

R
8

D
o

R
8

D
o

R
9

No. of variables

Total CPU time (sec)

OpenF4

FGb

Magma

M4GB

10 11 12 13 14 15

10
1

10
2

10
3

10
4

10
5

D
o

R
7

D
o

R
8

D
o

R
8

D
o

R
9

No. of variables

Memory usage (MB)

OpenF4

FGb

Magma

M4GB

Figure 3: Results form = n + 1

external quad Intel Xeon E5-4640 system with 132GiB RAM. �e

�rst has been used to compare M4GB with FGBlib and OpenF4,

while the second was needed to be able to compare M4GB with

Magma since Magma requires a license. �e run-times for Magma

on this external machine have been projected to estimated run-

times on our machine to allow comparisons in orders of magnitude

in one graph. Despite this, please note that the margin of error

should be negligible compared to the factor di�erence in orders of

magnitude between the di�erent so�ware implementations. For

the same reason, we have not run tests multiple times as is typ-

ically used to reduce margin of error. Also, both machines are

non-uniform memory access (NUMA) machines, where memory

is partitioned over the CPU chips. To avoid hidden costs related

to process and memory transfers between CPU chips, we forced

processes to a particular CPU chip and its associated memory using

numactl. We could not disable Hyper-�reading, but ran processes

only on physical cores.

We have benchmarked these implementations on MQ-problems

similar to the MQ-challenges, speci�cally quadratic multivariate

polynomial systems of m polynomial equations over n variables

with randomly selected coe�cients. We have limited ourselves to

F31, as F2 requires more specialized implementations and F256 is

not supported by FGBlib. Since the MQ-challenges were selected

to all take more than a month using Magma, we have generated

our own random systems that are computable in more reasonable

time in the same manner as the MQ-challenges. We consider two

type of systems similar to the MQ-challenge types III and VI. Firstly,

strongly over-de�ned systems with m = 2n polynomial equations,

where the constant terms in the systems have been adjusted to

match a known randomly-selected solution. Secondly, weakly over-

de�ned systems with m = n + 1 polynomial equations found by

generating randomly selected under-de�ned systems and guessing

values for some variables.

Our benchmarking results for m = 2n and n = 20, . . . , 27 are

listed in Table 1 and shown in Figure 2. Between FGBlib, Magma and

OpenF4 we see a clear trade-o� between CPU speed and memory

usage, with OpenF4 being the fastest followed by Magma and then

FGBlib, and FGBlib being the most memory e�cient followed by

Magma and then OpenF4. In particular, OpenF4 is faster than

Magma by a factor 1.05 up to a factor 3, probably because of its

SIMD implementation. However, OpenF4 uses the most memory

of all by at least a factor 11 to Magma, which prevents us to run

OpenF4 for n ≥ 25.

We observe that M4GB is the fastest of all and is at least a factor

2.15 and up to a factor 4 faster than OpenF4 (respectively just before

and a�er the increase in degree of regularity (DoR)). Moreover,

M4GB also uses the least memory of all by a factor between 1.2

and 2.35 compared to the second-best FGBlib. However, we do

note that somehow memory usage of our implementation seems

to grow more strongly than FGBlib’s and Magma’s, which may be

related to our particular choice to use coe�cient vectors over all

non-reducible monomials up to some bound.

One can also clearly observe M4GB’s bene�t of processing critical

pairs in small batches, where the increase in degree of regularity

does not cause a sudden factor increase in run-time.

Our benchmarking results form = n + 1 and n = 10, . . . , 15 are

listed in Table 2 and shown in Figure 3. Again one can observe the

same ordering in run-time (M4GB is fastest followed by OpenF4,

Magma and FGBlib) and similarly for memory usage (M4GB uses

the least, followed by comparable FGBlib and Magma, and lastly

OpenF4). Here we observe that M4GB is faster by a factor 2.6 up to

3.3 compared to second-best OpenF4 and uses less memory by a

factor 1.9 up to 4.4 compared to the second-best (Magma or FGBlib).

6 BREAKING MQ-CHALLENGES TYPE V & VI
In this part, we discuss our e�orts in breaking several MQ-challenges

of Type V and Type VI (under-de�ned systems over F
2

256 and F31,

respectively). �e following machines were used to solve some

parameters in MQ-challenge:

A) Desktop machine with Intel(R) Core(TM) i7-2600K CPU @

3.40GHz and 16GB RAM

B) NUMA machine with two nodes of Intel(R) Xeon(R) CPU

E5-2650 v3 @ 2.30GHz processors and 128GB RAM each.

A summary of broken challenges using these machines in shown

in Table 3.

Both MQ-challenge types have more variables than equations

(n ≈ 1.5m) and they represent equation systems related to MQ-

problem based cryptographic public key signature schemes. �ere

will be a large number of solutions due to the small number of

equations, however the Gröbner basis corresponding to this set

of solutions will be very costly to compute. We therefore use the

hybrid approach by Be�ale et al. [1] which is a trade-o� between

exhaustive search and Gröbner bases computations. �e main idea

preprint, 2017, Rusydi H. Makarim and Marc Stevens

Table 3: Summary on MQ-challenges we broke with M4GB.

Type n/m Machine Used # Node Duration

V 24/16 A 1 ≈ 9.3 hours

V 25/17 B 1 ≈ 46.33 hours

V 27/18 B 2 ≈ 10.9 days

VI 24/16 A 1 ≈ 1.2 hours

VI 25/17 B 1 ≈ 9.87 hours

VI 27/18 B 1 ≈ 31.48 hours

VI 28/19 B 2 ≈ 7.61 days

is to go over all possible values for k chosen variables and compute

the Gröbner basis of the m equations over just n − k variables.

More speci�cally, we �rst guess n −m variables to force a square

system with equal number of equations and variables, which has

probability e−1
to have a solution (e.g., see [11]). �en we go over

all possible values over 1 or 2 remaining variables and try to solve

the resulting weakly over-de�ned systems. If this fails then we

select other values for the n −m variables and retry.

�is approach has the bene�t that we can actually run multiple

independent processes simultaneously (e.g., over di�erent NUMA

nodes or di�erent machines). Moreover, we can also practically

estimate the average time as well as worst-case time to obtain a

solution for the whole system by computing a Gröbner basis for

one of the subsystems. For instance for type VI with m = 16,

solving one subsystem (m = 16,n = 15) took 1 hour 10 minutes

wall-clock time using a single thread on machine A. An average

total CPU-time estimate to solve type VI systems over F31 should

then be approximately 18.7 hours. It uses 837MB of memory for

each subsystem, which allowed the simultaneous computation on 8

subsystems well within the available 16GB of RAM. We broke both

MQ-challenges of type V and VI form = 16,n = 15 on this desktop

machine in 9.3 hours and 1.2 hours wall-clock time respectively,

signi�cantly faster than the designed minimum cost of a month on

a Xeon system using Magma.

For the larger MQ-challenges of type V and VI, we used ma-

chine B. We ran 10 simultaneous Gröbner bases computations using

M4GB, each with 2 threads and forced to one NUMA node using

the numactl program.

For type VI with m = 19 we slightly modify our strategy in

computing Gröbner bases for all subsytems withm = 19,n = 18. An

important observation here is that in the �nal stage, M4GB takes a

signi�cant amount of time using only a single thread. �us, instead

of waiting the computation to �nish, one can start to compute

Gröbner basis for the next subsystem as soon as this last stage of

the previous computation begin. In this way all processors are fully

occupied so that the time to obtain a solution can be signi�cantly

reduced. We used both NUMA nodes where one process was run

in each node using 10 threads. A solution was found a�er running

the computation for roughly 7.6 days.

7 FUTUREWORK
In future work we aim to implement variations that are more suit-

able for sparse polynomial systems, in particular by replacing the

design choice to use the exhaustive list of non-reducible monomials

up to some bound. Also, further speed-ups may be gained via SIMD

CPU instructions or the use of GPUs.

ACKNOWLEDGMENTS
We would like to thank anonymous reviewers for their feedbacks

and suggestions. We also would like to thank Ronald van Luijk and

Marco Streng for le�ing us to use their machine to compare M4GB

with Magma, including helping us preparing the machine according

to our need. �e machine used was funded by �e Netherlands Or-

ganisation for Scienti�c Research (NWO) via the ”Vernieuwingsim-

puls” grants of Ronald van Luijk and Marco Streng.

REFERENCES
[1] Luk Be�ale, Jean-Charles Faugère, and Ludovic Perret, Hybrid Approach for

Solving Multivariate Systems over Finite Fields, J. Mathematical Cryptology 3
(2009), no. 3, 177–197.

[2] Wieb Bosma, John J. Cannon, and Catherine Playoust, �eMagma Algebra System
I: �e User Language, J. Symb. Comput. 24 (1997), no. 3/4, 235–265.

[3] B. Buchberger, Ein Algorithmus zum Au�nden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, University of

Innsbruck, 1965.

[4] Johannes A. Buchmann, Jintai Ding, Mohamed Saied Emam Mohamed, and

Wael Said Abd Elmageed Mohamed, MutantXL: Solving Multivariate Polynomial
Equations for Cryptanalysis, Symmetric Cryptography (Dagstuhl, Germany)

(Helena Handschuh, Stefan Lucks, Bart Preneel, and Phillip Rogaway, eds.),

Dagstuhl Seminar Proceedings, no. 09031, Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, Germany, 2009.

[5] Titouan Coladon, Vanessa Vitse, and Antoine Joux, OpenF4 implementation,

h�ps://github.com/nauotit/openf4, 2015.

[6] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir, E�cient
Algorithms for Solving Overde�ned Systems of Multivariate Polynomial Equations,
Advances in Cryptology - EUROCRYPT 2000, International Conference on the

�eory and Application of Cryptographic Techniques, Bruges, Belgium, May

14-18, 2000, Proceeding (Bart Preneel, ed.), Lecture Notes in Computer Science,

vol. 1807, Springer, 2000, pp. 392–407.

[7] �e Certicom ECC Challenge, h�ps://www.certicom.com/index.php/

the-certicom-ecc-challenge, 1997.

[8] Jean-Charles Faugère, A New E�cient Algorithm for Computing Gröbner Bases
(F4)., Journal of Pure and Applied Algebra 139 (1999), no. 1–3, 61–88.

[9] Jean-Charles Faugère, FGb: A Library for Computing Gröbner Bases, Mathematical

So�ware - ICMS 2010, �ird International Congress on Mathematical So�ware,

Kobe, Japan, September 13-17, 2010. Proceedings (Komei Fukuda, Joris van der

Hoeven, Michael Joswig, and Nobuki Takayama, eds.), Lecture Notes in Computer

Science, vol. 6327, Springer, 2010, pp. 84–87.

[10] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora, E�cient
Computation of Zero-Dimensional Gröbner Bases by Change of Ordering, J. Symb.

Comput. 16 (1993), no. 4, 329–344.

[11] Giordano Fusco and Eric Bach, Phase Transition of Multivariate Polynomial Sys-
tems, Mathematical Structures in Computer Science 19 (2009), 9–23.

[12] Rüdiger Gebauer and H. Michael Möller, On an Installation of Buchberger’s Algo-
rithm, J. Symb. Comput. 6 (1988), no. 2/3, 275–286.

[13] �e RSA Factoring Challenge, h�p://www.emc.com/emc-plus/rsa-labs/historical/

the-rsa-factoring-challenge.htm, 1991.

[14] Peter W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a�antum Computer, SIAM Review 41 (1999), no. 2, 303–332.

[15] �e La�ice Challenge, h�p://www.la�icechallenge.org/, 2010.

[16] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Takagi, and Kouichi

Sakurai, MQ Challenge: Hardness Evaluation of Solving Multivariate �adratic
Problems, IACR Cryptology ePrint Archive 2015 (2015), 275.

A CORRECTNESS OF M4GB
In proving the correctness of M4GB we limit ourselves to proving

correctness of full-reduction of the input basis and the S-polynomials,

as otherwise M4GB performs the same steps as Buchberger’s algo-

rithm for any given admissible Select and Update functions.

First, the correctness of algorithm MulFullReduce. In com-

puting t · f it multiplies each term s of f with t , and if t · s is

non-reducible by L will add it to the result h. Otherwise, when the

term r = t · s is reducible by L it will immediately reduce it with

https://github.com/nauotit/openf4
https://www.certicom.com/index.php/the-certicom-ecc-challenge
https://www.certicom.com/index.php/the-certicom-ecc-challenge
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
http://www.latticechallenge.org/

M4GB: An e�icient Gröbner-basis algorithm preprint, 2017,

a reductor polynomial д ∈ M with LM(д) = r retrieved by calling

GetReductor:

h ← h + r − (r/LT(д)) · д = h − (r/LTд) · Tail(д).

Assuming correctness of GetReductor we have that (L,M) sat-

is�es the M4GB-invariant at every step and that any such д is

tail-reduced by L itself. �us Tail(д) is full-reduced by L and the

resulting h is always full-reduced by L.

Second, the correctness of algorithm GetReductor. If for the

input term t that is reducible by L there exists a f ∈ M with

LM(f) = LM(t) then it immediately returns that f which is tail-

reduced by L due to the M4GB-invariant. Otherwise, it picks a l ∈ L
with l | r by calling ReduceSel(L, r) and retrieves the unique f ∈ M
with LM(f) = l (which exists as L ⊂ LM(M)). It then computes

(r/LT(f)) · f = r + (r/LT(f)) · Tail(f)

in tail-reduced form r + h by calling MulFullReduce to compute

the full-reduced tail h. Note that the returned new M̂ = M ∪ {r +h}
still satis�es the M4GB-invariant.

�ird, the correctness of algorithm UpdateReduce. It will �rst

update M so that all д ∈ M are not tail-reducible by L ∪ {LM(f)}.
Beginning withH = { f /LC(f)}, it will repeatedly insert (u/LT(f))·
f into H for the largest monomial u ∈ Mono(Tail(M ∪ H)) \
LM(H) that is reducible by f that still needs to be handled. Note

that for any such u, it will call MulFullReduce which only calls

GetReductor(L,M, r) for r < u. �e sequence of chosen monomi-

alsu in step 3 is monotonic decreasing and thus �nite, as any polyno-

mial h added to M in step 4 has LM(h) < u. A�er this procedure, at

the beginning of step 6, for any monomialu ∈ Mono(Tail(M∪H)) re-

ducible by f there exists h ∈ H with LM(h) = u. Also, all д ∈ M∪H
are tail-reduced by L due to the M4GB-invariant and correctness

of MulFullReduce. �us a�er processing all h ∈ H in steps 7–

10 we have that no monomial u ∈ Mono(Tail(M)) is reducible by

L ∪ { f }. As eventually (f /LC(f)) ∈ M due to steps 1 and 10, the

M4GB-invariant will be broken during steps 6–10, however this

is �xed when LM(f) is inserted into L by the Update function in

step 11.

Fourth, the correct application of Update. Let д1, . . . be the

sequence of polynomials passed to UpdateReduce for M4GB. Note

that any Update function and Gebauer-Möller’s algorithm 6 in

particular may remove an elementдi from the basis, but keep critical

pairs (дi ,h) for some h (e.g. when LM(h) | LM(д)). In Buchberger’s

algorithm it is thus necessary to either store the full polynomials

in the critical pair set or to keep all basis polynomials. In the last

case it then su�ces to use proper references (index i or leading

monomial LM(дi)) in critical pairs. Since д1, . . . are inserted in M ,

never removed, never replaced and only further tail-reduced by

UpdateReduce, in M4GB we represent critical pairs by leading

monomials and thence algorithm 2 extracts the correct (further

tail-reduced) polynomials in step 9.

Lastly, it remains to verify that steps 10–13 of M4GB indeed

compute the full-reduction of the S-polynomial of f and д:

Spoly(f ,д) =
u

LT(f)
f −

u

LT(д)
д =

u

LT(f)
Tail(f) −

u

LT(д)
Tail(д).

�e full-reduction of Spoly(f ,д) can be computed as the di�er-

ence of the full-reduction of (u/LT(f))Tail(f) and (u/LT(д))Tail(д)
computed in steps 11 and 12, since full-reduction distributes over

polynomial addition for �xed basis which is shown as follows. Note

G = { f ∈ M : LM(f) ∈ L} is �xed and for any monomial u re-

ducible by G a �xed tail-reduced h is given by GetReductor. Let

f1, f2 be any two polynomials with coe�cient c1, c2 for monomial

u, respectively. In the full-reduction of f1, f2 and f1 + f2 the only

tail-reduced polynomial that a�ects the terms with monomial u is

the identical corresponding h with LM(h) = u. W.l.o.g., assume h is

monic, then f1−c1h, f2−c2h and (f1+ f2)−ch are full-reduced if and

only if c1+c2 = c , which implies that full-reduction distributes over

polynomial addition for �xed tail-reduced reductors for reducible

monomials.

B GEBAUER-MÖLLER INSTALLATION
Here we list a description of the Gebauer-Möller Installation for

easy reference.

Algorithm 6: Gebauer-Möller Installation

Input: G ⊂ R, P ⊂ R × R, and f ∈ R that is not

lead-reducible by G.

Output: An updated Gnew, Pnew.

1 C ← {(f ,д) : д ∈ G};

2 D ← ∅;

3 while C , ∅ do
4 (f ,д) ← Select(C);

5 C ← C \ {(f ,д)};

6 u ← LCM(LM(f), LM(д));
7 if ∀(f ,h) ∈ C ∪ D : LCM(LM(f), LM(h)) - u
8 or u = LM(f)LM(д) then
9 D ← D ∪ {(f ,д)};

10 Pnew ← {(f ,д) ∈ D : LCM(LM(f), LM(д)) , LM(f)LM(д)};
11 for (д,h) ∈ P do
12 if LM(f) - LCM(LM(д), LM(h))
13 or LCM(LM(p1), LM(f)) = LCM(LM(д), LM(h))
14 or LCM(LM(p2), LM(f)) = LCM(LM(д), LM(h)) then
15 Pnew ← Pnew ∪ {(д,h)};

16 Gnew ← {д ∈ G : LM(f) - LM(д)} ∪ { f };
17 return (Gnew, Pnew);

	Abstract
	1 Introduction
	2 Preliminaries
	3 Gröbner basis algorithms
	3.1 Cryptographic problems

	4 M4GB algorithm
	4.1 Performance
	4.2 Comparison with F4

	5 Implementation
	5.1 M4GB for dense over-defined systems
	5.2 Design choices
	5.3 Software performance comparison

	6 Breaking MQ-Challenges Type V & VI
	7 Future work
	Acknowledgments
	References
	A Correctness of M4GB
	B Gebauer-Möller Installation

