Without loss of generality, let us instantiate the objective function with the regularizer A of

empirical error on the labeled data for a family of hash codes.

flw,Ql=¢
minzi: ; HWITPL—H;HTUH\ZI: Zk: UZV: —s;;wrfw (A-1)

One can express the second term of the above objective function in a compact matrix form by
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defining matrices incorporating the pairwise similarity of

Pi and the pairwise relationship of P' for labeled information respectively. Then,
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and using (1) and absorbing the constant term into A we can also represent it as
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The objective function becomes the follows.
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Here, we concern two possible problems due to the sign function for Q First, Q may
not be a unique solution and thus the objective function is difficult to converge without

considering any regularizer about Q  We add a Frobenius norm regularizer "1 . In addition,

the objective function f(w,Q) is nondifferentiable in terms of < . We can approximate

the sign function with the surrogate function (A-5).
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Here, § is a positive constant close to zero and ° is the hadamard (elementwise) product.
Finally, we have the following objective function.
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To minimize the objective function applying (A-6), we use a Newton-Raphson algorithm [55]
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and iteratively solve and @ . When updating with @ fixed we consider the

first derivative of " in terms of k without loss of generality.
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This approach allows us to update for all
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simultaneously

we update Qx for all combinations of (i’k) s 1<isM , 1<k<K at the same time
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where vir is defined in an elementwise manner
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and SL(Qk)Z(QHQHE) . Moreover, we calculate second derivatives for the Hessian

matrix. We first consider the Wi
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In terms of @k 0Q? isderivedas
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¢ and dlClg are to transform a matrix to a

J

Here, ® s the Kronecker product [59] and

vector and a vector to a diagonal matrix respectively. In addition, is a matrix of ones and

A is defined in an elementwise manner as follows
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