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Without loss of generality, let us instantiate the objective function with the regularizer  λ  of

empirical error on the labeled data for a family of hash codes.
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One can express the second term of the above objective function in a compact matrix form by

defining  matrices  Sk
i ∈RN i×N i

 and  Ri∈ RN i×N i

 incorporating  the  pairwise  similarity  of

Pk
i

 and  the  pairwise  relationship  of  Pi

 for  labeled  information  respectively.  Then,
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K )  can be represented as 
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and using (1) and absorbing the constant term into λ we can also represent it as 
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The objective function becomes the follows. 
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Here, we concern two possible problems due to the sign function for Q . First, Q  may

not  be  a  unique  solution  and  thus  the  objective  function  is  difficult  to  converge  without

considering any regularizer about Q . We add a Frobenius norm regularizer η . In addition,

the objective function  f (W ,Q)  is nondifferentiable in terms of  Q . We can approximate

the sign function with the surrogate function (A-5).
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Here, ξ  is a positive constant close to zero and ∘  is the hadamard (elementwise) product.

Finally, we have the following objective function.
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To minimize the objective function applying  (A-6), we use a Newton-Raphson algorithm [55]

and iteratively solve  W  and  Q . When updating  W  with  Q  fixed we consider the

first derivative of W  in terms of k  without loss of generality. 

∂ f
∂W k

=∑
j

2P k
i
{W k

T Pk
i
−(Q k

i ∘Qk
i
+ξ )

−1
2 ∘Qk

i

      (A-7)

This  approach  allows  us  to  update  W k  for  all  k (1≤k ≤K )  simultaneously
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. Similarly with W  fixed we can update Q . To be specific,
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where ∇ tr  is defined in an elementwise manner 

(∇ tr )p ,q=S L
' (Qk

i ; p , q ){(∑t=1

N i

SL (Qk
i ; t , q )Rt , p

i )+SL (Q k
i ; p , q)}                        (A-9)

and  SL
'
(Qk

i
)=(Q k

i ∘Q k
i
+ξ )

−3
2

. Moreover,  we  calculate  second  derivatives  for  the  Hessian

matrix. We first consider the W k    
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In terms of Qk
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Here, ⊗  is the Kronecker product [59] and ¿⃗  and diag  are to transform a matrix to a

vector and a vector to a diagonal matrix respectively. In addition, J  is a matrix of ones and

A  is defined in an elementwise manner as follows
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