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ABSTRACT
Recently we presented a single-party cryptographic timestamp-
ing mechanism based on proof-of-sequential-work, which we
proved secure in the universal composability framework [16].
This paper describes this construction and its security claims
and uses it to construct a multi-party permissioned blockchain
protocol and show that it achieves an immutability notion.
Finally we discuss applications of this protocol, including
unpermissioned blockchains, and how these may benefit.
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INTRODUCTION

Blockchain immutability
The primary goal of a blockchain protocol is to achieve con-
sensus over state between all participating nodes. This process
is simplified by the append-only nature of the blockchain struc-
ture. Whenever new information needs to be added to the state,
a new block is created and added to the chain. With the ex-
ception of temporary forks, which are resolved by erasing the
latest blocks, the state is only updated by adding new blocks.
After a certain point in time, a block is considered immutable
as it becomes unfeasible for it to be erased or changed. This
fact allows nodes to reach consensus on the whole state by
agreeing only on the latest changes in the state.

Immutability in blockchains has mainly been studied as an
element that allows for proof-of-work (PoW) consensus, but
has not been studied widely as an individual characteristic.
The first comprehensive paper in Bitcoin presented the ab-
straction of the Bitcoin blockchain and proved its security in
a partially synchronous setting [9]. This paper was followed
by numerous other papers investigating different aspects of
Bitcoin. The same team followed up their work with a proof
of Bitcoin with chains of variable difficulty in [10]. In [21],
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Bitcoin is proved secure in the asynchronous model and [1]
presents a fully-composable treatment of Bitcoin.

All of these papers prove that consensus in Bitcoin (more
broadly, proof-of-work consensus) works in part because of the
immutability provided by the blockchain structured combined
with proofs-of-work.

The proof-of-work based consensus of Bitcoin provides strong
guarantees for immutability. Informally, adversaries that do
not have a majority of the total hashing power invested in the
proof-of-work can succeed at rewriting previous blocks in the
network only with success probability that is exponentially
small in the depth of rewritten blocks. Moreover, even against
adversaries with a fraction α > 0.5 of the total hashing power,
the adversary is computationally restricted in how deep it can
rewrite blocks in a certain amount of time, i.e. on average after
time T the adversary can only successfully rewrite blocks in
the network up to T · α/(1 − α) time deep.

However, there exist various problems relating to the proof-of-
work based consensus of Bitcoin. First, it requires a mining
reward as an incentive to compute proofs-of-work and con-
tribute to the security of Bitcoin [20], which is natural for
cryptocurrencies, but is not a generic solution for all possi-
ble applications of blockchain. Second, the mining reward
causes undesired effects threatening the aimed decentraliza-
tion of Bitcoin, namely it causes centralization via mining
pools (for miners to obtain frequent small rewards instead of
very rarely obtaining large rewards) as well as via specializa-
tion (larger more efficient mining operations can reduce costs
and increase profits) [12]. Third, Bitcoin does not seem to
be sustainable given that the world-wide energy consumed in
computing proofs-of-work for Bitcoin now exceeds that of
entire countries1.

In light of the above issues related to proof-of-work consen-
sus, attention is turning towards other consensus mechanisms,
such as proof-of-stake [3] and proof-of-space [8]. These non-
PoW systems can ensure consensus for participants which are
(almost) continuously connected to the protocol [7, 15, 19].
However, the consensus guarantees achieved in the protocol
do not directly apply to parties that are mostly offline. For
the same reasons, these systems are vulnerable to long-range
attacks where parties can easily construct multiple blockchains
that returning parties cannot distinguish from the real one [22].
Proof-of-work based systems do not have this problem, as
creating valid blockchains requires an investment in computa-
tional work and time.

1https://digiconomist.net/bitcoin-energy-consumption
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When getting rid of proofs-of-work, the notion of immutability
is maintained by punishing misbeahavior through incentives
[3] or by constantly connecting to the the protocol in order
to have an updated chain [11]. While this notion might be
considered sufficient in certain contexts, it provides weaker
guarantees than the PoW setting. We will call this notion weak
immutability as it is not intrinsic and requires either incentives
or monitoring to be achieved. In this paper we will seek im-
mutability in a similar sense to the one found in PoW systems.
We will say a blockchain has strong immutability if protection
against malicious changes is obtained via a computationally
hard problem. Note that, similar to a complexity class, strong
immutability is parametrized by the difficulty of the computa-
tional problem, meaning that a blockchain is not necessarily
more secure by having strong immutability. In particular, for
a PoW blockchain to be secure it must maintain honest major-
ity against the strongest possible adversary. In practice, this
means that given one choice of a PoW function, at most one
blockchain which uses that function can be considered secure.

Besides this distinction being theoretically interesting, we
believe that it has consequences in the practical sense as well.
Most of the users of a blockchain are not involved in the
protocol as miners or maintainers of the chain. In practice,
these parties connect sporadically to the network to read the
blockchain in order to create new transactions or verify ones
that they receive. Given this behavior, strong immutability is
required.

Cryptographic timestamping
The immutability of blockchains is closely linked to the times-
tamping problem. In the seminal Bitcoin paper [20] the author
presents the blockchain as a timestamp server which requires
no trusted party. In particular, efficiently rewriting blockchains
can be prevented by cryptographic timestamping.

Originally, Bayer, Haber and Stornetta considered time-
stamping digital documents as well as digital signatures [2,
14]. The security of proposed solutions relies on trusted parties
and broadcasting blockchains where any malicious behaviour
will be caught.

Other proposed solutions include encoding messages in
blockchain transactions, in particular in Bitcoin transactions
[5, 13], where security relies on the immutability of the under-
lying blockchain.

Recently we presented a single-party cryptographic timestamp-
ing mechanism based on proof-of-sequential-work, which we
proved secure in the universal composability framework [16].
This paper will briefly review this construction and its security
claims and apply it to achieve certain notions of immutability
in the multi-party blockchain setting.

PRELIMINARIES
Time.
We consider a setting where time is essentially continuous,
but it may be divided into intervals of time of a certain length
which will be context-dependent. For instance, when a party
computes a certain slow function at a rate of γ, then a time-
step for this process will be 1/γ long, but for rounds of a

(network) protocol this may be a pre-agreed length of time.
Parties are equipped with synchronized clocks with at most an
insignificant difference in time with respect to rounds of net-
work protocols. We assume that timestamps can be described
in bitstrings of length θ at a sufficient granularity.

Public-key signatures.
We assume a public-key infrastructure Σ for digital signatures
that is existentially unforgeable. I.e., we assume that no at-
tacker will ever be able to create any kind of forgery for a
public-key where he does not know the corresponding private
key. Given a public key pk message m and a signature s, any
party may verify it by calling the function Σ.verify(pk,m, s).

Cryptographic hash function.
Let H : {0, 1}∗ → {0, 1}λ be a collision-resistant cryptographic
hash function, i.e. we assume no collisions will ever be found.

Merkle Trees.
Merkle Trees are balanced binary trees, where the ordered
leaf nodes are each labeled with a bitstring, and where each
non-leaf node has two child nodes and is labeled by the hash
of its children’s labels. The root hash of a Merkle Tree equals
the label of the root node. Merkle Trees allow for short set
membership proofs of length O(log(N)) for a set of size N.
For convenience we define some interface functions that deal
with Merkle Trees in some canonical deterministic way.

MT.root(T ) computes the root hash h of the Merkle Tree for
some ordered finite sequence T ∈ ({0, 1}∗)∗ of bit strings
and outputs h ∈ {0, 1}λ.

MT.path(T, v) outputs the Merkle path described as a se-
quence of strings (x0, . . . , xl) where x0 = v, xl =
MT.root(T ), xi ∈ {0, 1}λ and either xi+1 = H(xi||H(xi−1))
or xi+1 = H(H(xi−1)||xi) for all i > 0.

MT.verify(P) given an input sequence P = (x0, . . . , xl) out-
puts accept if P is a valid Merkle path. It outputs reject
otherwise.

With a slight abuse of notation we also use MT.root(T ) re-
cursively, i.e., if one of the elements S of T is not a bit-
string but a set or sequence, we use MT.root(S ) as the bit-
string representing S . E.g., if T = (a, b, S ) with bitstrings
a, b ∈ {0, 1}∗ and a set of bitstrings S = {c, d, e}, then
MT.root(T ) = MT.root((a, b,MT.root(S ))). This similarly ex-
tends to MT.path(T, v), e.g., where v ∈ S in the previous
example.

SINGLE-PARTY CRYPTOGRAPHIC TIMESTAMPING

Proofs of Sequential Work (PoSW).
Informally proofs of sequential work are proofs that some
long and inherently sequential computation was performed,
whereas any verifier can quickly verify the correctness of the
proof. We use an extended notion of proof of sequential work
to make it variable time, where one does not have to choose
the strength in advance, but whose strength continuously in-
creases with time spent computing it. More formally, we
consider a non-interactive variable-time PoSW to be a triple
of algorithms (PoSW.gen,PoSW.extend,PoSW.verify) with
security parameter µ and parameters g, v ∈ N as defined below.

2



PoSW.gen(x, s) is a slow cryptographic algorithm that for an
input x ∈ {0, 1}∗ and strength s ∈ N computes an output
(p, s) ∈ {0, 1}µ × N in s · g parallel time steps.

PoSW.extend is a slow cryptographic algorithm that for in-
puts x ∈ {0, 1}∗, (p, s) = PoSW.gen(x, s) and s∗ ∈ N returns
the output (p∗, s+ s∗), where (p∗, s+ s∗) = PoSW.gen(x, s+
s∗), in s∗ · g parallel time steps.

PoSW.verify(x, p, s) is a fast cryptographic algorithm that for
inputs x ∈ {0, 1}∗, p ∈ {0, 1}µ, and s ∈ N outputs accept if
(p, s) = PoSW.gen(x, s), and reject otherwise, in at most
s · v time steps.

We require perfect correctness:

PoSW.verify(x,PoSW.gen(x, s)) = accept

for all x ∈ {0, 1}∗ and s ∈ N. The PoSW is called secure
if no efficient adversary given a challenge x with sufficient
min-entropy can compute values (s, p) in less than s ·g parallel
time steps for which PoSW.verify(x, p, s) = accept with non-
negligible probability. The usability of the PoSW is the factor
g/v by which verification is faster than generation of the proof.

A candidate construction that satisfies this notion is the Sloth
construction by Lenstra and Wesolowski [17] that iterates
modular square root and (keyed) binary permutation functions.

In this work we will assume that every party and the adversary
have access to certain computational resources (a CPU running
at some clock speed) or some specific optimizations which
implies that they each can compute proofs of sequential work
at a certain (potentially distinct) rate γ. So for every party
we model their capability to compute PoSW as a slow oracle
F PoSW
γ as defined in Algorithm 1 that beneath interacts with a

global random oracle PoSW.

Algorithm 1: Oracle F PoSW
γ

Setting: The oracle is parametrized by a PoSW-rate
γ > 0. Let PoSW : {0, 1}∗ × N→ {0, 1}µ be a
global random oracle each oracle instance has
access to. The oracle also has access to a global
clock clock (to exactly measure time elapsed
computing the proof of sequential work).

The oracle functions as follows:
1 Let Q := ∅ be the (initially empty) query log;
2 On input (start, x) at time t:
3 Update Q← Q ∪ {(x, t)};
4 On input (output, x) at time to:
5 Let ti be the earliest time such that (x, ti) ∈ Q, return

⊥ if there is no such ti;
6 Let s := d(to − ti) · γe be the strength of the resulting

proof and p := PoSW(x, s);
7 Return (p, s) at time ti + s/γ =: to + ε, with

0 ≤ ε < 1/γ;
8 On input (verify, x, p, s):
9 Return accept if PoSW(x, s) = p and reject

otherwise;

The SingleLipwig protocol
In this section we present our recent single-party SingleLipwig
protocol [16] and its security claims.

Consider party P with public key pk that can compute PoSW
at rate γ > 0, who thus has access to a functionality F PoSW

γ .

Party P will run protocol SingleLipwig as described in Algo-
rithm 2.

He will wait till he obtains some msg to output, at which point
he will create his next block containing a hash pointer to the
previous block, the msg, a PoSW and a signature.

The output of party P running SingleLipwig can be verified by
any (γ, ε)-SingleLipwig-verifier as described in Algorithm 3,
where γ is the PoSW-rate γ of P and ε ≥ 0 is the time P
requires to execute steps 3–5 of SingleLipwig. We call ε the
PoSW-interrupt time of P.

Algorithm 2: SingleLipwig
Setting: Assume that party P with public key pk has

access to F PoSW
γ for PoSW-rate γ > 0.

1 Initialize prev := H(pk), t0 := clock();
2 Send (start, t0||prev) to F PoSW

γ ;
3 for i = 0, . . . do
4 Wait till message (record,msgi);
5 Retrieve (pi, si) by querying F PoSW

γ (output, ti||prev);
6 Create signature sigi for MT.root(datai), where

datai = (H(pk), i, prev, ((ti||prev), (pi||si)),msgi);
7 Set blocki ← (datai, sigi), prev← MT.root(blocki),

and ti+1 ← clock();
8 Send (start, ti+1||prev) to F PoSW

γ ;
9 Output (blocki, ti+1);

10 end

Algorithm 3: (γ, ε)-SingleLipwig-verifier
Input: A sequence C = ((block0, t1), . . . , (blockl, tl+1)) for

public-key pk output by SingleLipwig
Output: ⊥ or a sequence (msg0, age0), . . . , (msgl, agel)

1 Output ⊥ if not all blocki are correctly signed:
blocki = (datai, sigi) where sigi is a valid signature of
MT.root(datai) for public key pk;

2 Output ⊥ if not all datai are correctly formed:
datai = (H(pk), i, previ, poswi,msgi) where prev0 = pk,
previ = MT.root(blocki−1), and
poswi = ((ti||previ), (pi, si)) for some msgi, pi, si;

3 Output ⊥ if not all poswi are correct PoSW:
poswi = ((ti||previ), (pi, si)) where
pi = PoSW(ti||previ, si);

4 Output ⊥ if not all PoSW are strong enough:
5 si ≥ (ti+1 − ti − ε) · γ;
6 Output {(msgi, agei = tl+1 − ti+1) | 0 ≤ i ≤ l};

The following properties of the algorithm SingleLipwig to-
gether with a (γ, ε)-SingleLipwig-verifier have been proven in
the universal composability framework for sufficiently large
security parameters κ, λ and µ.
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Theorem 3.1 ([16]). (1) The output of an honest P run-
ning the algorithm SingleLipwig with PoSW-rate γ and PoSW-
interrupt time ε will be accepted by any (γ, ε)-SingleLipwig-
verifier.

(2) When a honest P is corrupted at time Tcorr by an adversary
with PoSW-rate γ · α and PoSW-interrupt time ε/α with α ≥ 1,
any sequence C = ((block0, t1), . . . , (blockl, tl+1)) output by
the adversary at time Toutput that is accepted by any (γ, ε)-
SingleLipwig-verifier satisfies the following properties except
with negligible probability:

1. Let A = Toutput − Tcorr be the time passed since corruption,
then either C contains all blocki created by the honest P at
least A · α time ago or none.

2. Any blocki created by the adversary has claimed age agei =
tl+1 − ti+1 (cf. Algorithm 3) at most A · α.

3. Any blocki created by the adversary at time Ti has claimed
age agei at most (Toutput − Ti) · α.

PERMISSIONED BLOCKCHAINS
Permissioned blockchains could be a solution to many practi-
cal problems faced by governments and enterprises. Cooper-
ation between mutually mistrusting entities can only emerge
when a party has assurances that power will not be abused. In
practice, these cooperations can only happen through trust on
a third party (most likely the government). These processes
take considerable time, energy and money, elevating costs
and affecting efficiency. Blockchains can solve these issues
by providing a trusted ledger which provides the necessary
assurances.

Permissioned blockchains should provide a ledger that any
participant can add to according to preset rules. Distributed
consensus means that no single entity has enough power to
arbitrarily modify the ledger. There exist multiple efficient
protocols for consensus in a permissioned network. Permis-
sioned consensus requires a trust in identities (through a PKI
or otherwise), trust that enough parties will not collude. Dis-
tributed consensus has existed for a long time, so what exactly
do blockchains offer beyond distributed consensus?

Compared to classical consensus protocols, blockchains offer
two primary advantages: the ability to function in an unknown
network and cryptographic immutability. The former is ir-
relevant in the context of a permissioned network, especially
because this comes at a large efficiency (and economic) cost.
Therefore, the main feature of blockchains in this setting is
immutability. Blockchains prevent any entity from arbitrarily
rewriting anything written in it. The blockchain structure en-
sures that any change propagates throughout the whole chain.
Changing a block becomes equivalent to recreating the entire
succeeding section of the chain. If creating each block in the
blockchain is hard enough, we can consider it immutable.

Immutability is generally studied through its relationship with
consensus. In non-PoW blockchains, it is shown that the ad-
versary cannot disrupt consensus on the recent state of the
chain. However, these systems are vulnerable to long-range
attacks, as it is easy to emulate the execution of the protocol

[22]. If a sufficient number of identities become adversarial at
some point in time then in principle they can efficiently rewrite
the entire ledger almost immediately. In a permissioned net-
work consisting of a known (possibly small) number of known
parties, the risk of an adversary corrupting enough parties
is especially relevant (particularly if all parties use the same
software, which should be expected) [23].

Bitcoin’s PoW paradigm avoids this problem because rewrit-
ing a chain implies re-doing all the necessary work. Beyond
hash collisions, rewriting a block is equivalent to disrupting
consensus. In PoW-based systems, even if consensus breaks
down because of an adversarial majority, the blockchain still
offers some guarantees against rewriting. Alternatively, if a
blockchain does not use proofs-of-work, an adversarial major-
ity can, in principle, efficiently and arbitrarily rewrite every-
thing whenever it gains control of a majority of the network.
We postulate that this resistance to modification even with a
majority adversarial corruption is the strongest advantage of a
blockchain in a permissioned setting.

Unfortunately, proof-of-work consensus does not provide
these guarantees in a permissioned setting. Security in proof-
of-work blockchains comes from the amount of computational
power that the adversary has access to, in comparison with
the network. In large permissionless networks like Bitcoin
and other cryptocurrencies, it is unfeasible for an adversary to
have access to more computational power than the rest of the
network combined. Therefore, a new blockchain must have a
network with enough computational power to be resilient to
attacks from the networks that maintain these cryptocurencies.
For example, this is what causes merged-mining sidechains to
be vulnerable to rewriting attacks [6].

Sensing this attack vector, multiple cryptocurrencies have
adopted different proof-of-work functions that weaken these
attackers. Bitcoin mining today relies on application-specific
integrated circuits (ASICs); it is possible to choose a func-
tion where this specialized hardware provides little advantage.
Multiple cryptocurrencies have chosen this road in order to
sidestep this problem [4]. This solution does not work in a
permissioned setting, as these networks are likely to be small.
A malicious party could easily get access to enough compu-
tational power to rival that in the network. The only way to
prevent this is to invest considerable amounts of computational
power in the network, which is not cost-effective. As permis-
sioned networks do not require proofs-of-work to achieve
consensus and do not achieve any immutability from them, we
believe that proofs-of-work have no place in the permissioned
setting, but their role can be filled by proofs-of-sequential-
work.

A Simple Protocol
Using proofs-of-sequential-work prevents arbitrary rewriting
the content inside of a blockchain, even if this blockchain is
maintained by only one party. However, this is not enough
to ensure immutability and provide the trust guarantees that
are expected from a blockchain. Proofs-of-sequential-work
prevent against rewriting something in the history, but can-
not prevent real-time forking. The creator of the chain could
secretly maintain several forks of its blockchain and choose
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which one to present depending on the situation. A corrupt
agent cannot arbitrarily rewrite a chain but can still make mod-
ifications to it in certain conditions. Like any other blockchain
protocol, we require multiple parties to cooperate to achieve a
stronger immutability. What is more interesting is that a single
honest party can prove whether or not a blockchain has been
rewritten in a definitive way.

In our previous model there was only one party, which meant
that the time spent between instances of the proof of sequential
work (denoted by ε) was as small as possible.

We are interested in minimizing this time, but run into a prob-
lem in the multi-party setting where achieving consensus on
the next block takes significant time. If we compute our PoSW
over blocks in the chain, the time between a block being pro-
posed and it being confirmed is time where PoSW cannot be
computed. While getting a larger γ requires an investment to
acquire a faster processor, an adversary can gain an advantage
in ε by creating the block on its own. Even if in practice this
process is almost instantaneous, it forces us to allow weaker
PoSWs; proofs that do not span all the time needed to create
the block. Computing PoSW over the blocks of the chain gives
the adversary a strong advantage for rewriting blocks. Instead,
we propose each participant will maintain their own personal
PoSW chain and together maintain a ledger chain that interacts
with the personal chains.

We will present a simplified model with favorable network con-
ditions and access to an arbitrary consensus mechanism that
has certain desirable properties as described in Algorithm 4.
Our goal will not be to show that consensus is achieved but
instead to show the immutability properties provided by the
blockchain. Besides the advantages provided by the PoSWs
to SingleLipwig, this protocol will additionally benefit from
additional guarantees provided by signatures of each block.
In this simplified construction, we will assume the existence
of some protocol Consensus that achieves certain minimum
security properties which determines the block created at each
round of the protocol.

The protocol MultiLipwig, presented in Algorithm 5, will inter-
act with other parties using Consensus to determine the next
ledger block and locally use SingleLipwig to record its copy
of the ledger block. So each party will record two distinct
chains: its personal chain and the ledger chain. Blocks in the
ledger chain will be represented by blockL

i , while blocks in
party P j’s personal chain will be represented by block j

i .

In order to link the personal blockchains with the ledger chain,
we will add Merkle pointers to the blocks. For simplicity, we
will act as if the participants simply copy the entire blocks.
Each personal block will contain the ledger block created that
round. The new ledger block output by Consensus will con-
tain the personal blocks created in the previous round2, in
order to provide the ledger chain with the security provided
by the proofs-of-sequential-work. While the PoSW are com-
puted over the personal chains and not the ledger chain, every

2In practice, personal chains will contain a simple Merkle root while
the ledger chain will contain Merkle paths to the PoSW, the pointer
to the ledger block and the signature.

Algorithm 4: Consensus for n parties
Setting: Let P j running this protocol in a network of n

parties P1, . . . ,Pn with corresponding public
keys pk1, . . . , pkn. The desired consensus
protocol is parametrized by a minimum number
n/2 < Thr ≤ n of contributing parties and a
maximum run time T .

Input: Ledger chain CL = (blockL
1 , . . . , blockL

i−1) and
SingleLipwig chain
C j = ((block j

0, t
j
1), . . . , (block j

i−1, t
j
i )).

Result:
The protocol runs within time T and either outputs
(blockL

i , sigL
i, j) or abort. The new block blockL

i is of the
following form:(

pkH, i, previ, {blockk
i | k ∈ Pi},msgi

)
where pkH = MT.root(pk1, . . . , pkn), prev1 = pkH for
i = 1 or previ = MT.root(blockL

i−1) otherwise, |Pi| ≥ Thr
and blockk

i is the last block in the SingleLipwig chain Ck

of Pk. The content msgi is also decided by the protocol,
however the format and validity of msgi is application
specific and therefore left unspecified here.
If there are at least Thr honest parties then all honest
parties receive the same output blockL

i and every honest
party Pk receives a set sigL

i,k of signatures on blockL
i of at

least Thr distinct parties.
In all cases, even if all other parties are corrupt, if P j is

honest then it signed at most one candidate b̃lockL
i that

must be valid in the above form including a valid m̃sgi.

personal block contains the ledger block. Therefore, we can
create a Merkle path between the root of the ledger block up
to the root of a personal block, which is the input to the PoSW.
Because we assume that no collisions can be found for the
hash function underlying our Merkle trees, the query to F PoSW

γ
could only come after the ledger block was created. This al-
lows the ledger chain to borrow the proof-of-sequential-work
from the personal chains.

The Consensus algorithm must wait until the threshold of
participants submit their blocks. We require the threshold to
be at more than half the players to allow for external verifica-
tion. After that, it waits for an random amount of time before
outputting a block to all participants, containing all the blocks
for the round that it received. Note that if the block is not
correctly formatted, does not contain a pointer to the latest
block Consensus created or the signature is not valid, then it
is not added to the block.

As we did for SingleLipwig, we will define a (γ, ε)-
MultiLipwig-verifier to verify chains output by MultiLipwig in
Algorithm 6. This verifier will certify the ledger chain (found
encoded in the personal chain) and call the SingleLipwig-
verifier on the personal chain.

Theorem 4.1. (1) If there are at least Thr honest parties,
then the output of any P j running MultiLipwig with PoSW-
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Algorithm 5: MultiLipwig
Setting: Let P j running this algorithm in a network of n

parties P1, . . . ,Pn with corresponding public
keys pk1, . . . , pkn. Assume each has the same
PoSW-rate γ and PoSW-interrupt time ε.

1 P j starts running SingleLipwig;
2 Retrieve (block j

0, t
j
1)← SingleLipwig(record,⊥);

3 Set C j ← ((block j
0, t

j
1)), CL = ∅;

4 for i = 1, . . . do
5 Call Consensus(CL,C j) to obtain (blockL

i , sigL
i, j);

6 Call SingleLipwig(record, (blockL
i , sigL

i, j)) to obtain
(block j

i , t
j
i+1);

7 Append blockL
i to CL;

8 Append (block j
i , t

j
i+1) to C j;

9 Output (block j
i , t

j
i+1);

10 end

Algorithm 6: (γ, ε)-MultiLipwig-verifier
Input: An MultiLipwig sequence

C j = ((block j
0, t

j
1), . . . , (block j

l+1, t
j
l+2))

Output: ⊥ or a sequence (msg0, age0), . . . , (msgl, agel)
1 Call (γ, ε)-SingleLipwig-verifier for C j;
2 if Verifier outputs(

((blockL
1 , sigL

1, j), age1), . . . , ((blockL
l+1, sigL

l+1, j), agel+1)
)

then
3 Output ⊥ if not all blockL

i are correctly formed:
blockL

i =
(
pkH, i, previ, {Bk

i | k ∈ Pi},msgi

)
where

pkH = MT.root(pk1, . . . , pkn), prev1 = pkH,
previ + 1 = MT.root(blockL

i ), |Pi| ≥ Thr and if
j ∈ Pi then B j

i = block j
i−1;

4 Output ⊥ if |sigL
i, j| < Thr for some i;

5 Output ⊥ if there are invalid signatures in some sigL
i, j

There exists s ∈ |sigL
i, j| for some i such that for all

k ∈ [n],Σ.verify(pkk, blockL
i , s) = reject;

6 Output
(
((msg1), age1), . . . , (msgl+1), agel+1)

)
7 else
8 Output ⊥
9 end

rate γ and PoSW-interrupt time ε will be accepted by any
(γ, ε)-MultiLipwig-verifier. Furthermore, the output of any
adversarial party that is accepted by any (γ, ε)-MultiLipwig-
verifier contains the same ledger chain CL as the output of all
honest parties.

(2) If there are less than Thr honest parties but also less than
Thr corrupted parties, then the output of any adversarial party
that is accepted by any (γ, ε)-MultiLipwig-verifier contains a
ledger chain CL

i where each blockL
i is verified and signed by

some honest party. No consensus is guaranteed.

(3) Suppose that Thr parties fall under adversarial control
at time Tcorr. Given an adversary with PoSW-rate γ · α
and PoSW-interrupt time ε/α with α ≥ 1, any sequence
C = ((block0, t1), . . . , (blockl, tl+1)) output by the adversary at
time Toutput that is accepted by any (γ, ε)-MultiLipwig-verifier
satisfies the following properties except with negligible proba-
bility:

1. Let A = Toutput − Tcorr be the time passed since corruption,
then every blockL

i in C of at least A · α time ago is verified
and signed by some P that was honest at that point in time.

2. Any blockL
i created by the adversary has claimed age agei =

tl+1 − ti+1 at most A · α.

3. Any blockL
i created by the adversary at time Ti has claimed

age agei at most (Toutput − Ti) · α.
Proof. Part (1) follows from correctness of consensus and

SingleLipwig. Part (2) follows from the fact at least Thr sig-
natures are required by the MultiLipwig-verifier, requiring par-
ticipation of at least one honest party. Part (3) follows from
Theorem 3.1 and part (2).

Note that while Consensus requires an honest Thr-majority
to ensure agreement, without a corrupted Thr-majority the
adversary still cannot create new ledger blocks without the
verification and signature by some honest party. Thus the
adversary must actually control a Thr-majority of parties to
start rewriting blocks without any verification by an honest
party. But most importantly, even if the adversary completely
corrupts the entire permissioned network then still it is limited
by how many blocks it can rewrite over a period of time that
would be accepted by any external verifier.

Our construction of the verifier assumes that every ledger
block contains a certificate of correctness (the set of signa-
tures) which can be forged the moment the adversary gains
control of enough parties. Different consensus mechanisms
may have different certificates of correctness, like the block
hash in proof-of-work systems. The verifier can be modified
for different consensus mechanisms, but in that case the ad-
versary must not only corrupt enough parties but also be able
to create valid certificates. The need for certificates can be
avoided by requiring the verifier to certify that the personal
blocks contained in each ledger block are correctly constructed
and contain both a signature and a pointer to the previous
ledger block. Signatures in personal blocks can be considered
a commitment to the ledger block that they point to. The
alternative construction implies a higher verification cost in
exchange for a possibly cheaper consensus mechanism.
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APPLICATIONS
We have extended our single party protocol to a permissioned
blockchain. We now briefly present possible applications for
our constructions, including some outside the classical realm
of blockchains.

Semi-private Databases
Advantages of blockchain technology can be also applied to a
centralized setting, in cases where a party is partially trusted.
Assume that an entity (for example a government) maintains
a database of important records (for example, a land registry)
for which temporality is important. This entity is interested in
maintaining the entirety of this database private, while making
entries available to the right parties. In the case of a land
registry, if a party wants to know the particular status of a
piece of land, they can request this information and get a
response. As the database is not public, this party has no direct
way to verify that the information is actually in the registry.
There are ways to prove that the record is in the database, but
it is harder to prove when the record was added.

In parts of Mexico City there are residential areas where land
must only be used for housing unless the land was used for
something other than a house from before this law was passed.
In order to use these residences as commercial units, bureau-
crats are bribed to forge documents that state that the property
has always been used for commercial purposes [18] . Having
a history as a commercial unit allows the owner to “legally”
rent it as a commercial space. If there was a PoSW-secured
database containing these records, it would be possible to
prove that the forged documents are not as old as they claim
to be, preventing this instance of corruption.

Permissionless Blockchains
On the other side of the spectrum, a permissionless blockchain
can also benefit from immutability blockchains created by
SingleLipwig or MultiLipwig, in particular ones without
proofs-of-work.

A non-intrusive method is to use such an immutability
blockchain that collects hashes of blocks from the permis-
sionless blockchain. It can act as a sort of immutability beacon
providing time-lock guarantees about the permissionless chain
to any verifier interacting with the immutability blockchain,
for instance during bootstrapping.

In a more intrusive manner, any permissionless blockchain can
borrow the immutability from the permissioned blockchain
by embedding its blocks into the permissionless blockchain,
much in the same way that the permissioned ledger chain
borrows the immutability from the personal blockchains [16].

In both cases, this requires minimal commitment and trust
of the set of parties executing the immutability blockchain.
As long as this immutability blockchain continues to include
hashes of blocks and correctly compute proofs-of-sequential
work, both easily verifiable, any party can benefit from the
proofs of age provided by it. Moreover, it is easy to start a
new trusted permissioned group that does the same and that
can actually use the entire immutability chain of any previous

group up to that point in time3, making it easy to switch
between immutability blockchains if desired.

In both cases, it can also aid light-weight clients and in fast
bootstrapping, since the immutability chain is significantly
smaller in data size than the permissionless chain and is
quickly verified. Then light-weight and/or bootstrapping par-
ties can more easily rely on the validity of the history and
focus on verification of recent blocks.
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