A Survey of Chosen-Prefix Collision Attacks

Marc Stevens

Cryptology Group, CWI, Amsterdam, The Netherlands *

1 Cryptographic hash functions

A cryptographic hash function A : {0, 1}* — {0, 1}" is a function that computes a fixed-
length hash value of n bits for any arbitrary long input message M. For cryptographic
purposes, H should satisfy at least the following security properties:

— pre-image resistance: given a hash value £, it should be infeasible to find a message
x such that H(x) = h;

— second pre-image resistance: given a message X, it should be infeasible to find a
message y # x such that H(x) = H(y)

— collision resistance: it should be infeasible to find collisions, i.e., two distinct mes-
sages x and y that hash to the same value H(x) = H(y).

Cryptographic hash functions are the swiss army knives within cryptography. They are
used in many applications including digital signature schemes, message authentication
codes, password hashing, cryptocurrencies and content-addressable storage. The secu-
rity or even the proper functioning of these applications relies on the security property
that is the main focus of this chapter: collision resistance. For instance, all major digital
signature schemes rely on the hash-then-sign paradigm. This implies that for any collid-
ing pair x # y with H(x) = H(y), any signature for x is also an unwanted valid signature
for y, and vice versa. When finding meaningful collision pairs (x, y) is practical, this can
have grave implications as will become clear below.

Collision resistance. The best generic attack to find collisions for a cryptographic hash
function is the birthday search. For an output hash of # bits, on average /222 hash
evaluations are needed to find a collision among them. This can be achieved in prac-
tice using little memory and is easily parallelisable [vW99|]. We call a cryptographic
hash function collision resistant if it is not possible to find collisions faster than this
generic attack. In contrast to essentially all security properties of other cryptographic
functionalities, collision resistance of a cryptographic hash function defies formaliza-
tion as a mathetical security property. Such formalizations dictate the non-existence of
an efficient algorithm that solves the security problem with non-negligbile probability.
The underlying issue, dubbed the foundations of hashing dilemma [Rog06], is the fol-
lowing. For any given cryptographic hash function H there exists a collision x # y with
H(x) = H(y) by the pigeon hole principle. This implies there actually exists a trivial

* This material will be published in revised form in Computational Cryptography edited
by Joppe W. Bos and Martijn Stam and published by Cambridge University Press. See
www.cambridge.org/9781108795937.



collision finding algorithm A, that succeeds with probability 1 by simply printing a
collision pair x,y. Collision resistance thus remains an informal security property that
there doesn’t exist a known algorithm to find collisions for H faster than the generic
attack.

Standards. In practice, the SHA-2 and SHA-3 families of hash functions, each con-
sisting of 4 hash functions with output sizes 224, 256, 384 and 512 bits, are current
NIST standards that are recommended for cryptographic purposes. Their predecessors,
namely the MD5 and SHA-1 hash functions, have been used for decades as the software
industry’s de facto standards.

With the exception of the recent SHA-3 family, MD5, SHA-1 and SHA-2 are all
based on the Merkle-Damgard framework [Dam90, Mer90]]. This framework builds a
cryptographic hash function H for arbitrary-size inputs from a compression function f
with fixed-size inputs

f:10,1)" x {0, 1} — {0, 1}".

The hash function initializes a chaining value CV|) with a fixed public value /V and
iteratively updates this chaining value using f:

CVo=1V; CV;= f(CVii;,my), fori=1,...,k

The final chaining value CVj is used as the hash output H(M) := CV; of M.

The Merkle-Damgard construction admits a security reduction of the collision re-
sistance of H to the collision resistance of f, i.e., it implies that it is at least as hard to
find collisions for the hash function H as it is hard to find collisions for its compression
function f. Hence, an early practical collision attack on MD5’s compression function
by den Boer and Bosselaers [[dB94], should have been an important warning against
MD5’s widespread adoption till 2004...

Collision attacks. The first collision attack for MD5 was presented in 2004 by Wang
et al. [WYO3]], together with an actual example collision consisting of two different
128-byte random looking files. Their collision attack can be used to craft so-called
identical-prefix collisions (IPC) of the form H(P||Cy||S) = H(P||C||S), where P is a
shared prefix with byte length a multiple of 64, C; # C, two 128-byte collision bit
strings (dependent of P), and S a shared suffix.

As identical-prefix collisions have differences only in 128 byte random-looking
strings C; and C,, these initially didn’t seem very harmful for real world applications.
Yet several abuse scenarios for identical-prefix collisions were quickly demonstrated,
e.g., to mislead integrity software [Mik04, Kam04] in 2004, X.5009 certificates with dis-
tinct public keys [LdWO0S5] in 2005, visually distinct Word, TIFF, and black&white PDF
files [GISO6] in 2006. Though these were working proof of concepts of meaningful
collisions, due to their limitations, they did not form very convincing real world threats.

In 2007 a stronger and more expensive attack called chosen-prefix collision (CPC)
attack [SLAWO07c]] was introduced that can produce collisions of the form H(P4||C,||S) =
H(P,||C3||S), where the prefixes P; and P, can be arbitrarily and independently chosen.
The main topic of this chapter is the development of practical chosen-prefix collision
attacks and their applications. A historical overview of the identical-prefix and chosen-
prefix collision attack costs for MD5 and SHA-1 can be found in Tables[T|and [2]



l Year \Identical—preﬁx collision cost|Chosen-prefix collision cost

< 2004(2% generic 2%% generic
2004 (2% [WY03] -

2005 (2% [KIi03]] -
2006 [23? [K1i06) [Ste06]] 2% [SLdW07¢]
2007 225 [Ste07] -

2008 [2%' [XLFO0S]| -
2009 [2'¢ [SSAF09] 2% [SSA*09]
2020 [2'° [SSA*09] 239 [SSAT09]

Table 1: Historical overview of MD5 collision attack complexities. (bold=first collision
example)

l Year ‘ Identical-prefix collision cost ‘Chosen-preﬁx collision cost

< 2005 280 generic 280 generic
2005 269 [WYYO5b] -

:2%  [WYYO05a) -

2007 (u:2%"  [MRRO7]) -

2000 | (w:2%  [MHP09)) -

2013 261 [Ste13b] 27 [Stel3b)
2017 | G:281 [SBK*17] -
2019 - G :29 [LPI9]

2020 |25 / G : 2% [Ste13b] / [LP20]|G : 2534 [LP20]

Table 2: Historical overview of SHA-1 collision attack complexities. (u=unpublished,
w=withdrawn, G=using GPU, bold=first collision example)

Near-collision attacks. Both identical-prefix collisions and chosen-prefix collisions are
built from near-collision attacks on the compression function. Differential cryptanalysis
is used to construct such attacks against the compression function, where differences
between two related evaluations f(CV, B) and f(CV’, B’) are analyzed. For any variable
X in the evaluation of f(CV, B), we denote by X’ the respective variable in the evaluation
of f(CV’,B’) and by 6X = X’ — X the difference between these two variables.

The compression function is essentially a block cipher Ex(M) in Davies-Meyer
feed-forward mode f(CV,B) = CV + Ep(CV). More specifically, a near-collision at-
tack employs a differential characteristic against the block cipher, i.e. a valid trail of
differences for all internal values of all rounds of the compression function. The first
part of the differential characteristic over about 1/4-th of the rounds can be dense and is
required to start with the given input chaining value difference. But it is the last 3/4-th
of the rounds that is the critical part that mostly determines the attack cost, which needs
to be optimized: sparse and high probability. Due to Davies-Meyer, the final differ-
ence D of the differential characteristic is added to the input chaining value difference:
6CVy =06CVy + D.

For instance, an identical-prefix collision requires a partial differential characteristic
over the last 3/4-ths of the rounds with high probability. This partial characteristic with



final difference D will be used for both near-collision attacks as follows. The first near-
collision attack begins with chaining value difference 6CV,; = 0. An appropriate full
differential characteristic is used, which can be precomputed, and dedicated collision
search techniques are used to find a solution: a pair of blocks that fulfills the differential
characteristic. After this first attack a chaining value difference SCV, = 6CVy + D = D
is obtained.

The second attack continues with 6CV; = D and now instead ‘subtracts* the differ-
ence D. It reuses the exact same critical part of the differential characteristic of the first
block except all differences are negated. The first part of the second attack’s differential
characteristic needs to constructed for the input chaining value difference 6CV| = D.
After the second near-collision attack an internal-state collision 6CV, = 6CV; — D =0
is achieved. Due to the Merkle-Damgard structure any internal-state collision directly
results in a hash collision, even after appending an arbitrary shared suffix S.

2 Chosen-prefix collisions

Chosen-prefix collision attacks were introduced by Stevens, Lenstra and de Weger
[SLdWO07c] in 2007. Given two distinct prefixes P and P’ of equal bit-length |P| = |P’|
a multiple of the blocksize of 512 bits, a chosen-prefix collision attack constructs two
suffixes C # C’ such that H(P||C) = H(P'||C’) in general in two phases:

1. Birthday search phase to find bitstrings B and B’ such that appending these to P
and P’ results in a chaining value difference in a target set D:

8CVy = H(P||B) — H(P'|B") € D,

where D is determined by the next phaseﬂ
2. Near-collision attacks phase to find a sequence of near-collision attack block pairs
(MO,M(’)),...,(Mk, M,’() that each add specific differences to the latest chaining
value difference in order to reduce the chaining value difference 5CVj to O in the
end:
H(PBIM|-- - 1My) = HP'|B'IMl - - - 1M).

The desired suffixes are thus C = B||My||- - [|My and C" = B'[|Mg||- - -||M;. These two
phases are elaborated below.

Birthday search phase. Van Oorschot and Wiener [vW99] remains the state-of-the-
art on how a birthday search can be executed in practice. This is done by iterating a
properly chosen deterministic function f : V — V on a certain space V = {0, 1},
assuming that the trail of points of V thus visited form a pseudo-random walk. To take
advantage of parallelism, many different pseudo-random walks are generated, of which
only the startpoints, lengths and endpoints are kept. All walks end at a ‘distinguished
point‘, these form a subset of points with an easily recognizable pattern that is chosen

' By A we mean the hash function H without any padding for all messages of bit length a
multiple of 512 bits, thus resulting in the chaining value directly after processing the entire
input.



depending on |V|, available storage and other characteristics. Since any two walks that
intersect due to a collision will have the same endpoint, they can be easily detected.
The collision point can then be recomputed given the startpoints and lengths of the two
colliding trails.

If there are additional constraints that could not be encoded into the choice of f and
V then the birthday search has to continue until a collision point has been found that
satisfies these additional constraints. Assume a collision point has a probability of p
of satisfying these additional constraints, then on average one has to find 1/p collision
points. In this case the expected total cost Cy, is:

7Vl 25-C,
Ciotat = Cip + Ceort,  Cyp = 7. » » Ceon = p'—]Wt’

where C;, is the cost before a collision occurs and C,y is the cost of recomputing the
collision point(s) and M is the average amount of stored walks. It follows that to ensure
Ceon < Cyy, 1.e., the overhead in recomputing costs remains a small fraction of the total
cost, one needs to ensure M > 2.5/p by choosing a suitable distinuished points pattern.

In the case of a chosen-prefix collision attack, given the set D of target chaining
value differences we can expect a complexity C,. = V- 2" /|D| by appropriately choos-
ing f and V as follows. We need to partition V into two equally sized disjoint subsets
Vi and V; in order to map half of the inputs to a computation related to prefix P and
the other half to P’, e.g., by partitioning on the first bit of each v € V = {0, 1}*. The
function f is thus actually split into two functions f; : Vi - Vand f, : V, — V, and
each typically is composed of three functions: f; = g; o MD5Compress o h;:

— hi 1 V = {0,1}" x {0, 1}°'2 maps every point to a compression function input pair
(CV, B) of chaining value CV and message block B. E.g., hi(v) = (CV;, 03127 ||v),
where CV, = H(P) and CV, = A(P’) (see ). []

- g : {0,1}" — V maps a chaining value x to an element of V by taking a fixed
subsequence of k bits of x indexed by I denoted as v = (x;)je;, which is the same
for both g; and g,. To allow more efficient encodings, one can consider g, first
adding a fixed offset d to x: v = ((x + d);) je;. Given bit-selection / and offset d one
can efficiently approximate the corresponding probability p;, of a collision point
being useful: E]

Pra:=1/2-Prly—x€ D | (y)jer = (x + d)}) jes]

The goal is to choose (/,d) with high probability p;,, ensuring low memory re-
quirements, from those that achieve near-optimal birthday search cost:

/ﬂ.zllw/(z - pra) & N -2"/|D|.

2 Instead of prepending zero bits, one can also use any (more complex) injective map onto the
block space {0, 1}°'2. It is even possible to generalize to encode the input x into the entire prefix
P, or P’, but this is not advisable as this will require many MD5Compress calls per f-call and
significantly increase the birthday search cost.

3 Besides requiring f(y) — f(x) € D, we additionally need these inputs belonging to different
prefixes, i.e. x € V| & y € V,, which happens with probability p = 1/2.



Example I and d as chosen for actual chosen-prefix collisions attacks are shown in
Section [l

Near-collision attacks phase. Once the above birthday search has succeeded in finding
messages P||B and P’||B’ with a target chaining value difference 6CV, = H(P'||B’) —
H(P||B) € D, the next goal is find a sequence of near-collision blocks that reduce the
chaining value difference to 0. These attacks are designed in the following steps:

1. First, one needs one or more high probability core differential characteristics over
all but the first 1/4-th of the rounds. The success probability of this part mainly
determines the near-collision attack complexity. For MDS5, the main family of core
differential characteristics considered is based on message block difference om;; =
+2% and 6m; = 0 for i # 11, see Table [8 However, MD5 chosen-prefix col-
lision attacks with other core differential characteristics have been demonstrated
[SSA*09, [FS15].

2. Second, one determines which set of output differences to use for each core char-
acteristic. Each of the chosen core differential characteristics P results in a single
output difference Dy (on top of which the Davies-Meyer feedforward adds the in-
put chaining value difference). To significantly increase the set O beyond these Dy,
one chooses a lower bound on the differential characteristic probability p,,;. Next,
one searches for variants of the core differential characteristics " where only the
very last few steps are changed (resulting in different output difference Dgp/) with
success probability p > puin.

3. Third, a suitable strategy has to be chosen. During the actual attack one has to
perform a series of near-collision attacks and one needs an overall strategy how to
choose for each near-collision attack which one or more variant(s) £’ of a single
core P to use. The most common strategy is a systematic one, where essentially
each bit position of a given 6CV; with a possible non-zero difference is assigned to
a specific core P. In this case determining the set of variant characteristics  whose
output differences sum up to —6CV), is an almost trivial matter, and one can execute
these in arbitrary order (cf. [SLdAWO07c, ISSAT09, [FS15]). When there exist many
distinct combinations of output differences that sum up to —6CV), a more complex
strategy may exploit this to achieve a lower overall attack complexity as described
in [LP19]]. Based on the resulting set of output differences O that may be cancelled
in this manner, one can now determine suitable values for 7, d for birthday search
step function as described earlier.

After the birthday search that has resulted in a suitable chaining value difference 6CVj,
one applies the chosen strategy and constructs and executes a sequence of near-collisions.
For each near-collision attack one chooses a differential characteristic # based on the
strategy, and executes the near-collision attack in the following steps:

1. Construct full differential characteristic Py, over all steps. The initial state is de-
termined by the current input chaining value pair, while most later steps are fixed
by P .. What remains is to find a partial differential characteristic that connects
these two. The first successful connection by Wang et al. was done entirely by



hand. Since then two main algorithmic approaches have been developed: guess-
and-determine proposed by De Canniere and Rechberger [DRO6] and the meet-in-
the-middle approach [SLAWO07c, Ste12, |SteQ9b]]. In the case of SHA-1, even if the
found partial differential characteristic is locally valid over those steps, there may
be global incompatibilities due to dependencies between the expanded message
difference equations over all steps. This has been successfully addressed by using
a SAT solver to tweak the full differential characteristic to find a complete valid
differential characteristic [SBK*17]). Finally, the full differential characteristic be-
tween two compression function evaluations can be transformed into an equivalent
set of conditions on a single compression function evaluation.

2. Search for a suitable combination of collision search speed-up techniques. The ba-
sic idea behind these techniques in collision search is to change a currently consid-
ered message block value using available remaining freedom that does not interfere
with the conditions of the full differential characteristic up to some step (preferably
as far as possible), possibly making use of additional conditions to make it work
with high probability. The most simple is called neutral bits [BC0O4] which only flips
a single message bit. Advanced message modification [WYO0S] / tunnels [K1i06] /
boomerangs [JPO7] aim to cover more steps by changing message and state bits
together, essentially applying a local very sparse differential characteristic that is
independent of P,

3. Search for a solution. Finally, the actual near-collision search is most commonly
implemented as a depth-first tree search. Where each level of the tree is related to
a single step or a (combination of) message modifications, where for each level
the degrees of freedom creates new branches that may be immediately pruned by
the conditions. The first phase over the first, say 16, levels consists of finding a
solution for the first steps that uses entire the input message block exactly once,
which is typically quite easy and cheap. But if it is especially dense in number of
conditions it may be that no solutions are possible, in which case another variant
differential characteristic needs to be tried. The second phase over the next few
levels consists of applying speed-up techniques that modify the current solution up
to a certain step in a very controlled manner resulting in another solution up to that
step. In the last phase, no degrees of freedom are left and it remains to verify all
remaining conditions which are fulfilled probabilitistically, hence all conditions in
this phase directly contribute to the collision search’s complexity.

To achieve this, one needs a family of near-collision attacks, of which the first 1/4-
th of the rounds are adjusted to the problem. This can be a family built around a single
core differential characteristic, where the final few rounds are adjusted to allow for a
large set of final differences at a cost in increased attack complexity. Or even better, a
family built around several core differential characteristics, each with many variant final
few rounds and final differences.

3 Chosen-prefix collision abuse scenarios

When exploiting collisions in real world applications two major obstacles must be over-
come.



— The problem of constructing meaningful collisions. Given current methods, col-
lisions require appendages consisting of unpredictable and mostly uncontrollable
bit strings. These must be hidden in the usually heavily formatted application data
structure without raising suspicion.

— The problem of constructing realistic attack scenarios. As we do not have effective
attacks against MD35’s (second) pre-image resistance but only collision attacks, we
cannot target existing MDS5 hash values. In particular, the colliding data structures
must be generated simultaneously, along with their shared hash, by the adversary.

In this section several chosen-prefix collision applications are surveyed where these
problems are addressed with varying degrees of success:

— Section[3.1L attacks on X.509 certificates

— Section[3.2} rogue X.509 Certification Authority certificate

— Section[3.3} supermalware FLAME’s malicious Windows Update
— Section 3.4} Breaking the PGP web of trust with colliding keys

— Section [3.3} Man-in-the-middle attacks on TLS, SSH

— Section[3.6t Nostradamus attack on hash-based commitments

— Section[3.7} Colliding documents

— Section[3.8} PDF files and a practical Nostradamus attack

— Section[3.9} Colliding executables & software integrity checking
— Section[3.10} Digital forensics

— Section[3.TT} Peer to peer software

— Section[3.12} Content addressed storage

— Section [3.13} Polyglots: multi-format collisions

— Section[3.14} Hashquines: embedding the MD5 hash in documents

3.1 Digital certificates

In [LdWOS5] it was shown how identical-prefix collisions can be used to construct col-
liding X.509 certificates with different RSA moduli but identical Distinguished Names.
Here the RSA moduli absorbed the random-looking near-collision blocks, thus incon-
spicuously and elegantly solving the meaningfulness problem. Identical Distinguished
Names does not enable very realistic threat scenarios. Different Distinguished Names
can be achieved using chosen-prefix collisions, as was have shown in [SLdWO7c]|). The
certificates of these forms do not contain any spurious bits, so superficial inspection at
bit level of either of the certificates does not reveal the existence of a sibling certificate
that collides with it signature-wise. Below in Sections[3.2] [3.3]and [3.4] are additional in-
teresting colliding certificate constructions that are more intricate and achieve different
certificate usage properties.

3.2 Creating a rogue Certification Authority certificate

One of the most impactful demonstrations of the threat of collision attacks in the real
world, was the construction of a rogue Certification Authority (CA) [SSAT09]. It thus
directly undermined the core of PKI: to provide a relying party with trust, beyond rea-
sonable cryptographic doubt, that the person identified by the Distinguished Name field



has exclusive control over the private key corresponding to the public key in the certifi-
cate. With the private key of the rogue CA, and the rogue CA certificate having a valid
signature of a commercial CA that was trusted by all major browsers (at that time),
‘trusted’ certificates could be created at will. Any website secured using TLS can be
impersonated using a rogue certificate issued by a rogue CA. This is irrespective of
which CA issued the website’s true certificate and of any property of that certificate
(such as the hash function it is based upon — SHA-256 is not any better in this context
than MD4) (although nowadays this can be thwarted using so-called certificate pin-
ning). Combined with redirection attacks where http requests are redirected to rogue
web servers, this leads to virtually undetectable phishing attacks.

In fact, any application involving a Certification Authority that provides certificates
with sufficiently predictable serial number and validity period and using a non-collision-
resistant hash function may be vulnerable, e.g. see Section This type of attack
relies on the ability to predict the content of the certificate fields inserted by the CA
upon certification: if the prediction is correct with non-negligible probability, a rogue
certificate can be generated with the same non-negligible probability. Irrespective of the
weaknesses of the cryptographic hash function used for digital signature generation, our
type of attack becomes effectively impossible if the CA adds a sufficient amount of fresh
randomness to the certificate fields before the actual collision bit strings hidden in the
public key fields.

To compare with prior X.509 certificate collisions, the first colliding X.509 certifi-
cate construction was based on an identical-prefix collision, and resulted in two cer-
tificates with different public keys, but identical Distinguished Name fields (cf. Sec-
tion [3.1). Then as a first application of chosen-prefix collisions it was showed how the
Distinguished Name fields could be chosen difterently as well [SLdWO7c]. The rogue
CA goes one step further by also allowing different “basic constraints” fields, where
one of the certificates is an ordinary website certificate, but the other one a CA certifi-
cate. Unlike the previous colliding certificate constructions where the CA was under the
researcher’ control, a commercial CA provided the digital signature for the (legitimate)
website certificate.

In short, the following weaknesses of the commercial CA that carried out the legit-
imate certification request were exploited:

Its usage of the cryptographic hash function MDS5 to generate digital signatures for
new certificates.

Its fully automated way to process online certification requests that fails to recog-
nize anomalous behavior of requesting parties.

Its usage of sequential serial numbers and its usage of validity periods that are de-
termined entirely by the date and time in seconds at which the certification request
is processed.

Its failure to enforce, by means of the “basic constraints” field in its own certifi-
cate, a limit on the length of the chain of certificates that it can sign. Which when
properly set could potentially invalidate any certificate signed by the rogue-CA, if
clients properly enforce this chain length constraint.

Results were disclosed to the relevant parties to ensure this vulnerability was closed
prior publication. This was done privately and anonymously using the Electronic Fron-



tier Foundation as an intermediary in order to reduce the not insignificant risk of cum-
bursome legal procedures to stifle or delay publication. After disclosure, CAs moved
quickly and adequately. MD5 was quickly phased-out from all public CAs, and later
formally forbidden in the CA/Browser Forum’s Baseline Requirements. Furthermore,
to prevent similar attacks with other hash functions in use, such as SHA-1 (till 2019),
a formal requirement was added that certificate serial numbers must be unpredictable
and contain at least 64 bits of entropy. Besides the impact on Certificate Authorities,
this work clearly and strongly demonstrated the significant real-world threat of chosen-
prefix collisions in general and created a stronger push for the deprecation of MDS5 in
other applications.

Certificate construction. We summarize the construction of the colliding certificates in
the sequence of steps below, and then describe each step in more detail.

1. Construction of templates for the two to-be-signed parts, as outlined in Table [3]
Note that we distinguish between a ‘legitimate’ to-be-signed part on the left hand
side, and a ‘rogue’ to-be-signed part on the other side.

2. Prediction of serial number and validity period for the legitimate part, thereby com-

pleting the chosen prefixes of both to-be-signed parts.

Computation of the two different collision-causing appendages.

4. Computation of a single collision-maintaining appendage that will be appended to
both sides, thereby completing both to-be-signed parts.

5. Request certification of the legitimate to-be-signed part, if unsuccessful return to
Step 2.

et

legitimate rogue
website cert (A) CA cert (B)
prefix serial number A serial number B
signing CA name signing CA name
validity period A validity period B
long domain name A | rogue CA name B
" RSA public key B

" X.509v3 ext: CA=true
start RSA public key A| start X.509 comment
collision collision data A collision data B
common suffix| tail of RSA public key <copy from A>
X.509v3 ext: CA=false| <copy from A>
Table 3: The to-be-signed parts of the colliding certificates

Step 1. Templates for the to-be-signed parts. Table [3| shows the templates for the
to-be-signed parts of the legitimate and rogue certificates. On the legitimate side, the
chosen prefix contains space for serial number and validity period, along with the ex-
act Distinguished Name of the commercial CA where the certification request will be



submitted. This is followed by a subject Distinguished Name that contains a legiti-
mate website domain name (i.broke.the.internet.and.all.i.got.was.this.
t-shirt.phreedom. org) consisting of as many characters as allowed by the commer-
cial CA (in this case 64), and concluded by the first 208 bits of an RSA modulus, the
latter all chosen at random after the leading ‘1’-bit.

The corresponding bits on the rogue side contain an arbitrarily chosen serial number,
the same commercial CA’s Distinguished Name, an arbitrarily chosen validity period
(actually chosen as indicating “August 2004”, to avoid abuse of the rogue certificate),
a short rogue CA name, a 1024-bit RSA public key generated using standard software,
and the beginning of the X.509v3 extension fields. One of these fields is the “basic
constraints” field, a bit that was set to indicate that the rogue certificate will be a CA
certificate (in Table [3]this bit is denoted by “CA=TRUE”).

At this point the entire chosen prefix is known on the rogue side, but on the legiti-
mate side predictions for the serial number and validity period still need to be decided
which is done in Step 2.

The various field sizes were selected so that on both sides the chosen prefixes are
now 96 bits short of the same MD5 block boundary. On both sides these 96 bit positions
are reserved for the birthday bits of the chosen-prefix collision attack. On the legitimate
side these 96 bits are part of the RSA modulus, on the rogue side they are part of an
extension field of the type “Netscape Comment” described as “X.509 comment” in
Table

After the chosen-prefix collision has been constructed in Step 3, the certificates
need to use a shared suffix. This part is determined by the legitimate certificate and
simply copied to the rogue certificate, since on the rogue side this suffix is part of the
“Netscape Comment” field and is ignored by all clients. On the legitimate side after the
3 near-collision blocks of 512 bits each, another 208 bits are used to complete a 2048-
bit RSA modulus (determined in Step 4). This is followed by the RSA public exponent
(the common value of 65537) and the X.509v3 extensions including the bit indicating
that the legitimate certificate will be an end-user certificate (in Figure [3| denoted by
“CA=FALSE”).

Note that the legitimate certificate looks inconspicuous to the Certificate Author-
ity, except maybe the long and weird requested domain name. In contrast, the rogue
certificate looks very suspicuous under manual inspection: “Netscape Comment” fields
are uncommon for CA certificates, and its weird structured contents that belongs to an
end-user certificate is a big red flag. However, users rarely inspect certificates closely,
and software clients simply ignore these suspicious elements.

Step 2. Prediction of serial number and validity period. Based on repeated certification
requests submitted to the targeted commercial CA, it turned out that the validity period
can very reliably be predicted as the period of precisely one year plus one day, starting
exactly six seconds after a request is submitted. So, to control that field is quite easy: all
one needs to do is select a validity period of the right length, and submit the legitimate
certification request precisely six seconds before it starts.

Predicting the serial number is harder but not impossible. In the first place, it was
found that the targeted commercial CA uses sequential serial numbers. Being able to
predict the next serial number, however, is not enough: the construction of the collision



can be expected to take at least a day, before which the serial number and validity
period have to be fixed, and only after which the to-be-signed part of the certificate will
be entirely known. As a consequence, there will have been a substantial and uncertain
increment in the serial number by the time the collision construction is finished. So,
another essential ingredient of the construction was the fact that the CA’s weekend
workload is quite stable: it was observed during several weekends that the increment in
serial number over a weekend does not vary a lot. This allowed to pretty reliably predict
Monday morning’s serial numbers on the Friday afternoon before. See Step 6 how the
precise selected serial number and validity period was targeted.

Step 3. Computation of the collision. At this point both chosen prefixes have been
fully determined so the chosen-prefix collision can be computed: first the birthday bits
per side, followed by the calculation of 3 pairs of 512-bit near-collision blocks. The
constraint of just 3 pairs of near-collision blocks causes the birthday search to be sig-
nificantly more costly compared to the near-collision block construction, whereas nor-
mally these can be balanced against each other by allowing more near-collision block
pairs. However, the available resources in the form of Arjen Lenstra’s cluster of 215
PlayStation 3 (PS3) game consoles at EPFL was very suitable for the job. The entire
calculation takes on average about a day on this cluster using suitable chosen-prefix
collision parameters as described below.

When running Linux on a PS3, applications have access to 6 Synergistic Processing
Units (SPUs), a general purpose CPU, and about 150MB of RAM per PS3. For the most
costly phase, the birthday search phase, the 6 x 215 SPUs are computationally equiv-
alent to approximately 8600 regular 32-bit cores, due to each SPU’s 4 x 32-bit wide
SIMD architecture. The other parts of the chosen-prefix collision construction (differ-
ential characteristic construction and near-collision block search) are much harder to
implement efficiently on SPUs, but for these we were able to use the 215 PS3 CPUs
effectively. With these resources, the choice for a much larger differential characteristic
family (cf. Table 8| using w = 5) than normal still turned out to be acceptable despite
the 1000-fold increase in the cost of the actual near-collision block construction.

We optimized the overall birthday search complexity for the plausible case that the
birthday search takes V2 times longer than expected. Limited to 150MB per PS3, for a
total of about 30GB, the choice was made to force k = 8 additional colliding bits in the
birthday search (cf. Section[4.2).

Given the available timeline of a weekend, and that the calculation can be expected
to take just a day, a number of chosen-prefixes were process sequentially, each cor-
responding to different serial numbers and validity periods (targetting both Monday
and Tuesday mornings). Since the PS3 SPUs are solely used for the birthday phase,
and the PS3 CPUs solely for the near-collision attack phase, several attempts could be
pipelined. So, a near-collision block calculation on the CPUs would always run simul-
taneously with a birthday search on the SPUs for the ‘next’ attempt.

Step 4. Finishing the to-be-signed parts. At this point the legitimate and rogue sides
collide under MDS5, so that from here on only identical bits may be appended to both
sides.



With 208 + 24 + 72 + 3 = 512 = 1840 bits set, the remaining 2048 — 1840 = 208
bits need to be set for the 2048-bit RSA modulus on the legitimate side. Because in
the next step the RSA private exponent corresponding to the RSA public exponent is
needed, the full factorization of the RSA modulus needs to be known, and the factors
must be compatible with the choice of the RSA public exponent which can be achieved
as follows. Let N be the 2048-bit integer consisting of the 1840 already determined
bits of the RSA modulus-to-be, followed by 208 one bits. Select a 224-bit integer p at
random until N = a- p+b with a € N and b < 229, and keep doing this until both p and
q = LN/ p] are prime and the RSA public exponent is coprime to (p—1)(g—1). Once such
primes p and ¢ have been found, the number pq is the legitimate side’s RSA modulus,
the leading 1840 bits of which are already present in the legitimate side’s to-be-signed
part, and the 208 least significant bits of which are inserted in both to-be-signed parts.

To analyze the required effort somewhat more in general, 25729 integers of k bits
(with k > 208) need to be selected on average for pq to have the desired 1840 leading
bits. Since an £-bit integer is prime with probability approximately 1/ log(2¢), a total of
k(2048 — k)2k-2%(log 2)? attempts may be expected before a suitable RSA modulus is
found. The coprimality requirement is a lower order effect that is disregarded. Note that
for k(k — 2048)(log 2)? of the attempts the k-bit number p has to be tested for primality,
and that for (2048 —k) log 2 of those g needs to be tested as well (on average, obviously).
For k = 224 this turned out to be doable in a few minutes on a standard PC.

This completes the to-be-signed parts on both sides. Now it remains to be hoped
that the legitimate part that actually will be signed corresponds, bit for bit, with the
legitimate to-be-signed part that was constructed in this manner.

Step 5. Request certification of the legitimate to-be-signed part. Using the relevant in-
formation from the legitimate side’s template, i.e., the subject Distinguished Name and
the public key, a PKCS#10 Certificate Signing Request is prepared. The CA requires
proof of possession of the private key corresponding to the public key in the request.
This is done by signing the request using the private key — this is the sole reason that
we need the RSA private exponent.

The targeted legitimate to-be-signed part contains a very specific validity period that
leaves no choice for the moment at which the certification request needs to be submitted
to the CA. Just hoping that at that time the serial number would have precisely the pre-
dicted value is unlikely to work, so a somewhat more elaborate approach is used. About
half an hour before the targeted submission moment, the same request is submitted,
and the serial number in the resulting certificate is inspected. If it is already too high,
the entire attempt is abandoned. Otherwise, the request is repeatedly submitted, with a
frequency depending on the gap that may still exist between the serial number received
and the targeted one, and taking into account possible certification requests by others.
In this way the serial number is slowly nudged toward the right value at the right time.

Various types of accidents were experienced, such as another CA customer ‘steal-
ing’ the targeted serial number just a few moments before the attempt to get it, thereby
wasting that weekend’s calculations. But, after the fourth weekend it worked as planned
to get an actually signed part that exactly matched a predicted legitimate to-be-signed
part.



Given the perfect match between the actually signed part and the hoped for one,
and the MDS5 collision between the latter and the rogue side’s to-be-signed part, the
MD5-based digital signature present in the legitimate certificate as provided by the
commercial CA is equally valid for the rogue side. To finish the rogue CA certificate it
suffices to copy the digital signature to the right spot in the rogue CA certificate.

3.3 The FLAME supermalware

In response to the rogue CA construction, various authorities explicitly disallowed MD5
in digital signatures. For instance, the CA/Browser Forum adopted Baseline Require-
ments for CAs in 201 IE] and Microsoft updated its Root CA Program in 2009E] Nev-
ertheless, surprisingly MD5 was not completely removed for digital signatures within
Microsoft, which came to light in 2012 with the discovery [Labl2al [Lab12b|] of the
FLAME super malware for espionage in the Middle-East supposedly in a joint US-
Israel effort [Pos12]]. This was a highly advanced malware that could collect a vast col-
lection of data including files, keyboard inputs, screen contents, microphone, webcam
and network traffic, sometimes even triggered by use of specific applications of inter-
est [Labl2al, [Labl2b]. In contrast to normal malware, FLAME infections occured with
surgical precision to carefully selected targets, which helped evading detection possibly
since 2007 [Labl2al].

Of cryptanalytic interest is one of its means of infection [Sotl2]]: FLAME used
WPAD (Web Proxy Auto-Discovery Protocol) to register itself as a proxy for the do-
main update.windows.com to launch Man-in-the-Middle attacks for Windows Up-
date on other computers on the local network. By forcing a fall-back from the secure
HTTPS protocol to the unauthenticated HTTP protocol, FLAME was able to push its own
validly signed Windows Update patches to other Windows machines. It was a huge sur-
prise finding that FLAME actually was in possession of its own illegitimately signed
Windows Update patch to infect other machines, after inspection it became clear it
was constructed with a collision attack [Mic12]]. It was discovered that MDS5 signatures
were still being used for licensing purposes in their Terminal Server Licensing Ser-
vice, which automatically generated MD5-based signed certificates that lead up to the
Microsoft Root CA. Using a collision attack enabled the attackers to convert a signed
license certificate into a validly signed code signing certificate that was accepted for
Windows Updates by all versions of Windows [Mic12]. Below we go more into detail
on two very interesting aspects: the colliding certificates and the used chosen-prefix
collision attack.

The colliding certificates. Normally Windows Update executables are signed by code-
signing certificate in a dedicated Windows Update certificate chain under the Microsoft
Root certificate. However, the FLAME code-signing certificate is connected to a com-
pletely different part of the PKI tree leading up to the same Root certificate, as illustrated
below in Figure[l]

As described by Trail-of-Bits [Sotl2], there is an automated process whereby a
customer-side running License Server generates a private key and a X.509 certificate

“https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1.pdf
Shhttps://technet.microsoft.com/en-us/library/cc751157.aspx


https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1.pdf
https://technet.microsoft.com/en-us/library/cc751157.aspx

[M icrosoft Root Certificate Authority }

— T~

Microsoft Windows Microsoft Enforced
Verification PCA Licensing Intermediate PCA

{Microsoft Windows J Microsoft Enforced Licensing

Registration Authority CA

[Micmsofz LSRA PA }

o1 D5 collision >[ Terminal Services LS ]

Fig. 1: Windows Update and FLAME Certificate tree

signing request with: (1) customer information, (2) machine id, (3) corresponding pub-
lic key. A Microsoft activation server then returns a certificate with an MDS5-based sig-
nature from “Microsoft LSRA PA” (see above). This signed certificate has the following
properties:

— No identifying information, except CommonName="Terminal Services LS”
— Fixed validity period until Feb 19, 2012
— No Extended Key Usage restrictions
= restrictions inherited from CA certificate, which includes code signing
— special critical Microsoft Hydra X.509 extension
marked critical thus will be rejected if not understood by Crypto library

The private key and certificate can be recovered by the customer, and as it supports
code-signing and chains up to the Microsoft Root CA, it was found out that any “Ter-
minal Services LS”-certificate is sufficient to sign Windows Update executables for
Windows XP. For Windows Vista and Windows 7, however, the critical Hydra extension
causes such signed executables to be rejected. It was for this reason that a chosen-prefix
collision attack was employed such that the “MS”-certificate was obtained that could
sign Windows Update executables for all Windows versions at that time.

From the FLAME malware the full “MS” certificate has been analyzed, however
the colliding “Terminal Services LS” certificate has been lost. Nevertheless, this was
sufficient to estimate the layout of the colliding certificates depicted below.

The chosen-prefix collision attack. Once the FLAME certificate structure was fig-
ured out and it was clear a chosen-prefix collision attack was used, it was immedi-
ately thought the publicly available chosen-prefix collision implementation [Ste09b]
was used. With a novel technique called counter-cryptanalysis [Stel3a]] we succeeded
in recovering all near-collision block data of the lost legitimate certificate from the
FLAME rogue certificate and thereby the differential characteristics used for each near-
collision attack. Surprisingly, it became immediately clear that these did not match



lost legitimate rogue

license cert (A) WU signing cert (B)
prefix ? serial number A serial number B
? validity period A validity period B

CN="“Terminal Services LS” CN="MS”
start 7 4096-bit RSA key B 2048-bit RSA key A
" start issuerUniquelD field to end

collision collision data A collision data B
common suffix tail of RSA key <copy from A>
critical Hydra extension <copy from A>

Table 4: The to-be-signed parts of FLAME colliding certificates

the known chosen-prefix collision attacks: the message block differences used were
omy = dm4 = 23" and 6m;; = +2'°, which so far were only used Wang et al.’s
first MDS5 (identical prefix) collision attack [WYQS] and improvements thereof. This
made it obvious that neither the HashClash implementation [Ste09b] or even the best
known chosen-prefix collision attack [SSA*09] were used, but a yet unknown new vari-
ant chosen-prefix collision attack developed by world-class cryptanalists. A closer look
on the attack details is described in section 4.4

3.4 Colliding PGP keys with different identities

Recently, Leurent et al.[LP20] demonstrated a pair of PGP keys with different identities
that collide under SHA-1. This implies that any certification of one key can be trans-
ferred to the other key, directly undermining the web of trust of PGP keys. This was
quickly fixed by deprecating SHA-1 in GnuPG in the modern branch, while a legacy
branch remains unaltered and insecure. The main structure of these colliding files is
depicted in Table [5} one of the notable features is that the collision data precedes any
user data. The produced collision is thus reusable for many attacks.

Key A Key B bytes

prefix header A header B 4
timestamp A timestamp B 4

key A size: 8192 bits|key B size: 6144 bits 3

collision collision data A collision data B 757

common suffix| <copy from B> | remaining RSAkey | 16
<copy from B> PGP image header 24
<copy from B> tiny JPEG image 181

remaining RSA key | <copy from A> 51

PGP user id <copy from A> 30
<copy from B> signature trailer 18
Table 5: PGP Key collision [LP20]




Their attack reused the GPU implementation of the first identical-prefix collision
for SHA-1 [SBK*17]] with some refinements and adjustments as the basis for all near-
collision attacks, but the main improvement lies in the near-collision attack strategy
presented earlier by the same authors [LP19]. Their strategy exploits two facts:

1. Each near-collision attack can essentially produce many output differences with
almost the same probability

2. For each chaining value difference there are many distinct choices which differ-
ences each near-collision attack eliminates

They propose the represent all possible choices in a weighted graph, using which they
can compute for each near-collision attack which set of possible differences to target
given the remaining chaining value difference so far. By targetting many output dif-
ferences the cost of near-collision attacks drops significantly, where the last block that
has to eliminate the remaining chaining value difference has only one target output
difference is the most costly. In total this first SHA-1 chosen-prefix collision has an
estimated cost of 294 SHA-1 compression functions, which could be executed very
economically for the bargain price of 75k$ by renting a cheap GPU farm (originally
built for blockchain mining).

3.5 Transcript collision attacks on TLS, IKE and SSH

While consensus was reached among certification authorities and software vendors to
stop issuing and accepting MD5-based signatures and certificates, MDS5 remained in
use in many popular security applications. Bhargavan and Leurent [BL16] demon-
strated in 2016 meet-in-the-middle attacks on the key exchange protocols underlying
various version of TLS, IPsec and SSH. In particular, they show how to impersonate
TLS-1.2 clients, TLS-1.3 servers and IKEv2 initiators, as well as downgrade TLS-1.1
and SSHv2 connections to use weak ciphers. In these meet-in-the-middle attacks the
two honest parties will observe different protocol execution transcripts. However online
chosen-prefix collision attacks can be exploited to ensure transcript hashes used for mu-
tual authentication collide, which allows authentication messages can be successfully
forwarded.

Most of these attacks are quite involved and depend on the low-level details of those
protocols, however we show a simple example man-in-the-middle attack in Figure 2| for
the Sign-and-MAC protocol [KraO3]. After the first message m; by A, the attacker has
to find an online collision & = H(mi|m}) = H(m||m), where it also needs to correctly
predict the first response m; by B after receiving m]. At that point the attacker can suc-
cessfully setup a shared session key both with A (¢°") and with B (¢*). In the final step
the transcripts are signed by both parties in each connection for mutual authentication.
As the to-sign transcript hashes collide, the signatures are valid for both sessions. The
attacker can simply forward those signatures between A and B to pretend A and B have
an authenticated private channel.

In contrast to most other chosen-prefix collision attacks described here, these tran-
script collision attacks have to be carried out online. This places heavy constraints on
the wallclock time available to compute the collision attack for a successful outcome.



A . (5]
my = g7|ia

1
’ Find collision: & = H(m|m}) = H(m/|m;) ‘

1 oX
m\ = g*|I}

r _ Vi
my = g" I,

my = g\|lIp

Sign(ska, h), MAC(g™",A) | Sign(sks,h), MAC(g*?,A)

Sign(skg, h), MAC(g™',B) | Sign(skg,h), MAC(¢*”,B)

Fig. 2: Man-in-the-middle attack on the Sign-and-Mac protocol

This authors report special modifications to the HashClash software [Ste09b] to avoid
large memory-disk transfers required for the interaction between the different programs
by merging those programs, and by using all possible precomputations. These modifica-
tions reportedly enabled them to reduce the wallclock time of computing chosen-prefix
collisions on a 48-core machine from at least three hours to only one hour. Collisions
scale rather well with amount of computational power available, although it remains
unclear how practically feasible it is to bring this down to say within a minute. For most
online attacks even a minute delay, let alone an one hour delay, in the key exchange
is very troublesome, and unthinkable with direct human interaction as is for internet
browsers. But it appears that some TLS client software are willing to wait indefinitely
on the key exchange as long as regularly messages are being sent such as warning alerts,
so such TLS clients that remain unsupervised may be susceptible.

3.6 Nostradamus attack on hash-based commitments

Kelsey and Kohno [KKO06|] presented a Nostradamus attack to first commit to a hash
value, after which a document containing any message of one’s choice can be con-
structed that matches the committed hash value with lower cost than the generic pre-
image attack cost. The method applies to any Merkle-Damgard hash function, such as
MDS5, that given a chaining value and a suffix produces another chaining value. De-
pected in Figure [3|and omitting details involving message lengths and padding, the idea
is to build a tree of 2¢ chaining values that all lead to a single root chaining value 7,
and then to commit to a hash value Ayp,;; computed by hashing some chosen suffix
starting from /,,,;. The tree is a complete binary tree and is calculated from its leaves
up to the root, so the root %,,,; will be the last value calculated. This is done in such a
way that each node of the tree is associated with a chaining value along with a suffix
that together hash to the chaining value associated with the node’s parent. Thus, two sib-
lings have chaining values values and suffixes that collide under the hash function. The
chaining values at the leaves may be arbitrarily chosen but are, preferably, all different.

After committing to /¢ommir, given a prefix msg of one’s choice one performs a brute-
force search for a suffix x such that hashing msg||x results in the chaining value of one of
the leaves of the tree. Appending the message suffixes one encounters on the path from



Step 2: online attack  Step 1: precompute tree
L e I >

h,’v hma’g hmot

hwmmir

2¢ chaining value
nodes hyp4e ;

Fig. 3: Nostradamus attack

that leave to the root, results in a final message with the desired prefix and committed
hash value.

For MDS5, however, it remains far from feasible to carry out the entire construction
in practice as it requires massive birthday searches to find the necessary 2¢*! collisions.
However, there are two different variants that have been demontrated in practice.

First, for very small d there is a variant that is feasible, as then the construction of
the tree can be done efficiently by using chosen-prefix collisions to construct sibling
node suffixes based on their chaining values. An example of this variant is discussed in
section [3.8]involving 12 PDF documents.

Another actually practical approach is discussed in section[3.14} This variant uses a
large 24 multicollision created from d sequential collision attacks, in combination with
file format exploit techniques to allow these to visually show 2¢ different shown mes-
sages when rendered. The examples in section[3.14]use this approach to craft hashquines:
documents that show their own MDS5 hash.

3.7 Colliding documents

In [DLOS] it was shown how to construct a pair of PostScript files that collide under
MDS5, but that display different messages when viewed or printed. These constructions
use identical-prefix collisions and thus the only difference between the colliding files is
in the generated collision bit strings. See also [[GIS06] for similar constructions for other
document formats. These constructions have to rely on the presence of both messages
in each of the colliding files and on macro-functionalities of the document format used
to show either one of the two messages.

This can be improved with chosen-prefix collisions as one message per colliding
document suffices and macro-functionalities are no longer required. For example, using
a document format that allows insertion of color images (such as Microsoft Word or
Adobe PDF), inserting one message per document, two documents can be made to
collide by appending carefully crafted color images after the messages. A short one
pixel wide line will do — for instance hidden inside a layout element, a company logo,
or a nicely colored barcode — and preferably scaled down to hardly visible size (or
completely hidden from view, as possible in PDF). An extension of this construction is
presented in the paragraphs below and set forth in detail in Section[3.§]



3.8 PDF files and the Nostradamus attack

In [SLdW12], Stevens, Lenstra and de Weger describe a detailed construction for PDF
files that also demonstrates a variant scenario of the Nostradamus attack [KKQ6]. In the
original Nostradamus attack one first commits to a certain hash value, and afterwards
for any message constructs a document that not only contains that message but that also
has the committed hash value. This attack is at this point in time not feasible for MD5
in its full generality, however it is easily doable if a limited size message space has been
defined upfront.

Suppose there are messages my, my,...,m,, then using r — 1 chosen-prefix colli-
sions one can construct r suffixes sy, 5o, ..., s, such that the r documents d; = m;||s;
all have the same hash. After committing to the common hash, afterwards any of the r
documents dj, d, ...,d, can be shown, possibly to achieve some malicious goal. The
other documents will remain hidden and their prefix parts, i.e., the m;-parts, cannot be
derived from the single published document or from the common hash value. However,
given the structure of PDF documents it is not entirely straightforward to insert different
chosen-prefix collision blocks, while keeping the parts following those blocks identical
in order to maintain the collision as described below.

In [SLdW12], we succeed in constructing 12 different PDF documents with a com-
mon MDS5 hash value, where each document predicts a different outcome of the 2008
US presidential elections. The common MDS5 hash value of the 12 colliding PDF docu-
ments is

3D5 15DEAD 7AA16560ABA3E9DFO5CBCS0.

See [SLdWO7a] for the actual PDF documents, one of which correctly predicted the
outcome one year before the elections took place.

A PDF document is built up from the following four consecutive parts: a fixed
header, a part consisting of an arbitrary number of numbered “objects”, an object lookup
table and, finally, a trailer. The trailer specifies the number of objects, which object is
the unique root object (containing the root of the document content tree) and which
object is the info object (containing the document’s meta information such as authors
and title etc.), and contains a filepointer to the start of the object lookup table.

Given a file containing a PDF document, additional objects can be inserted, as long
as they are added to the object lookup table and the corresponding changes are made to
the number of objects and the filepointer in the trailer. If these are not referenced by the
document content tree anywhere then they will be ignored by any PDF processor. The
format is mostly text based, with the exception of binary images where collision data
can be safely hidden. The used template for inserted image objects is given in Table [6]
which offers sufficient room to hide 11 chosen-prefix collisions with 12 message blocks
each (1 birthday search block and 11 near-collision blocks). Any binary image is put
between single line-feed characters (ASCII code 10) and the result is encapsulated by
the keywords stream and endstream. The keyword /Length must specify the byte
length of the image equal to 3 X width X height, since for uncompressed images each
pixel requires three bytes (‘RGB’). The object number (42 in the example object header)
must be set to the next available object number.



Part ‘ Contents
object header |42 0 obj
image header |<< /ColorSpace /DeviceRGB /Subtype /Image
image size /Length 9216 /Width 64 /Height 48 /BitsPerComponent 8
image contents|>> stream...endstream
object footer |endobj
Table 6: An example numbered image object in the PDF format

When constructing colliding PDF files they must be equal after the collision-causing
data. The object lookup tables and trailers for all files must therefore be the same. This
was achieved as follows:

— Because all documents must have the same number of objects, dummy objects are
inserted where necessary.

— Because all root objects must have the same object number, they can be copied if
necessary to objects with the next available object number.

— The info objects are treated in the same way as the root objects.

— To make sure that all object lookup tables and filepointers are identical, the objects
can be sorted by object number and if necessary padded with spaces after their obj
keyword to make sure that all objects with the same object number have the same
file position and byte length in all files.

— Finally, the object lookup tables and trailers need to be adapted to reflect the new
situation — as a result they should be identical for all files.

Although this procedure works for basic PDF files such as produced using pdfiatex,
it should be noted that the PDF document format allows additional features that may
cause obstructions.

Given r ISIEX files with the desired subtle differences (such as names of r different
candidates), r different PDF files are produced using a version of I£[EX that is suitable
for our purposes (cf. above). In all these files a binary image object with a fixed ob-
ject number is then inserted, and the approach sketched above is followed to make the
lookup tables and trailers for all files identical. Since this binary image object is present
but not used in the PDF document, it remains hidden from view in a PDF reader. To
ensure that the files are identical after the hidden image contents, their corresponding
objects were made the last objects in the files. This then leads to r chosen prefixes con-
sisting of the leading parts of the PDF files up to and including the keyword stream
and the first line-feed character. After determining r — 1 chosen-prefix collisions re-
sulting in r collision-causing appendages, the appendages are put in the proper binary
image parts, after which all files are completed with a line-feed character, the keywords
endstream and endobj, and the identical lookup tables and trailers.

Note that the Length etc. fields have to be set before collision finding, and that
the value of Length will grow logarithmically with r and linearly in the number of
near-collision blocks one is aiming for.



3.9 Colliding executables & software integrity checking

In [KamO4] and [Mik04] it was shown how any existing MDS5 collision, such as the
ones originally presented by Xiaoyun Wang at the Crypto 2004 rump session, can be
abused to mislead integrity checking software that uses MD5. A similar application of
colliding executables, using freshly made collisions, was given on [Sel06]. All these
results use identical-prefix collisions and, similar to the colliding PostScript application
mentioned earlier, differences in the colliding inputs are used to construct deviating
execution flows.

However, digitally signed executables contain the signature itself, so in order to craft
a collision for the hash input to the digital signature a slight modification is necessary.
Didier Stevens [Ste09a] describes how this can be achieved for Microsoft Authenti-
code, which uses a special “Attribute Certificate Table” section in the file containing the
certificate chain and digital signatures. When computing the signature hash input one
hashes the byte string of the executable file except for three parts that are cut out: a 4-
byte checksum value, an 8-byte pointer to Attribute Certificate Table, and the Attribute
Certificate table itself.

Chosen-prefix collisions allow a more elegant approach, since common operating
systems ignore bit strings that are appended to executables: the programs will run unal-
tered, which is demonstrated in [SLdWQ7b]). Furthermore, using tree-structured chosen-
prefix collision appendages as in Section [3.8] any number of executables can be made
to have the same MDS5 hash value or MD5-based digital signature.

One can imagine two executables: a ‘good’ one (say Word.exe) and a ‘bad’ one
(the attacker’s Worse.exe). A chosen-prefix collision for those executables is computed,
and the collision-causing bit strings are appended to both executables. The resulting
altered file Word.exe, functionally equivalent to the original Word.exe, can be offered
to a code signing program such as Microsoft’s Authenticode and receive an ‘official’
MD5-based digital signature. This signature will then be equally valid for the attacker’s
Worse.exe, and the attacker might be able to replace Word.exe by his Worse.exe (re-
named to Word.exe) on the appropriate download site. This construction affects a com-
mon functionality of MDS5 hashing and may pose a practical threat. It also allows people
to get many executables signed at once at the cost of getting a single such executable
signed, bypassing verification of any kind (e.g., authenticity, quality, compatibility, non-
spyware, non-malware) by the signing party of the remaining executables.

3.10 Digital forensics

In digital forensics, there are two main uses for cryptographic hash function: file iden-
tification and integrity verification, for which MDS5 is unsuitable. Contrary to the abun-
dant evidence in the literature as described in this survey, a position paper has been
published in 2019 that MDS5 remains appropriate for integrity verification and file iden-
tification in the field of digital forensics by the Scientific Working Group on Digital
Evidence (SWDGE) [Sc119]. This document claims that

“It is appropriate to use both MD5 and SHA 1 for integrity verification provided
the hash is securely stored or recorded in the examination documentation. This



will prevent an individual from substituting a different file and its hash. This is
true for all hash algorithms. Since there are no preimage attacks on any of the
four hashing algorithms discussed, the only way to manipulate the evidence
without detection is to do it before it is hashed.”

It fails to acknowledge that collisions can be crafted in advance after which ma-
nipulation is undetectable with a non-collision resistant hash function. Note that actual
manipulation of the evidence in custody may not be necessary for collisions to be prob-
lematic.

File identification. So-called hash sets are used to quickly identify known files. For
example, when a hard disk is seized by law enforcement officers, they may compute
the hashes of all files on the disk, and compare those hashes to hashes in existing hash
sets: a whitelist (for known harmless files such as operating system and other common
software files) and a blacklist (for previously identified harmful files). Only files whose
hashes do not occur in either hash set have to be inspected further. A useful feature of
this method of recognizing files is that the file name itself is irrelevant, since only the
content of the file is hashed.

MDS5 is a popular hash function for this application. Examples are NIST’s National
Software Reference Library Reference Data SetE] and the US Department of Justice’s
Hashkeeper applicationﬂ

A conceivable, and rather obvious, attack on this application of hashes is to produce
a harmless file (e.g., an innocent picture) and a harmful one (e.g., an illegal picture),
and insert collision blocks that will not be noticed by common application software or
human viewers. In a learning phase the harmless file might be submitted to the hash
set and thus the common hash may end up on the whitelist. The harmful file will be
overlooked from then on.

Integrity verification. When devices are seized by law enforcement officers, they may
compute the hashes of all files on the disk to digitally certify the contents. These can
later be used in court to verify the chain of custody and to cryptographically verify the
integrity of the evidence that it has not been tampered with.

Using document collisions, one can envision a potential criminal ensures all crimi-
nating files collide with harmless ones. He could try to dismiss the use of the incrimi-
nating files in court, by presenting the harmless files that match the hash values of the
incriminating files and casting doubt on the chain of custody. For instance, in 2005 the
Australian Hornsby Local Court dismissed a vehicle speeding case after the prosecutor
could not provide evidence that the speed camera image hashed with MD35 had not been
tampered with[SchO3]].

Another threat scenario of using colliding files, one harmless and one incriminating,
is planting the harmless file on a victim’s device later to be swapped by the incriminating
one. Both cases may result in law enforcement presenting the incriminating file and the
defendent presenting the harmless file. From a purely cryptographic hash point of view,

¢http://www.nsrl.nist.gov/
7 http://www.usdoj.gov/ndic/domex/hashkeeper.htm


http://www.nsrl.nist.gov/
http://www.usdoj.gov/ndic/domex/hashkeeper.htm

these cases are indistinguishable when using a non-collision resistant hash function
such as MD5.

3.11 Peer to peer software

Hash sets such as for digital forensics are also used in peer to peer software. A site
offering content may maintain a list of pairs (file name, hash). The file name is local
only, and the peer to peer software uniquely identifies the file’s content by means of its
hash. Depending on which hash is used and how the hash is computed such systems may
be vulnerable to a chosen-prefix attack. Software such as eDonkey and eMule use MD4
to hash the content in a two stage manner: the identifier of the content ci||c;|| ... ||c, is
MD4(MD4(cy)|| ... IMD4(c,)), where the chunks c; are about 9 MB each. One-chunk
files, i.e., files not larger than 9 MB, are most likely vulnerable; whether multi-chunk
files are vulnerable is open for research. Chosen-prefix collision attacks have not been
presented against MD4. But as MD4 is a simpler version of MDS5, an adaptation of
MD5’s attacks should result in an attacks on MD4 that are considerably faster compared
to MD5’s attacks.

3.12 Content addressed storage

Content addressed storage is a means of storing fixed content at a physical location of
which the address is directly derived from the content itself. For example, a hash of
the content may be used as the file name. See [PDO0S5] for an example. Clearly, chosen-
prefix collisions can be used by an attacker to fool such storage systems, e.g., by first
preparing colliding pairs of files, by then storing the harmless-looking first one, and
later overwriting it with the harmful second one.

3.13 Polyglots: multi-format collisions

As file formats typically start with a specific fixed header that indicate the file format
used, two colliding files of different file formats are difficult to construct using identical-
prefix collisions. Using chosen-prefix collisions, one can take any two files and make
them collide, one only has to correctly hide the collision bits for the file format’s ren-
ders. The best known example of 4 files with distinct file formats (PNG image, PDF
document, MP4 video and PE executable) has been crafted by Ange AlbertiniE] In this
case, it is a reusable collision where the chosen prefixes only contain the file format
headers, and do not cover any file content. A simple program by Albertini uses the
preconstructed 4-way collision to convert given PNG, PDF, MP4 and PE files into 4
colliding files with the same hash.

3.14 Hashquines: embedding the MDS5 hash in documents

Another variant on the Nostradamus attack (see section [3.6) that is feasible for short
messages is as follows. The goal is to build a 2¢ multi-collision crafted by d sequential

8 https://github.com/corkami/collisions


https://github.com/corkami/collisions

identical-prefix collisions, where each of the 2¢ files all having the same hash renders a
different message. The precise method depends strongly on the used file format. Later,
after some event, one can choose which particular file out of the 2¢ colliding files to
show that matches the committed hash. One possible choice for the rendered message is
the hash value itself, such documents that render their own hash are called hashquines.
Hashquines have been demonstrated for the following file formats in the Poc||GTFO
journal [Lap17]: GIF, PDF, Nintendo NES ROM and PostScript.

In the case of executables it would be almost trivial to include these d sequential
identical-prefix collisions, read out the chosen ‘bit* b; of collision i (b; = 0 if collision
data A is used, b; = 1 if collision data B is used) and map the resulting d-bit string to a
to-be-rendered message in the desired message space. After the complete file has been
crafted one can commit to its hash.

A more common strategy that works for several file formats is to place collisions
inside comment fields, where one of the message block differences affects the comment
length. In this manner, one can force different behaviours for parsers: either it parses a
short comment followed by some content to render, or it parses a long comment that
skips over the content. This idea for the JPEG file format is depicted in Figure[d] where
16 same size JPEG images are placed into one file. Each of the 16 JPEG images renders
to one of the 16 hexidecimal symbols (0,..,9,a,..,f), and is prefixed by a comment whose
length is controlled by a collision. In this case, long comments force the parser to skip
over an image, and only the first short comment results in the next JPEG image data to
be rendered. Any following JPEG images will be ignored. An MDS5 hash consists of 32
hexidecimal symbols, so a PDF hashquine can be constructed by constructing 32 such
JPEG images inside a PDF document. And once the PDF file MD5 hash is known, the
32 JPEG images can be altered (without changing the MD5 hash) such that together
they render the MDS5 hash.

JPEG | | Comment Image Comment Image
header | | len=2650 of 0’ len=2389 of ’F’
T T
! Collision 1: 6len = 32768 ! Collision 16: dlen = 32768
JPEG : Comment : Comment
header 'slen=35418 'slen=35157

Fig. 4: JPEG multi-collision: 16 different images, each prefixed with a comment whose
length can be controlled with a collision. Only the first image that is not skipped over
by a comment is rendered.

4 MD5 Collision attacks

In the sections below, we first give a brief mathematical description of MDS5 itself.
Then we discuss the details of several interesting chosen-prefix collision attacks: the
currently best chosen-prefix collision attack [SSATQ9]| in section a single block



variant [SSA*09] in section and FLAME’s attack by Nation States exposed by
Counter-cryptanalysis [Stel3a, [ESTS] in section[4.4]

4.1 MDS

The hash function MD5 was designed by Ron Rivest in 1992 with a 128-bit output
hash and is built on the Merkle-Damgard framework using its compression function
MD5Compress.

1. Padding. Pad the message with a ‘1’-bit followed by the minimal number of ‘0’-
bits to pad to a bitlength of 448 modulo 512. Append the bitlength of the original
unpadded message as a 64-bit little-endian integer.

2. Partitioning. The padded message is partitioned into k£ consecutive 512-bit blocks
My,..., M.

3. Processing. MD5’s chaining values CV; are 128-bits long consisting of four 32-bit
words a;, b;, ¢;, d;. For the initial value C'Vj, these are fixed public values:

(agp, by, co, dp) = (0x67452301, 0XEFCDAB89, 0x98BADCFE, 0x10325476).
Fori=1,...,k, the chaining value is updated:
CV; = (a;, b;, ci,d;) = MD5Compress(CVi_y, M;).

4. Output. The resulting hash value is CV, expressed as the concatenation of the hex-
adecimal byte strings of ay, by, ¢k, di (using little-endian).

MDS5’s compression function MD5Compress internally uses 32-bit words that are
both used as integers modulo 232 for addition (least significant bit is right-most bit),
and as 32-bit strings for bitwise operations: AND (A), OR (V), XOR (&), NOT (X),
left/right rotation by n-bits (left: X", right: X>").

MD5Compress takes as input a 128-bit chaining value C'V split into 4 words (a, b, ¢, d)
and a 512-bit message block B split into 16 words my|| - - - ||[m;5. We use an unrolled de-
scription of MD5Compress that initializes four state words with the chaining values
(Qo,0-1,0-2,0-3) = (b,c,d,a) and performs 64 rounds for r = 0,...,63 in which it
computes a next state word Qy,:

Fi = f(Qr, -1, Or-2)
T,=F+Q,3+AC,+ W,

<<RC
R, = Tk

Oi1 =0+ Ry,

where AC, = |23 - |sin(z + 1)|] and W,, f(X, Y,Z) and RC; are given in Table[7} At the
end, MD5Compress returns (a + Qg1,b + Qgs, ¢ + Qg3,d + O2)-



Step w, | fxvz) | RC,
0<r<16 m, XAY)® X AZ)(7,12,17,22)11 moa 4]
16 < 1 < 32|Mm14sn mod 16| (Z A X) @ (Z A V)| (5,9, 14, 20); moa 4]
32 <t <48|msianmeats] XSYSZ |(4,11,16,23) moas)
48 <1< 64 maymeats | Y®XVZ) [(6,10,1521); moaal

Table 7: MDS5 round constants and boolean functions

B 60, [oF] oW, | 6T, [6R]RC)
31 ¢21)—10 mod 32
32 0
33 0
34 0 0 |£2p~10mod32 0 0|16
135 - 60] 0 [0 o [ o JoJ-]
61 0 0 i2p—10mnd32 i2p—10mud32 +27] 10
62 +27 0 0 0 0115
63 +27 0 0 0 0 |21
64 ||+27
+ Zz{;o 5/121”'2“/1 mod 32

Table 8: Family of partial differential characteristics using ém;; = +27~10m0432 ywhere
805 -5 S € {—1,0,+1} and w' = min(w, 31 — p) for a fixed w > 0. Interesting values
for the parameter w are between 2 and 5.

4.2 MDS5 chosen-prefix collision attack

The 2009 chosen-prefix collision construction used for the rogue CA certificate (c.f. sec-
tion [3.2)) remains the best known attack. The attack has several parameters that can be
adjusted. First, the maximum number of allowed near-collision blocks is denoted by r
and can be used to trade-off between birthday search time complexity and the cost of
finding the r near-collision blocks. Second, k defines the birthday search space (its size
is 64 + k) and the birthday iteration function and can be used to trade-off between birth-
day search time complexity, birthday search memory complexity and average number
of required near-collisions per birthday collision. Third, w defines the family of dif-
ferential characteristics that can be used to construct the near-collision blocks and is
the number of bit positions where arbitrary bit differences are allowed. It can be used
to trade-off between the average number of required near-collision blocks per birthday
collision and the cost of finding the r near-collision blocks.

The attack is based on the family of partial differential characteristics described in
Tableusing a single message block bit difference 6m;; = +2° where both the sign and
bit position i can be varied. This results in a difference (da, 6b, dc, 6d) to be added to the
chaining value difference, where da = 0, 6d = dc = +2i+10mod 32 \while §b consists of a
fixed bit difference +2/+10m°d 32 45 well as arbitrarily chosen differences on bit positions
i+21,...,i+ 21+ w (modulo 32).



Birthday search. As described in section [2} the chosen-prefix collision attack starts
with a tailored birthday search that results in a chaining value difference that can be
eliminated by a sequence of near-collision attacks. In this case the search space V and
iteration function f depend on the integer parameter k € {0, 1,2,...,32}. More pre-
cisely, first pad prefixes P and P’ with arbitrary suffixes S, and S| such that the total
bit lengths are equal, and 64 + k bits short of a multiple of the blocksize 512 bits. Then
given k € {0,...,32}, let B and B’ be the last 512 — (64 + k) bits of padded prefixes P||S;
and P’||S ], respectively. Then V and f are defined as follows:

V = Zos2 X Zy» X Zok,
f(x,y,2) = (a,c — d,c — b mod 2*) where

(a.b.c.d) MD5Compress(CV,_1, Bllx|lyllz)  if x mod 2 = 0;
a? 9 C5 = .

MD5Compress(CV,_,, B'|lxllyllz)  if x mod 2 = 1.
The birthday collision, however, needs to satisfy several additional conditions that can-
not be captured by V, f, or k: the prefixes associated with x and y in a birthday collision
f(x) = f(y) must be different, and the required number of pairs of near-collision blocks
may be at most » when allowing differential characteristics with parameter w. The prob-
ability that a birthday collision satisfies all requirements depends not only on the choice
of r and w, but also on the value for k, and is denoted by p,x,,. As a consequence, on
average 1/p, ., birthday collisions have to be found.

k=0 w=0 w=1 w=2 w=3

rlp ]G M [ plG [ M [ pJCG [ M [ pJC][ M
16 [[ 5.9 [35.27] IMB [[1.75[33.2] IMB [[1.01[32.83] IMB [[ 1. [32.83] IMB
15 || 7.2 [35.92| IMB || 2.39(33.52| IMB || 1.06 [32.86| IMB || 1. |32.83] IMB
14 |/ 8.71 [36.68| 1IMB || 3.37 [34.01| IMB || 1.27 [32.96| IMB || 1.04 |32.84| 1MB
13 {[10.45(37.55| IMB || 4.73 |34.69| 1IMB || 1.78 [33.22| IMB || 1.2 |32.93| IMB
12 {[12.4538.55| IMB || 6.53|35.59| IMB ||2.78 [33.71| IMB || 1.66 |33.16| 1MB
11 {[14.7239.68| 2MB || 8.77 [36.71| IMB || 4.34 |34.5| IMB || 2.61 |33.63| 1MB
10 {[17.28/40.97| 11MB ||11.47|38.06| IMB || 6.54 |35.6| IMB || 4.18 |34.42| 1MB
9 ||20.16|42.4 | 79MB |[14.62(39.64| 2MB | 9.38 [37.02| IMB || 6.46|35.56| 1MB
8 |123.3944.02/732MB|[18.21|41.43| 21MB ||12.88[38.76| IMB || 9.52 [37.09| 1MB
7 |[26.82/45.73| 8GB || 22.2 |43.43|323MB||17.0240.83| 9MB || 13.4|39.02| 1MB
6 ||31.2|47.92|161GB|[26.73|45.69| 8GB ||21.78/43.22[241MB||18.14| 41.4 | 20MB
5
4

35. 49.83| 3TB || 31.2 |47.92|161GB|[27.13|45.89| 10GB |[23.74| 44.2 |938MB
34. |49.33| 2TB |30.19/47.42| 81GB

The columns p, C, and M denote the values of —log,(p,.w), 10g,(C;(r, k, w)) and the minimum
required memory M such that C.;(r, k, w, M) < C,.(r, k, w), respectively.
Table 9: Expected birthday search costs for k = 0

Assuming that M bytes of memory are available and that a single birthday trail
requires 28 bytes of storage (namely 96 bits for the start- and endpoint each, and 32 for



the length), this leads to the following expressions for the birthday search costs [vW99]:

. D64+k 2.5-28 - Cy(r k,
u Cootr s, M) = nlr kW)

Cy(rk,w) = ,
v 2- Priw Priw * M

For M = 70/p,., as given in the last column of Table[9} the two costs are equal, and
the overall expected birthday search costs becomes 2C,,(r, k, w). However, in practice
it is advisable to choose M considerably larger. For ¢ < 1, using M = 70/(py s - €)
bytes of memory results in C.,;; = € - C;, and the expected overall birthday search cost
is about (1 + €) - C;,(r, k, w) MDS5 compressions.

Near-collision construction algorithm. The birthday search results in a chaining value
difference 6CV,, of the form (0, 6b, dc, 6¢). Let 6¢ = 3, k2" and 6b — 6¢ = 3, [;2!, where
(ki);}!, and (1;)}}; are signed binary digit expansions in Non-Adjacent Form (NAF). ﬂlf
dc # 0, let i be such that k; # 0. Using a differential characteristic from Table [§] with
omyy = —k;2i710med 32 gne can eliminate the difference &;2! in 8¢ and 6d and simultane-

ously change 6b by

i+21+w’ mod 32
k2 + Z 1,24,
A=i+21 mod 32
where w’ = min(w, 31 — i). Here one needs to be careful that each non-zero [, is elim-
inated only once in the case when multiple i-values allow the elimination of /;. Doing
this for all k; that are non-zero in the NAF of éc results in a difference vector (0, 6b, 0, 0)
where 6b may be different from 6b, and where the weight w(NAF(6b)) may be smaller
or larger than w(NAF(6b)). More precisely, 6b = Zil:o e1,21, where e, = 0 if there ex-
istindices i and j with 0 < j < min(w, 31 —i) such thatk; = 1 and A = 21 +i+ j mod 32
ande; =1 other“ljse. _ -
The bits in 6b can be eliminated as follows. Let (1,)}}) = NAF(6b) and let j be

such that’l; = 1 and j — 21 mod 32 is minimal. Then the difference Zl]:;“ ZZi with

w’ = min(w, 31 — (j— 21 mod 32)) can be eliminated from 6b using 6m,; = 2/-31 mod 32,
which introduces a new difference 2/-21m0432 in 5p ¢ and 6d. This latter difference
is eliminated using om;; = —2/=31mod 32 W’l’liCh then leads to a new difference vector
(0,6b,0,0) with w(NAF(6b)) < w(NAF(6b)). The process is repeated until all dif-
ferences have been eliminated. We refer to [SLdWO07c, [ISSA*09] for details on the
construction of the near-collision attacks themselves, including the differential char-
acteristic construction algorithm and collision search algorithms, and to [SteQ9b] for an
implementation of the entire chosen-prefix collision attack.

Complete differential characteristics can be constructed with an average total com-
plexity equivalent to roughly 23> MDS5 compressions. For small w = 0,1,2 and dif-
ferential characteristics based on Table [§] finding a near-collision block pair requires
on average roughly the equivalent of 2°* MDS5 compressions. Combined with the con-
struction of the differential characteristics, this leads to a rough overall estimate of about

° Note: NAF(a) for integer a denotes the Non-Adjacent Form of a, i.e., the unique signed binary
digit expansion (g;)!, with @; € {-1,0,1} and a = }; a;2" where no two non-zero digits are
adjacent.



2336 MD5 compressions to find a single pair of near-collision blocks for this chosen-
prefix collision attack. The optimal parameters are given as w = 2, k = O and r = 9,
for which the birthday search cost is about 237 MD5 compressions and constructing the
r = 9 pairs of near-collision blocks costs about 2338 MD5 compressions, leading to the
claimed total complexity of about 23*! MD5 compressions.

4.3 MDS Single-block chosen-prefix collision attack

It is even possible to construct a chosen-prefix collision using only a single pair of near-
collision blocks using a slightly different strategy [SSA™09]]. Together with 84 birthday
bits, the chosen-prefix collision-causing appendages are only 84 + 512 = 596 bits long.
This attack is based on a large family of differential characteristics that enables for a
corresponding large set of chaining value differences to be eliminated using a single
pair of near-collision blocks.

Instead of using the family of differential characteristics based on dmy; = 2, this
attack reuses the fastest known collision attack for MD5 and varies the last few steps to
find a large family of differential characteristics depicted in Table [T0} Specifically, by
varying those last steps and allowing the collision finding complexity to grow by a factor
of about 229, this results in a set S of about 223 different sCV = (éa, 6b, 6c, 6d) of the
form 6a = =25, 6d = =25 + 2%, ¢ = —2° mod 2?° that can be eliminated. Such 6CVs
can be found using an 84-bit birthday search with step function f : {0, 1}3* — {0, 1}3
of the form

Fx) = $(MD5Compress(CV, Bllx) + 5CV)  for 7(x) = 0
v @(MD5Compress(CV’, B'||x)) for r(x) = 1,

where 6CV is of the required form, 7 : x — {0, 1} is a balanced partition function
and ¢(a, b, c,d) ~ al|d||(c mod 2?°). There are 2!28-84 = 2% possible SIHV values of
this form, of which only about 2233 are in the allowed set S. It follows that a birthday
collision f(x) = f(x’) has probability p = 2233/(2%.2) = 2727 to0 be useful, where the
additional factor 2 stems from the fact that different prefixes are required, i.e., 7(x) #
7(x').

A useful birthday collision can be expected after \/7284/(2p) ~ 2332 MDS5 compres-
sions and requires approximately 400MB of storage. The average complexity of finding
the actual near-collision blocks is bounded by about 2!48+26 = 2408 MD5 compressions
and negligible compared to the birthday complexity. Thus the overall complexity is
approximately 2332 MDS5 compressions.

4.4 FLAME’s MDS5 chosen-prefix collision attack

As described in section [3.3] using counter-cryptanalysis all near-collision block pairs
were recovered and thus the differential characteristics which proved that the used
chosen-prefix collision was a yet-unknown variant attack [Stel3a]. After this initial
discovery, Fillinger and Stevens performed a in-depth analysis wherein they reverse en-
gineered this yet unknown chosen-prefix collision attack [ES15]]. The FLAME chosen-
prefix collision attack differs significantly on several aspects from public research:



e 60, 6F, [oW, ][ oT, 6R,[RC/]

26 28
27 0
28 0
29 0 0 28 0 0 9
03] 0 [0 [0 o [ o [ |
34 0 0 21 2b 231 16
35 231 231 231 0 0 23
36 231 0 0 0 0 4
37 231 231 231 0 0 11
[38-46] 2 2T JoJ o 0o | -]
47 231 231 28 28 231 23
48 0 0 0 0 0 6
49 0 0 0 0 0 10
50 0 0 231 0 0 15
[51-59] 0 0 [o] o o [ -]
60 0 0 231 231 -2° 6
61 -2 0 21 2b 2% 10
62 25 +2% 0 28 28 2% 15
63 25 422 4+ 2% 25 -2B[ 0 [[2°0-2%]22%_21] 2]
64 =25 4+2% 2% 2% 21
Partial differential characteristic for t = 29,...,63 using message differences 6m, = 2%, omy =

omyy = 231, 6m;; = 2'5. The probability that it is satisfied is approximately 274>, It leads to a
identical-prefix collision attack of approximated complexity 2! MD5 compressions.
Table 10: Partial differential characteristic for fast near-collision attack

— The near-collision attack strategy to eliminate chaining value differences (da, db, dc, 6d)
using four blocks. Where da and dd are essentially fixed and together have only
three bit differences. Each of the four blocks focuses on a specific region of bit
positions of 6b and dc to cancel, while using the freedom to arbitrarily affect bit
differences in bit position regions handled by later blocks. The last two blocks are
able to cancel all bit differences in 6b on bit positions [0-4,13-19,27-31], but cancel
only the last remaining bit difference in ¢ which is likely fixed in advance. The
first two blocks cancel essentially all bit differences in dc, they also affect 0b but
seemingly in a random manner: any difference added to b is allowed as long as the
last two blocks are still able to effectively cancel them.

— The differential characteristic construction method follows a variant meet-in-the-
middle approach. Unlike [SLdWO07c] that uses many lower characteristics and many
upper characteristics and then tries to combine pairs into a complete valid differen-
tial characteristic, the FLAME differential characteristics are fixed from 6Qg up to
00¢0- This signifies that it uses only one upper characteristic and tries to connect
many lower characteristics to it. The designers have chosen to have bit differences
at all bit positions of Qg, which may maximize the success probability. In the end,



this appears to be significantly slower, as fixing §Q¢ in this manner implies a sig-
nificant factor increase in the number of pairs that have to be tried, compared to
[SLdWO7c]. In comparison, the HashClash implementation is able to find replace-
ment differential characteristics for FLAME’s differential characteristics in a matter
of seconds on a desktop computer, where the number of resulting bit conditions are
also significantly lower: e.g. the replacement first characteristic has only 276 bit
conditions versus 328 for FLAME’s characteristic.

— The near-collision block search makes use of known collision search speed-up tech-
niques as actual bit values match many necessary bit conditions, which is unlikely
to occur by chance. Noticable is that not all speed-up techniques that could be ap-
plied are visible in the actual blocks, as for some the necessary bit conditions are not
satisfied. This is not evidence that not all speed-up techniques are used. One possi-
ble explanation is that some speed-up techniques are used dynamically, depending
on whether their necessary bit conditions are set. This would increase degrees of
freedom, but only limited impact on the near-collision block search complexity.

Fillinger and Stevens reconstruct a parametrized family of chosen-prefix collision at-
tacks that should contain the FLAME collision attack. The precise parameters used for
FLAME cannot be recovered with enough certainty. But it was possible to determine
the minimal cost parameters leading to estimated cost C,,;, = 2%¢%, and the minimal
cost parameters that are consistent with the observed data leading to estimated cost
Criame = 2%, This is significantly higher than the estimated cost 2*° of the currently
best known MDS5 chosen-prefix collision attack [SSAT09]]. However it was also ob-
served that FLAME’s attack is more suitable to be implemented on massively parallel
hardware such as GPUs, which has practical benefits.



[BCO4]

[BL16]

[Dam90]

[dB94]

[DLO5]

[DRO6]

[FS15]

[GIS06]

[JPO7]

[KamO04]

[KKO06]

Bibliography

Eli Biham and Rafi Chen, Near-collisions of SHA-0, CRYPTO 2004
(Santa Barbara, CA, USA) (Matthew Franklin, ed.), LNCS, vol. 3152,
Springer, Heidelberg, Germany, August 15-19, 2004, pp. 290-305.
Karthikeyan Bhargavan and Gaétan Leurent, Transcript collision attacks:
Breaking authentication in TLS, IKE and SSH, NDSS 2016 (San Diego,
CA, USA), The Internet Society, February 21-24, 2016.

Ivan Damgard, A design principle for hash functions, CRYPTO’89 (Santa
Barbara, CA, USA) (Gilles Brassard, ed.), LNCS, vol. 435, Springer, Hei-
delberg, Germany, August 20-24, 1990, pp. 416-427.

Bert den Boer and Antoon Bosselaers, Collisions for the compressin
function of MD5, EUROCRYPT’ 93 (Lofthus, Norway) (Tor Helleseth,
ed.), LNCS, vol. 765, Springer, Heidelberg, Germany, May 23-27, 1994,
pp- 293-304.

Magnus Daum and Stefan Lucks, Artacking hash functions by
poisoned messages, “the story of Alice and her boss”, June
2005, https://web.archive.org/web/20160713130211/http:
//th.informatik.uni-mannheim.de:80/people/lucks/
HashCollisions/.

Christophe De Canniere and Christian Rechberger, Finding SHA-1 char-
acteristics: General results and applications, ASIACRYPT 2006 (Shang-
hai, China) (Xuejia Lai and Kefei Chen, eds.), LNCS, vol. 4284, Springer,
Heidelberg, Germany, December 3-7, 2006, pp. 1-20.

Max Fillinger and Marc Stevens, Reverse-engineering of the cryptana-
lytic attack used in the Flame super-malware, ASTACRYPT 2015, Part 1T
(Auckland, New Zealand) (Tetsu Iwata and Jung Hee Cheon, eds.), LNCS,
vol. 9453, Springer, Heidelberg, Germany, November 30 — December 3,
2015, pp. 586-611.

Max Gebhardt, Georg Illies, and Werner Schindler, A note on the practical
value of single hash collisions for special file formats, Sicherheit, LNI, vol.
P-77, GI, 2006, pp. 333-344.

Antoine Joux and Thomas Peyrin, Hash functions and the (amplified)
boomerang attack, CRYPTO 2007 (Santa Barbara, CA, USA) (Alfred
Menezes, ed.), LNCS, vol. 4622, Springer, Heidelberg, Germany, Au-
gust 19-23, 2007, pp. 244-263.

Dan Kaminsky, MDS5 to be considered harmful someday, Cryptology
ePrint Archive, Report 2004/357, 2004, https://eprint.iacr.org/
2004/357.

John Kelsey and Tadayoshi Kohno, Herding hash functions and the Nos-
tradamus attack, EUROCRYPT 2006 (St. Petersburg, Russia) (Serge Vau-
denay, ed.), LNCS, vol. 4004, Springer, Heidelberg, Germany, May 28 —
June 1, 2006, pp. 183-200.


https://web.archive.org/web/20160713130211/http://th.informatik.uni-mannheim.de:80/people/lucks/HashCollisions/
https://web.archive.org/web/20160713130211/http://th.informatik.uni-mannheim.de:80/people/lucks/HashCollisions/
https://web.archive.org/web/20160713130211/http://th.informatik.uni-mannheim.de:80/people/lucks/HashCollisions/
https://eprint.iacr.org/2004/357
https://eprint.iacr.org/2004/357

[K1i05]

[K1i06]

[Kra03]

[Lab12a]

[Lab12b]

[Lap17]

[LdWO05]

[LP19]

[LP20]

[Mer90]

[MHP09]

[Mic12]

[Mik04]

[MRRO7]

Vlastimil Klima, Finding MD5 collisions on a notebook PC using multi-
message modifications, Cryptology ePrint Archive, Report 2005/102,
2005, https://eprint.iacr.org/2005/102.

, Tunnels in hash functions: MD5 collisions within a minute, Cryp-
tology ePrint Archive, Report 2006/105, 2006, https://eprint.iacr.
org/2006/105.

Hugo Krawczyk, SIGMA: The “SIGn-and-MAc” approach to authenti-
cated Diffie-Hellman and its use in the IKE protocols, CRYPTO 2003
(Santa Barbara, CA, USA) (Dan Boneh, ed.), LNCS, vol. 2729, Springer,

Heidelberg, Germany, August 17-21, 2003, pp. 400-425.

CrySyS Lab, skywiper (a.k.a. flame a.k.a. flamer): A complex malware
for targeted attacks, Laboratory of Cryptography and System Security,

Budapest University of Technology and Economics, May 31, 2012.
Kaspersky Lab, The flame: Questions and answers, Securelist blog, May
28, 2012.

Manul Laphroaig (ed.), Pastor laphroaig screams high five to the heavens
as the whole world goes under, PoC||GTFO, vol. 0x14, Tract Association
of POC||GTFO and Friends, 2017.

Arjen K. Lenstra and Benne de Weger, On the possibility of construct-
ing meaningful hash collisions for public keys, ACISP 05 (Brisbane,

Queensland, Australia) (Colin Boyd and Juan Manuel Gonzélez Nieto,
eds.), LNCS, vol. 3574, Springer, Heidelberg, Germany, July 4-6, 2005,
pp- 267-279.

Gaétan Leurent and Thomas Peyrin, From collisions to chosen-prefix col-
lisions application to full SHA-1, EUROCRYPT 2019, Part III (Darmstadt,
Germany) (Yuval Ishai and Vincent Rijmen, eds.), LNCS, vol. 11478,
Springer, Heidelberg, Germany, May 19-23, 2019, pp. 527-555.

Gaétan Leurent and Thomas Peyrin, Sha-1 is a shambles - first chosen-
prefix collision on sha-1 and application to the pgp web of trust, Cryp-
tology ePrint Archive, Report 2020/014, 2020, https://eprint.iacr.
org/2020/014.

Ralph C. Merkle, One way hash functions and DES, CRYPTO’89 (Santa
Barbara, CA, USA) (Gilles Brassard, ed.), LNCS, vol. 435, Springer, Hei-
delberg, Germany, August 20-24, 1990, pp. 428-446.

Cameron McDonald, Philip Hawkes, and Josef Pieprzyk, Differential path

for SHA-1 with complexity 0(2°%), Cryptology ePrint Archive, Report

2009/259, 2009, https://eprint.iacr.org/2009/259.

Microsoft, Flame malware collision attack explained, Security Research
& Defense, Microsoft TechNet Blog, June 6, 2012.

Ondrej Mikle, Practical attacks on digital signatures using MD5 mes-
sage digest, Cryptology ePrint Archive, Report 2004/356, 2004, https:
//eprint.iacr.org/2004/356.

Florian Mendel, Christian Rechberger, and Vincent Rijmen, Update on
sha-1, Rump session of CRYPTO 2007, 2007, http://rump2007.cr.
yp.to/09-rechberger.pdf.



https://eprint.iacr.org/2005/102
https://eprint.iacr.org/2006/105
https://eprint.iacr.org/2006/105
https://eprint.iacr.org/2020/014
https://eprint.iacr.org/2020/014
https://eprint.iacr.org/2009/259
https://eprint.iacr.org/2004/356
https://eprint.iacr.org/2004/356
http://rump2007.cr.yp.to/09-rechberger.pdf
http://rump2007.cr.yp.to/09-rechberger.pdf

[PDO5] Robert Primmer and Carl D’Halluin, Collision and preimage resistance of
the centera content address, Technical Report, 2005, EMC Corporation.

[Pos12] The Washington Post, U.S., Israel developed flame computer virus to slow
Iranian nuclear efforts, officials say, Ellen Nakashima, Greg Miller and
Julie Tate, June 2012.

[Rog06] Phillip Rogaway, Formalizing human ignorance: Collision-resistant hash-
ing without the keys, Cryptology ePrint Archive, Report 2006/281, 2006,
https://eprint.iacr.org/2006/281.

[SBK*17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov, The first collision for full SHA-1, CRYPTO 2017, Part I (Santa
Barbara, CA, USA) (Jonathan Katz and Hovav Shacham, eds.), LNCS,
vol. 10401, Springer, Heidelberg, Germany, August 20-24, 2017, pp. 570-
596.

[Sch05] Bruce Schneier, The MD5 defense, Schneier on Security blog, august
2005, https://www.schneier.com/blog/archives/2005/08/the_
md5_defense.htmll

[Scil9] Scientific Working Group on Digital Evidence, SWGDE position on the
use of MD5 and SHAI hash algorithms in digital and multimedia foren-
sics, September 2019.

[Sel06] Peter Selinger, 2006, http://www.mathstat.dal.ca/~selinger/
md5collision/.

[SLdWO07a] Marc Stevens, Arjen Lenstra, and Benne de Weger, Predicting the winner
of the 2008 US presidential elections using a sony playstation 3, 2007,
http://www.win.tue.nl/hashclash/Nostradamus/.

, Vulnerability of software integrity and code signing, 2007, http:
//www.win.tue.nl/hashclash/SoftIntCodeSign/.

[SLdWO07c] Marc Stevens, Arjen K. Lenstra, and Benne de Weger, Chosen-prefix colli-
sions for MD5 and colliding X.509 certificates for different identities, EU-
ROCRYPT 2007 (Barcelona, Spain) (Moni Naor, ed.), LNCS, vol. 4515,
Springer, Heidelberg, Germany, May 20-24, 2007, pp. 1-22.

, Chosen-prefix collisions for MD5 and applications, IJACT 2

(2012), no. 4, 322-359.
[Sot12] Alex Sotirov, Analyzing the MD5 collision in flame, SummerCon 2020,
New York, USA, June 2012.

[SSA*09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra,
David Molnar, Dag Arne Osvik, and Benne de Weger, Short chosen-
prefix collisions for MD5 and the creation of a rogue CA certificate,
CRYPTO 2009 (Santa Barbara, CA, USA) (Shai Halevi, ed.), LNCS, vol.
5677, Springer, Heidelberg, Germany, August 16-20, 2009, pp. 55—-69.

[Ste06] Marc Stevens, Fast collision attack on MDS5, Cryptology ePrint Archive,
Report 2006/104, 2006, https://eprint.iacr.org/2006/104.
[Ste07] , On collisions for md5, June 2007.
[Ste09a] Didier Stevens, 2009, http://blog.didierstevens.com/2009/01/
17/.
[Ste09b] Marc Stevens, Github: Project hashclash - MD5 & SHA-I cryptanalysis,
June 2009, https://github.com/cr-marcstevens/hashclash.

[SLdWO07b]

[SLdW12]



https://eprint.iacr.org/2006/281
https://www.schneier.com/blog/archives/2005/08/the_md5_defense.html
https://www.schneier.com/blog/archives/2005/08/the_md5_defense.html
http://www.mathstat.dal.ca/~selinger/md5collision/
http://www.mathstat.dal.ca/~selinger/md5collision/
http://www.win.tue.nl/hashclash/Nostradamus/
http://www.win.tue.nl/hashclash/SoftIntCodeSign/
http://www.win.tue.nl/hashclash/SoftIntCodeSign/
https://eprint.iacr.org/2006/104
http://blog.didierstevens.com/2009/01/17/
http://blog.didierstevens.com/2009/01/17/
https://github.com/cr-marcstevens/hashclash

[Stel2]

[Stel3a]

[Ste13b]

[vW99]

[WYO5]

[WYYO05a]

[WYYO5b]

[XLFO08]

, Attacks on hash functions and applications, Ph.D. thesis, Leiden
University, June 2012.

_, Counter-cryptanalysis, CRYPTO 2013, Part I (Santa Barbara,
CA, USA) (Ran Canetti and Juan A. Garay, eds.), LNCS, vol. 8042,
Springer, Heidelberg, Germany, August 18-22, 2013, pp. 129-146.

, New collision attacks on SHA-I based on optimal joint local-
collision analysis, EUROCRYPT 2013 (Athens, Greece) (Thomas Johans-
son and Phong Q. Nguyen, eds.), LNCS, vol. 7881, Springer, Heidelberg,
Germany, May 26-30, 2013, pp. 245-261.

Paul C. van Oorschot and Michael J. Wiener, Parallel collision search with
cryptanalytic applications, Journal of Cryptology 12 (1999), no. 1, 1-28.
Xiaoyun Wang and Hongbo Yu, How to break MD5 and other hash
functions, EUROCRYPT 2005 (Aarhus, Denmark) (Ronald Cramer, ed.),
LNCS, vol. 3494, Springer, Heidelberg, Germany, May 22-26, 2005,
pp. 19-35.

Xiaoyun Wang, Andrew C. Yao, and Frances Yao, Cryptanal-
ysis on SHA-1, NIST Cryptographic Hash Workshop, 2005,
http://csrc.nist.gov/groups/ST/hash/documents/Wang_
SHA1-New-Result.pdf.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, Finding collisions in the
full SHA-1, CRYPTO 2005 (Santa Barbara, CA, USA) (Victor Shoup, ed.),
LNCS, vol. 3621, Springer, Heidelberg, Germany, August 14—18, 2005,
pp. 17-36.

Tao Xie, Fanbao Liu, and Dengguo Feng, Could the 1-MSB input differ-
ence be the fastest collision attack for MD5?, Cryptology ePrint Archive,
Report 2008/391, 2008, https://eprint.iacr.org/2008/391.



http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
https://eprint.iacr.org/2008/391

