
Hot cold splitting in LLVM

Aditya Kumar
Facebook



How does the density of an 
object affect its ability to float?

With apologies to the Tweeter...

...

[]



“... but, yet, it's one of the most interesting 
things that happened in the LLVM optimizer 
this year.”

Anonymous Reviewer



Hot cold splitting ● Intro

● Regions

● Marking Edges

● Propagating Profile Info

● Extracting maximal region

● Experimental Results

● Opportunities for improvement



Regions

1. SESE

2. SEME

Image source: https://upload.wikimedia.org/wikipedia/commons/3/30/Some_types_of_control_flow_graphs.svg

SESE SEME

https://upload.wikimedia.org/wikipedia/commons/3/30/Some_types_of_control_flow_graphs.svg


Converting SEME to SESE



Marking Edges

● Using static analysis

○ e.g., __builtin_expect, assertions, non-returning functions, 
catch-block

● Using dynamic profile information



Propagating Profile Info

● Using dominance and post-dominance

CFG of ‘foo’



Extracting cold region

1. Find maximal region

2. Compute inputs outputs

3. Extract as function

4. Add attributes

○ noinline, minsize, cold CFG of
 ‘foo’

CFG of 
‘foo.cold.1 ’



Design decisions (implementing in the middle end)

Advantages 

Focus on the optimization and tuning

Optimize cold functions for size

Take advantage of (thin)LTO

Helps all backend targets

Low maintenance overhead

Drawbacks

Architecture specific opportunities



Applications benefitting from HotColdSplitting

High icache misses

- Code with lots of branches

- Smaller page size

High premain time

- Reduce startup working set



Experimental setup

- 2 step build with PGO or AutoFDO

Measurements

- Measure pre-main metrics e.g., page faults

- iCache misses (perf stat -e icache.misses)
- Field data

- Code size

Experiment Evaluation



Execution time

LLVM Testsuite



Code size

LLVM Testsuite



LLVM-testsuite (# of functions outlined)

LLVM Testsuite



LLVM testsuite (perf stat*)

* perf stat -e instructions,icache.misses (try `perf list` to find out other metrics of interest)



Impact

1. Enabled in Xcode, swift-llvm

2. ios-13 shipped with hot cold splitting enabled

○ All core libraries e.g., libc++, libSystem, dyld, CoreFoundation, UIKit, SSL



Opportunities for improvement

1. Concepts of hot-cold

2. Outlining maximal regions

3. Improving static analysis

4. Improving Code Extractor

5. Tuning cost model for code-size 

6. Merge Similar Function meets Hot Cold Splitting

7. Outlining regions post-dominated by non-returning function calls (D69257)



Concepts of hot-cold partitioning

Hot = interesting

Cold = not interesting

- Randomly outlining code
- https://reviews.llvm.org/D65376

- Hard coding custom sub-graphs
- Or pass as compiler flags

https://reviews.llvm.org/D65376


Outlining maximal regions



Merge Similar Function + Hot Cold Splitting

Schedule MergeSim after HotColdSplit

- May improve code-size with appropriate 

cost model

*Repaired the port of merge-similar-functions (MergeSim) to thinLTO https://reviews.llvm.org/D52896



Performance



Codesize



Acknowledgements

Vedant Kumar
Sebastian Pop
Teresa Johnson
Sergey Dmitriev
Krzysztof Parzyszek

References:

https://reviews.llvm.org/D50658
http://lists.llvm.org/pipermail/llvm-dev/2019-January/129606.html

$ c++filt __Z3fooi
foo(int)
$ c++filt __Z3fooi.cold.1
foo(int) (.cold.1)
$ c++filt __Z3fooi_cold
__Z3fooi_cold



● How does Hot Cold splitting perform in absence of profile information, i.e. using only 
static analysis?

○ Depends on programmer annotations and programming-language features
○ Only 280 functions outlined in llvm without profile information.

● Is this optimization now mature enough to be ON by default with PGO?
○ Issues with AssumptionCache, and CodeExtractor: PR40710, PR43424

● Difference in performance for C vs C++ applications?
○ Try-catch blocks

● Interaction with code layout optimization which reorder hot/warm BBs to reduce 
instruction cache misses

○ Reordering doesn’t change dominance
● Debuginfo support for this optimization

○ Reasonable?
● How to reduce code-size growth

○ Tune the number of function arguments to be created while splitting

Possible questions


