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1 Problematics
•Annotation languages have been proposed to specify properties, usually functional, in the source

programs to provide additional information [1]. However, for the purpose of implementing secure
code, there has been little effort to support non-functional properties about side-channels or faults.
• Securing code involves enforcing and checking such properties on the program binary representa-

tion. We thus need an automated approach to carry source-level annotations across the compilation
flow, interacting safely with optimizations and lowering steps, and to capture them at binary level.

2 Objectives
A complete workflow using annotations:
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This comprises:
1. An annotation language that allows expressing security-related properties
2. An optimizing, annotation-aware C compiler able to propagate source-level annotations, control-

ling their interaction with compilation passes, and to emit them into the executable binary
3. A representation of the annotations at the binary level

3 Annotation Language
Source-level language
• Based on ANSI-C Specification Language (ACSL) [1], designed to specify functional properties to

be verified by source code analyzers
• Extended with semantic predicates and semantic variables to capture side-effects of the code
•Annotation representation:

Annotation = Annotated Entity ∧ Predicate ∧ Referenced Variables

Annotated Entity = Function ∨ Variable ∨ Statement

Predicate = Logic Predicate ∨ Semantic Predicate

#define ANNOT(s) __attribute__((annotate(s)))

// Function annotation: the function returns BOOL_TRUE only when PPIN codes match
ANNOT("\\ensures \\result == 1 &&"

" \\forall i; 0 <= i < 4: userPin[i] == cardPin[i];"
"\\ensures \\result == 0 &&"

" \\exists i; 0 <= i < 4: userPin[i] != cardPin[i];")
int verifyPIN(// Variable annotation: card PIN code should not be leaked

ANNOT("\\invariant \\secret()") char *cardPin, char *userPin) {
int i;
int diff = 0;

// Statement annotation: loop must be iterated exactly 4 times
prop1: ANNOT("\\ensures \\count() == 4;")
for (i = 0; i < PIN_SIZE; i++)

if (userPin[i] != cardPin[i])
diff = 1;

// Statement annotation: the comparison is sensitive so should not be removed
prop2: ANNOT("\\ensures \\sensitive();")
if (i != 4)

return BOOL_FALSE;

if (diff == 0)
return BOOL_TRUE;

return BOOL_FALSE;
}

Listing 1: Interesting properties for an authentication code, expressed by the annotation language

Binary-level representation
• Based on DWARF debugging information format [2] which provides mapping from source-level

entities to their representation in the binary
• Introduced new tags and attributes to represent annotations

4 Annotations in LLVM
Two different problems: annotation representation and annotation propagation

Annotation representation
•Annotation: new metadata node containing the predicate
•Annotated entity

– Function or variable: debug information metadata
– Statement: region delimited by so-called annotation markers
•Variables referenced in the annotation predicate: debug information metadata

Annotation propagation
• The annotation metadata itself is kept aside from the code and is not affected by optimizations

•Major challenges

– Correctness of debug information for annotated entity and variables referenced by the annotation
– Correctness of annotated region: SSA barriers to ensure isolation of the annotated region
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Figure 1: Annotated region isolation by SSA barriers
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Figure 2: Annotations throughout LLVM compilation flow

5 Preliminary Results
•Annotations found in DWARF section

• Code with protection inserted at source level: the protection may be removed by the compiler

• Traditionally, programmers compile the protected code without optimization or use fragile pro-
gramming tricks to outwit the compiler

• SSA barriers prevent optimizations from removing the protection

• Tested on 2 different protections for the PIN authentication code: CFI [3] and loop protection [4]

• Simulated for ARM Cortex-M3: code generated using SSA barriers has about 50% less executed
instructions than code generated without optimization and 30% less executed instructions than
generated optimized code with programming tricks, while still preserving the protection

6 Future Work
•Annotation correctness verification mechanism

• Per-region optimization mechanism

• Rules for transforming annotations in the optimizer
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