TUTI

Implementing SPMD control flow in LLVM using
reconverging CFGs

Fabian Wahlster l

Technische Universitat Minchen — UX3D

Nicolai Hahnle B:m=cond(B->D) | :
exec &= ~m

AMD \
4

C

/

D: exec = m

:

TUTI

Divergence on wide SIMD

All lanes / invocations Subset of lanes /
active invocations active
wave / subgroup if() statement wave / subgroup

s 1L 11
IIIIIIIIII """"" III only triggers for some lanes & E& = BEEE e

Src: D. Lively and H. Gruen. “Wave Programming in D3D12 and Vulkan”

Execution
pattern of
each thread

P[P
Q

R Time

Src: A. Sabne, P. Sakdhnagool, and R. Eigenmann
“Formalizing Structured ControlFlowGraphs.”

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications 2

TUTI

Converting thread-level code to wave-level ISA

float fnO(float a,float b)

return ((a-b) *a) ;

return ((b-a) *b) ;

{
if (a>b)
else
}
entry
if Ise

W

exit

entry

——)

//Registers r0 contains “a”, rl contains “b”
//Value is returned in r2

v_cmp gt £32 r0,rl //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and bé64 exec,vece,exec //Do “if”

s cbranch vccz labelO //Branch if all lanes fail

v_sub £32 r2,r0,rl //result = a - b

v_mul £32 r2,r2,xr0 //result=result * a
labelO:

s_andn2 bé4 exec,s0,exec //Do “else” (s0 & 'exec)

s cbranch execz labell //Branch if all lanes fail

v_sub_ £32 r2,rl,x0 //result = b - a

v_mul £32 r2,r2,rl //result = result * b
labell:

s_mov_b64 exec,s0 //Restore exec mask

M. Mantor and M. Houston: AMD Graphic Core Next Architecture, Fusion 11 Summit presentation

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications 3

Structurization in LLVM

endif2 (light range)

endloopl

StructurizeCFG Unnecessary
74 flow blocks

if23 (specular)

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications 4

Reconverging CFGs

Definition:
« Every non-uniform terminator B (conditional branch) has exactly two successors

* One of which post-dominates B

entry
\
entry if secondary successor
/N /
if else flow primary successor
NS /
exit else

exit

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Lowering Reconverging CFGs

For each conditional node N: l
» Virtual register m holds re-join mask for basic block N Am=0
« Subtract m from the register to direct control flow to »
successor B:m = cond(B -> D)
exec &= ~m
 Add m the register at the beginning of the \ '
successor to re-join divergent threads C
* m must be correctly initialized to avoid unrelated data being /

merged into the execution mask . B
D: exec = m

:

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

TUTI

Transforming to reconverging control flow

Approach: OpenTree OT
* Maintain open tree OT structure containing unprocessed open
edges to reroute control flow towards the node by inserting ROOT

new flow blocks

Ordering: A
« Compute basic block ordering in which to process input CFG 4 \
* Ordering is based on traversal of the input CFG '
C FLOWO
* Any ordering is viable as long as the exit node comes last
| 4 4
» Quality of reconverging CFG depends on the input ordering B D

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications 7

Open Tree Structure

Processing nodes:
* Nodes of the have sets of open Incoming and Outgoing
edges that need to be processed

« An outgoing edge (A, B) is if A has already been visited
when B is being processed

« Anode can be if both sets are emptied by processing

nodes are removed from the and their child nodes
moved to its parent

nodes are called armed if one of the outgoing edges
has already been

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

ROOT

«— parent

A

«— armed

=\

C

FLOWO

outgoing 4’>

B

<
D

Transforming to reconverging control flow

Input Initialize OT Added A Processing C...
ROOT ROOT ROOT

A A
) A A

V. 4 »

C B B C

A>C>B>D ;

D

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Transforming to reconverging control flow

Input Processing C... Adding FLOW Output
ROOT ROOT A
A A C
ik “ A /
)" : s
B C C FLOWO FLOWO
A>C>B>D v S /
D B D B
1
D

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications 10

Transforming to reconverging control flow

Reconverging CFG

A

h

C

\

FLOWO

/

B

%CC_A = icmp eq 132 %in_A, ©
br 11 %cc_A, label % , label %C

br label %D

%0 = phi i1 [true, %A], [false, %C]
br i1 %0, label %B, label %D

%cc_ C = icmp eq 132 %in _C, ©
br i1 %cc_C, label %A, label %

ret void

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications 11

Input Ordering Exit Condition

Input CFG Depth First:

>

OOOOO

mie— O — T U fe— m]
Tt T e— O T (¢— T —] >

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

12

Input Ordering Comparison

Depth First:

A

>

/

e,

FL

OWO0

N

FLOW1

T t— M — O Et— T et— W a—

]
\

Breadth First:

>

OOOOO

H e— T e— U — O — T]

o
TN

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

RPOT:

OOOOO

N t— U t— U t— T] O t—

13

Reconverging Control-Flow Graphs

Contributions:

 New SPMD vectorization approach

» Simple and concise definition of Reconvergence for CFGs (weaker than structuredness)
» Proof-of-Concept lowering algorithm and CFG transformation

Properties:

Support for unstructured and irreducible input CFGs

Preserves uniform control flow

Retains CFGs that are already reconverging

Insert fewer new basic blocks than structurization (StructurizeCFG)

Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

14

