

Fabian Wahlster

Technische Universität München – UX3D

Nicolai Hähnle

AMD

Implementing SPMD control flow in LLVM using
reconverging CFGs

Src: A. Sabne, P. Sakdhnagool, and R. Eigenmann

“Formalizing Structured ControlFlowGraphs.”

2Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Divergence on wide SIMD

Src: D. Lively and H. Gruen. “Wave Programming in D3D12 and Vulkan”

3Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Converting thread-level code to wave-level ISA

M. Mantor and M. Houston: AMD Graphic Core Next Architecture, Fusion 11 Summit presentation

4Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Structurization in LLVM

StructurizeCFG

pass

Unnecessary

flow blocks

5Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Definition:

• Every non-uniform terminator B (conditional branch) has exactly two successors

• One of which post-dominates B

Reconverging CFGs

primary successor

secondary successor

For each conditional non-uniform node N:

• Virtual register m holds re-join mask for basic block N

• Subtract m from the exec register to direct control flow to

secondary successor

• Add m the exec register at the beginning of the primary

successor to re-join divergent threads

• m must be correctly initialized to avoid unrelated data being

merged into the execution mask

6Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Lowering Reconverging CFGs

Approach:

• Maintain open tree OT structure containing unprocessed open

edges to reroute control flow towards the exit node by inserting

new flow blocks

Ordering:

• Compute basic block ordering in which to process input CFG

• Ordering is based on traversal of the input CFG

• Any ordering is viable as long as the exit node comes last

• Quality of reconverging CFG depends on the input ordering

7Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Transforming to reconverging control flow

OpenTree OT

Processing nodes:

• Nodes of the OT have sets of open Incoming and Outgoing

edges that need to be processed

• An outgoing edge (A, B) is closed if A has already been visited

when B is being processed

• A node can be closed if both sets are emptied by processing

• Closed nodes are removed from the OT and their child nodes

moved to its parent

• Divergent nodes are called armed if one of the outgoing edges

has already been closed

8Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Open Tree Structure

armed

parent

outgoing

closed

9Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Transforming to reconverging control flow

Input CFG Added A Processing C…

A → C → B → D

Initialize OT

10Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Transforming to reconverging control flow

Input CFG Adding FLOW

A → C → B → D

Processing C…

Output CFG

11Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Transforming to reconverging control flow

A:
%cc_A = icmp eq i32 %in_A, 0
br i1 %cc_A, label %FLOW0, label %C

B:
br label %D

FLOW0:
%0 = phi i1 [true, %A], [false, %C]
br i1 %0, label %B, label %D

C:
%cc_C = icmp eq i32 %in_C, 0
br i1 %cc_C, label %A, label %FLOW0

D:
ret void

Reconverging CFG

12Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Input Ordering Exit Condition

Input CFG

Depth First:

13Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Input Ordering Comparison

RPOT:

Breadth First:

Depth First:

Contributions:

• New SPMD vectorization approach

• Simple and concise definition of Reconvergence for CFGs (weaker than structuredness)

• Proof-of-Concept lowering algorithm and CFG transformation

Properties:

• Support for unstructured and irreducible input CFGs

• Preserves uniform control flow

• Retains CFGs that are already reconverging

• Insert fewer new basic blocks than structurization (StructurizeCFG)

14Fabian Wahlster | Vectorising Divergent Control-Flow for SIMD Applications

Reconverging Control-Flow Graphs

