
Compilation and Optimization
with Security Annotations

Exploring the expression, use and propagation of functional and non-functional properties across the
compilation flow

Son Tuan Vu1, Karine Heydemann1, Arnaud de Grandmaison2, Albert Cohen3

1Sorbonne University, 2ARM, 3Google
son-tuan.vu@lip6.fr

1 Problematics
•Annotation languages have been proposed to specify properties, usually functional, in the source

programs to provide additional information [1]. However, for the purpose of implementing secure
code, there has been little effort to support non-functional properties about side-channels or faults.
• Securing code involves enforcing and checking such properties on the program binary representa-

tion. We thus need an automated approach to carry source-level annotations across the compilation
flow, interacting safely with optimizations and lowering steps, and to capture them at binary level.

2 Objectives
A complete workflow using annotations:

(1)
Annotated

source code

(3)
Binary

+
Annotations

Source code
analysis tool

Binary analysis
tool

(2)
Compiler
Consume +

 Produce annots

This comprises:
1. An annotation language that allows expressing security-related properties
2. An optimizing, annotation-aware C compiler able to propagate source-level annotations, control-

ling their interaction with compilation passes, and to emit them into the executable binary
3. A representation of the annotations at the binary level

3 Annotation Language
Source-level language
• Based on ANSI-C Specification Language (ACSL) [1], designed to specify functional properties to

be verified by source code analyzers
• Extended with semantic predicates and semantic variables to capture side-effects of the code
•Annotation representation:

Annotation = Annotated Entity ∧ Predicate ∧ Referenced Variables

Annotated Entity = Function ∨ Variable ∨ Statement

Predicate = Logic Predicate ∨ Semantic Predicate

#define ANNOT(s) __attribute__((annotate(s)))

// Function annotation: the function returns BOOL_TRUE only when PPIN codes match
ANNOT("\\ensures \\result == 1 &&"

" \\forall i; 0 <= i < 4: userPin[i] == cardPin[i];"
"\\ensures \\result == 0 &&"

" \\exists i; 0 <= i < 4: userPin[i] != cardPin[i];")
int verifyPIN(// Variable annotation: card PIN code should not be leaked

ANNOT("\\invariant \\secret()") char *cardPin, char *userPin) {
int i;
int diff = 0;

// Statement annotation: loop must be iterated exactly 4 times
prop1: ANNOT("\\ensures \\count() == 4;")
for (i = 0; i < PIN_SIZE; i++)

if (userPin[i] != cardPin[i])
diff = 1;

// Statement annotation: the comparison is sensitive so should not be removed
prop2: ANNOT("\\ensures \\sensitive();")
if (i != 4)

return BOOL_FALSE;

if (diff == 0)
return BOOL_TRUE;

return BOOL_FALSE;
}

Listing 1: Interesting properties for an authentication code, expressed by the annotation language

Binary-level representation
• Based on DWARF debugging information format [2] which provides mapping from source-level

entities to their representation in the binary
• Introduced new tags and attributes to represent annotations

4 Annotations in LLVM
Two different problems: annotation representation and annotation propagation

Annotation representation
•Annotation: new metadata node containing the predicate
•Annotated entity

– Function or variable: debug information metadata
– Statement: region delimited by so-called annotation markers
•Variables referenced in the annotation predicate: debug information metadata

Annotation propagation
• The annotation metadata itself is kept aside from the code and is not affected by optimizations

•Major challenges

– Correctness of debug information for annotated entity and variables referenced by the annotation
– Correctness of annotated region: SSA barriers to ensure isolation of the annotated region

annotation
end

annotation
start

annotation
end

%a = load
%b = use %a

%b1 = intrinsic_use %b

%b2 = intrinsic_use %b1
%a1 = intrinsic_use %a
%3 = intrinsic_use i32 3%c = use %b2

%d = use %a1

%e = use %3

Figure 1: Annotated region isolation by SSA barriers

Middle-end

Object file +
DWARF

+
Annotation DIE

Optimized
LLVM IR +
Annotation
Metadata

Back-end

LLVM IR
+

Annotation
Metadata

Front-end
Annotated C
source code

Annotation metadata +
annotation markers emission

- SSA barriers emission
- Annotation markers + SSA barriers

= intrinsics with side-effects

- Annotation markers = pseudo-instructions with side-effects,
used to compute address ranges for annotated statement

- SSA barriers = pseudo-instructions with side-effects,
constrained to have same source and destination register

Figure 2: Annotations throughout LLVM compilation flow

5 Preliminary Results
•Annotations found in DWARF section

• Code with protection inserted at source level: the protection may be removed by the compiler

• Traditionally, programmers compile the protected code without optimization or use fragile pro-
gramming tricks to outwit the compiler

• SSA barriers prevent optimizations from removing the protection

• Tested on 2 different protections for the PIN authentication code: CFI [3] and loop protection [4]

• Simulated for ARM Cortex-M3: code generated using SSA barriers has about 50% less executed
instructions than code generated without optimization and 30% less executed instructions than
generated optimized code with programming tricks, while still preserving the protection

6 Future Work
•Annotation correctness verification mechanism

• Per-region optimization mechanism

• Rules for transforming annotations in the optimizer

References
[1] Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Benjamin Monate, Yannick Moy, and Virgile Pre-

vosto. ACSL: ANSI/ISO C Specification Language Version 1.4, May 2008.

[2] DWARF Debugging Information Format Commitee. DWARF Debugging Information Format Version 5, 2017.

[3] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. Software countermeasures for control flow integrity
of smart card C codes. In Miroslaw Kutylowski and Jaideep Vaidya, editors, ESORICS - 19th European Symposium
on Research in Computer Security, volume 8713 of Lecture Notes in Computer Science, pages 200–218, Wroclaw,
Poland, September 2014. Springer International Publishing.

[4] Marc Witteman. Secure Application Programming in the Presence of Side Channel Attacks. Technical report.


