Without loss of generality, let us instantiate the objective function with the regularizer λ o empirical error on the labeled data for a family of hash codes.

$$
f(W, Q)=i
$$

$$
\begin{equation*}
\min \sum_{i} \sum_{k}\left\|W_{k}^{T} P_{k}^{i}-H_{k}^{i}\right\|_{F}^{2}+\lambda \sum_{i} \sum_{k} \sum_{u, v}-s_{k_{u v}}^{i} r_{u v}^{i} \tag{A-1}
\end{equation*}
$$

One can express the second term of the above objective function in a compact matrix form by defining matrices $S_{k}^{i} \in R^{N_{i} \times N_{i}}$ and $R^{i} \in R^{N_{i} \times N_{i}}$ incorporating the pairwise similarity of P_{k}^{i} and the pairwise relationship of P^{i} for labeled information respectively. Then, $S\left(\left\{W_{k}{ }_{k=1}^{K}\right) \quad\right.$ can be represented as

$$
\begin{equation*}
S\left(\left\langle W_{k \mid k=1}^{K}\right)=\lambda \sum_{i} \sum_{k} \operatorname{tr}\left(-S_{k}^{i} R^{i}\right)\right. \tag{A-2}
\end{equation*}
$$

and using (1) and absorbing the constant term into λ we can also represent it as

$$
\begin{equation*}
S\left(\left(\left.W_{k}\right|_{k=1} ^{K}\right)=\lambda \sum_{i} \sum_{k} \operatorname{tr}\left(-H_{k}^{i} R^{i} H_{k}^{i T}\right) .\right. \tag{A-3}
\end{equation*}
$$

The objective function becomes the follows.

$$
\begin{align*}
f(W, Q)=\min \sum_{i} \sum_{k} \| & \left\|W_{k}^{T} P_{k}^{i}-\operatorname{sign}\left(Q_{k}^{i}\right)\right\|_{F}^{2}+i \\
& \lambda \sum_{i} \sum_{k} \operatorname{tr}\left(-\operatorname{sign}\left(Q_{k}^{i}\right) R^{i} \operatorname{sign}\left(Q_{k}^{i}\right)^{T}\right) \tag{A-4}
\end{align*}
$$

Here, we concern two possible problems due to the sign function for Q. First, Q may not be a unique solution and thus the objective function is difficult to converge without considering any regularizer about Q. We add a Frobenius norm regularizer η. In addition, the objective function $f(W, Q)$ is nondifferentiable in terms of Q. We can approximate the sign function with the surrogate function (A-5).

$$
\begin{equation*}
S_{L}\left(Q_{k}^{i}\right)=\left(Q_{k}^{i} \circ Q_{k}^{i}+\xi\right)^{\frac{-1}{2}} \circ Q_{k}^{i} \tag{A-5}
\end{equation*}
$$

 Finally, we have the following objective function.

$$
f(W, Q)=\min \sum_{i} \sum_{k}\left\|W_{k}^{T} P_{k}^{i}-S_{L}\left(Q_{k}^{i}\right)\right\|_{F}^{2}+i
$$

$$
\begin{equation*}
\lambda \sum_{i} \sum_{k} \operatorname{tr}\left(-S_{L}\left(Q_{k}^{i}\right) R^{i} S_{L}\left(Q_{k}^{i}\right)^{T}\right)+\eta \sum_{i} \sum_{k}\left\|Q_{k}^{i}\right\|_{F}^{2} \tag{A-6}
\end{equation*}
$$

To minimize the objective function applying (A-6), we use a Newton-Raphson algorithm [55] and iteratively solve W and Q. When updating W with Q fixed we consider the first derivative of $\quad W$ in terms of k without loss of generality.

$$
\begin{equation*}
\frac{\partial f}{\partial W_{k}}=\sum_{j} 2 P_{k}^{i}\left\{W_{k}^{T} P_{k}^{i}-\left(Q_{k}^{i} \circ Q_{k}^{i}+\xi\right)^{\frac{-1}{2}} \circ Q_{k}^{i}\right. \tag{A-7}
\end{equation*}
$$

This approach allows us to update W_{k} for all $k(1 \leq k \leq K)$ simultaneously $W_{k}^{\text {new }}=W_{k}-\left(\frac{\partial^{2} f}{\partial W_{k}^{2}}\right)^{-1} \frac{\partial f}{\partial W_{k}}$. Similarly with $\quad W \quad$ fixed we can update $\quad Q$. To be specific, we update Q_{k}^{i} for all combinations of $(i, k), 1 \leq i \leq M, 1 \leq k \leq K$ at the same time $Q_{k}^{i, \text { new }}=Q_{k}^{i}-\left(\frac{\partial^{2} f}{\partial Q_{k}^{i 2}}\right)^{-1} \frac{\partial f}{\partial Q_{k}^{i}}$. The first derivative of $\quad Q_{k}^{i} \quad$ is

$$
\begin{equation*}
\frac{\partial f}{\partial Q_{k}^{i}}=-2\left\{W_{k}^{T} P_{k}^{i}-S_{L}\left(Q_{k}^{i}\right)\right\} \circ S_{L}^{\prime}\left(Q_{k}^{i}\right)-\lambda \nabla \operatorname{tr}+2 \eta Q_{k}^{i} \tag{A-8}
\end{equation*}
$$

where $\nabla t r \quad$ is defined in an elementwise manner

$$
\begin{equation*}
(\nabla t r)_{p, q}=S_{L}^{\prime}\left(Q_{k}^{i} ; p, q\right)\left\{\left(\sum_{t=1}^{N_{i}} S_{L}\left(Q_{k}^{i} ; t, q\right) R_{t, p}^{i}\right)+S_{L}\left(Q_{k}^{i} ; p, q\right)\right\} \tag{A-9}
\end{equation*}
$$

and $S_{L}^{\prime}\left(Q_{k}^{i}\right)=\left(Q_{k}^{i} \circ Q_{k}^{i}+\xi\right)^{\frac{-3}{2}}$. Moreover, we calculate second derivatives for the Hessian matrix. We first consider the W_{k}

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial W_{k}^{2}}=\sum_{i} 2 P_{k}^{i} P_{k}^{i T} \tag{A-10}
\end{equation*}
$$

In terms of $Q_{k}^{i}, \frac{\partial^{2} f}{\partial Q_{k}^{i 2}}$ is derived as

$$
\begin{equation*}
\left.\left(\left[-2\left(W_{k}^{T} P_{k}^{i}\right) S_{L}^{\prime \prime}\left(Q_{k}^{i}\right)+2\left\{S_{L}^{\prime}\left(Q_{k}^{i}\right) \circ S_{L}^{\prime}\left(Q_{k}^{i}\right)+S_{L}\left(Q_{k}^{i}\right) \circ S_{L}^{\prime \prime}\left(Q_{k}^{i}\right)\right\}\right]\right)\right]\left(I_{\left(N_{i} b_{k}\right)}\right)^{T}-\lambda \nabla^{2} \operatorname{tr}+2 \eta I_{\left(N_{i} b_{k}\right)} \tag{A-11}
\end{equation*}
$$

Where

$$
\nabla^{2} \operatorname{tr}=\left[I_{\left(b_{k}\right)} \otimes\left\{\left(J_{\left(N_{i}\right)}+I_{\left(N_{i}\right)}\right) \circ R^{i}\right\}\right] \odot
$$

$$
\begin{equation*}
\left\{\left(S_{L}^{\prime}\left(Q_{k}^{i}\right)\right)\left(S_{L}^{\prime}\left(Q_{k}^{i}\right)\right)^{T}\right\}+\operatorname{diag}((\vec{A})) \tag{A-12}
\end{equation*}
$$

Here, ${ }^{\otimes}$ is the Kronecker product [59] and i and diag are to transform a matrix to a vector and a vector to a diagonal matrix respectively. In addition, J is a matrix of ones and A is defined in an elementwise manner as follows

$$
\begin{equation*}
(A)_{p, q}=S_{L}^{\prime \prime}\left(Q_{k}^{i} ; p, q\right)\left\{\left(\sum_{t=1}^{N_{i}} S_{L}\left(Q_{k}^{i} ; t, q\right) R_{t, p}^{i}\right)+S_{L}\left(Q_{k}^{i} ; p, q\right)\right\} \tag{A-13}
\end{equation*}
$$

where $S_{L}^{\prime \prime}\left(Q_{k}^{i} ; p, q\right)=\left(Q_{k}^{i} \circ Q_{k}^{i}+\xi\right)-\frac{5}{2} Q_{k}^{i}$.

